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Abstract

This paper presents a method for computing a minimal bounding ellipsoid that contains
the solution set to the uncertain linear equations. Particularly, we aim at finding a
bounding ellipsoid for static response of structures, where both external forces and elastic
moduli of members are assumed to be imprecisely known and bounded. By using the S-
lemma, we formulate a semidefinite programming (SDP) problem which provides an outer
approximation of the minimal bounding ellipsoid. The minimum bounding ellipsoids are
computed for nodal displacements of uncertain braced frames as the solutions of the
presented SDP problems by using the primal-dual interior-point method.

Keywords

Semidefinite program; Data uncertainty; Uncertain linear equations; Interval analysis;
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1 Introduction

This paper discusses a solution method for computing ellipsoidal bounds for the solution set to the
uncertain linear equations, in which we suppose that the coefficient matrix as well as the right-
hand-side vector of the system of linear equations possesses uncertainty. Particularly, in civil,
mechanical and aerospace engineering, structural analyses considering the uncertainties have received
fast-growing interests. This is because structures actually built always have various uncertainties
caused by manufacturing errors, limitation of knowledge of input disturbances, observation errors,
simplification for modeling, damage or deterioration of structural elements, etc.
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School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8540, Japan. E-mail:
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Probabilistic uncertainty modelings of structural analyses were studied extensively. Non-probabilistic
uncertainty models have also been developed. In a non-probabilistic uncertainty model, a mechanical
system is assumed to contain some unknown parameters which are supposed to be bounded. Such
parameters are often referred to as unknown-but-bounded parameters. Ben-Haim and Elishakoff [3]
developed the well-known convex model approach, with which Pantelides and Ganzerli [21] proposed
a robust truss optimization method. The info-gap decision theory has been proposed by Ben-Haim
[2]. Based on the info-gap uncertainty model, the authors proposed solution methods for robustness
analysis of structures [14, 27].

The interval linear algebra has been well developed for uncertain linear equations (ULE) [1, 19],
and has been employed in structural analyses considering various uncertainties [9, 16–18, 23]. In
contrast to probabilistic modelings, non-probabilistic uncertainty modelings require only bounds on
the uncertain parameters, and hence there exists no necessity to estimate the probabilistic distri-
bution functions of uncertain parameters. Under the assumption of small variations of uncertain
parameters, interval analyses of static response have been developed based on the first-order in-
terval perturbation [9, 23]. Further refinements of the linear interval approach were proposed for
static structural analyses including uncertainties [17, 18]. A comparison between the convex model
analysis and interval analysis was given by Qiu [22].

For convex optimization problems, a unified methodology of robust optimization was developed
by Ben-Tal and Nemirovski [6], in which the data in optimization problems are assumed to be
unknown but bounded. Calafiore and El Ghaoui [8] proposed a method for finding ellipsoidal bounds
of the solution set of ULE by using the semidefinite programming relaxation, where the uncertainty
set of data matrix and vector is described by a linear fractional representation [10]. The authors
formulated an SDP problem which provides a confidential ellipsoidal bound for static response of a
truss including some bounded uncertain parameters [13].

In this paper, as a generalization of the results of Kanno and Takewaki [13], we aim at obtaining
an ellipsoidal bound for static response of a general structure. We suppose that both the external
forces and the member stiffnesses are known imprecisely. The conventional interval analysis of
uncertain structures is included in this problem as a particular case. From the mathematical point
of view, our problem corresponds to finding an ellipsoidal bound of the projection of the solution
set of ULE, where the uncertainty set of data matrix has a particular structure. Indeed, our theory
developed in this paper can be applied to a broader class of ULE. The data vector of ULE is assumed
to be included in a bounded set described as a direct product of some ellipsoids.

By using quadratic embedding of the uncertain parameters and the S-procedure [7, 13], we
formulate a semidefinite programming (SDP) problem [11] that provides an outer approximation of
bounding ellipsoid. This fundamental idea is similar to that used in [8], but our analysis is different
because we take notice of a particular properties of stiffness matrix that cannot be described by
the linear fractional representation. It should be emphasized that our uncertainty model of ULE is
motivated by and suitable for the static analysis of structures with uncertainties.

It is known that SDP problems can be efficiently solved by using the primal-dual interior-point
method [15], where the number of arithmetic operations required by the algorithm is bounded by
a polynomial of problem size. Hence, our method finds a bounding ellipsoid within the polynomial
time of problem size, on the contrary to the fact that most of methods based on the interval algebra
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have in general exponential complexity [4, section 6.5.3].
This paper is organized as follows. In section 2, in order to make this paper self-contained, we

introduce SDP as well as some useful technical results. Section 3 defines the uncertainty model of
a system of linear equations. In section 4, we formulate the minimization problem of a bounding
ellipsoid. An approximation problem for finding the minimal bounding ellipsoid is formulated as
an SDP problem in section 5. In section 6, we show how to embed the static analysis of structures
with uncertainties into the general framework developed in sections 3–5. Numerical experiments are
presented in section 7 for braced structures, while conclusions are drawn in section 8.

2 Preliminary results

In this paper, all vectors are assumed to be column vectors. The (m + n)-dimensional column
vector (uT, vT)T consisting of u ∈ Rm and v ∈ Rn is often written simply as (u, v). For a vector
p = (pi) ∈ Rn, let ‖p‖2 and ‖p‖∞, respectively, denote the standard Euclidean norm and l∞-norm
of p defined as

‖p‖2 = (pTp)1/2,

‖p‖∞ = max
i∈{1,...,n}

|pi|.

For p = (pi) ∈ Rn and q = (qi) ∈ Rn, we write p ≥ 0 and p ≥ q, respectively, if pi ≥ 0 (i = 1, . . . , n)
and p−q ≥ 0. We write Diag(p) for the n×n diagonal matrix with a vector p ∈ Rn on its diagonal.
For pl ∈ Rnl (l = 1, . . . , k), we simply write Diag(p1, . . . , pk) instead of Diag((pT

1 , . . . , pT
k )T). The

jth column vector of the identity matrix I ∈ Rn×n is denoted by e
(n)
j .

For p ∈ R and q ∈ R satisfying p ≤ q, we denote by [p, q] the interval defined by

[p, q] = {x ∈ R| p ≤ x ≤ q} .

For two sets A ⊆ Rm and B ⊆ Rn, their Cartesian product is defined by A × B = {(aT, bT)T ∈
Rm+n|a ∈ A, b ∈ B}. Particularly, we write Rm+n = Rm × Rn. Define Rn

+ ⊂ Rn by

Rn
+ = {p ∈ Rn|p ≥ 0}.

The Moore–Penrose pseudo-inverse of Q ∈ Rm×n is denoted by Q† ∈ Rn×m. The nullspace of Q

is denoted by N (Q). Note that N (Q) is the set of all vectors x ∈ Rn satisfying Qx = 0. The basis
of N (Q) is denoted by Q⊥. The row rank of Q is denoted by rank(Q).

2.1 Semidefinite program

Let Sn ⊂ Rn×n denote the set of all n × n real symmetric matrices. We denote Sn
+ ⊂ Sn the set of

all symmetric positive semidefinite matrices. We write P º O and P º Q, respectively, if P ∈ Sn
+

and P −Q ∈ Sn
+. For a matrix P ∈ Rn×n, tr(P ) denotes the trace of P , i.e. the sum of the diagonal

elements of P .
Let Ai ∈ Sn (i = 1, . . . ,m), C ∈ Sn, and b = (bi) ∈ Rm be constant matrices and a constant

vector. The semidefinite programming (SDP) problem refers to the optimization problem having
the form of [11]

min {tr(CX) : tr(AiX) = bi (i = 1, . . . ,m), Sn 3 X º O} , (1)
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where X is a variable matrix. The dual of Problem (1) is formulated in the variables y ∈ Rm as

max

{
bTy : C −

m∑
i=1

Aiyi º O

}
, (2)

which is also an SDP problem.
Recently, SDP has received increasing attention for its various fields of application [5, 12, 13,

20]. It is well known that various convex optimization problems are included in SDP as particular
cases [5]. The primal-dual interior-point method, which has been first developed for the linear
program, has been naturally extended to SDP [11, 15]. It is theoretically guaranteed that the
primal-dual interior-point method converges to optimal solutions of the primal-dual pair of SDP
problems (1) and (2) within the number of arithmetic operations bounded by a polynomial of m

and n.

2.2 Technical lemmas

The remainder of this section is devoted to introducing some technical results that will be used in
the following sections.

Lemma 2.1 (Homogenization [8, Lemma A.3]). Let Q ∈ Sn, p ∈ Rn, and r ∈ R. Then the
following two conditions are equivalent:

(a) :

(
x

1

)T (
Q p

pT r

)(
x

1

)
≥ 0, ∀x ∈ Rn;

(b) :

(
Q p

pT r

)
º O.

Proof. The implication from (b) to (a) is trivial. We show that (a) implies (b) by the contradiction.
Suppose that (b) does not holds, i.e. there exist x′ ∈ Rn and η ∈ R satisfying(

x′

η

)T (
Q p

pT r

)(
x′

η

)
< 0. (3)

If η 6= 0, then (3) is reduced to (
x′/η

1

)T (
Q p

pT r

)(
x′/η

1

)
< 0,

which contradicts the assertion (a). Alternatively, if η = 0, then (3) is reduced to

x′TQx′ < 0. (4)

Letting x = ζx′, the left-hand side of (a) is reduced to

(xTQx′)ζ2 + 2(pTx′)ζ + r, (5)

which is regarded as a function of ζ. The condition (4) implies that (5) is not bounded below, from
which it follows that there exists a ζ such that (5) becomes negative. Thus, we see the contradiction
to (a).
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Let f0(x), f1(x), . . . , fm+k(x) be quadratic functions in the variable x ∈ Rn defined as

fi(x) = xTQix + 2pT
i x + ri, i = 0, 1, . . . ,m + k,

where Qi ∈ Sn, pi ∈ Rn, and ri ∈ R.

Lemma 2.2 (S-lemma). The implication

f1(x) ≥ 0, . . . , fm(x) ≥ 0 =⇒ f0(x) ≥ 0

holds if there exist τ1, . . . , τm such that

f0(x) ≥
m∑

i=1

τifi(x), ∀x ∈ Rn,

τ1, . . . , τm ≥ 0.

Proof. See Boyd et al. [7, section 2.6.3] and the references therein.

The following result immediately follows from Lemma 2.1 and Lemma 2.2:

Corollary 2.3. The implication

f1(x) ≥ 0, . . . , fm(x) ≥ 0, fm+1(x) = 0, . . . , fm+k(x) = 0 =⇒ f0(x) ≥ 0 (6)

holds if there exist τ1, . . . , τm+k satisfying(
Q0 p0

pT
0 r0

)
º

m+k∑
i=1

τi

(
Qi pi

pT
i ri

)
,

τ1, . . . , τm ≥ 0.

Proof. Observe that the quadratic equation fi(x) = 0 is equivalent to the set of quadratic inequalities

fi(x) ≥ 0, −fi(x) ≥ 0.

It follows from Lemma 2.2 that the implication (6) holds if there exist τ1, . . . , τm, ρ+
m+1, . . . , ρ

+
m+k,

and ρ−m+1, . . . , ρ
−
m+k satisfying

f0(x) ≥
m∑

i=1

τifi(x) +
m+k∑

i=m+1

ρ+
i fi(x) +

m+k∑
i=m+1

ρ−i (−fi(x)), ∀x ∈ Rn,

τ1, . . . , τm ≥ 0, ρ+
m+1, . . . , ρ

+
m+k ≥ 0, ρ−m+1, . . . , ρ

−
m+k ≥ 0.

The assertion of this corollary is obtained by putting τi = ρ+
i − ρ−i (i = m + 1, . . . ,m + k) and then

applying Lemma 2.1.

Lemma 2.4 (Lemma on the Schur complement). Let

X =

(
P AT

A Q

)
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be a symmetric matrix with blocks P ∈ Sn and Q ∈ Sm. Then

X º O

if and only if

P º O, Q − AP †AT º O, (I − P †P )AT = O,

where P † denotes the Moore–Penrose pseudo-inverse of P .

Proof. See Boyd et al. [7, pp.28].

3 Uncertain linear equations

Consider a system of linear equations

Ku = f , (7)

where K ∈ Rm×n and f ∈ Rm. In (7), we assume that K and f have the bounded uncertainties,
which shall be rigorously defined below.

In a typical example in structural mechanics of linear elasticity, the system of linear equations (7)
is regarded as the equilibrium equations. In this case, K ∈ Snd

+ and f ∈ Rnd
denote the stiffness

matrix and the external force vector, respectively, where nd denotes the number of degrees of freedom
of displacements. Section 6 is devoted to the details of formulations for the static analysis of
structures under uncertainties. See, also, Example 3.3.

Suppose that K and f in (7) are known imprecisely. The nominal values, or the best estimates,
of K and f are denoted by K̃ ∈ Rm×n and f̃ ∈ Rm, respectively. Let ζa = (ζai) ∈ Rs and
ζf = (ζfj) ∈ Rnf

denote the parameter vectors that are considered to be unknown, or uncertain.
Here, s and nf denote the numbers of the parameters ζai and ζfj , respectively. We describe the
uncertainties of K and f in terms of the unknown ζa and ζf , respectively. Suppose that K and f

depend on ζa and ζf affinely as

K = K̃ +
s∑

i=1

a0
i ζaiKi, (8)

f = f̃ + F0ζf , (9)

where a0 = (a0
i ) ∈ Rs

+, Ki ∈ Rm×n (i = 1, . . . , s), and F0 ∈ Rm×nf
are constant vector and constant

matrices.
Note that a0

i represents the magnitude of uncertainty of Ki. The matrix F0 represents the mag-
nitude of the uncertainty of fj and the correlation of the uncertainties among f1, . . . , fn. Moreover,
suppose that F0 satisfies the following assumption:

Assumption 3.1. The constant matrix F0 ∈ Rm×nf
satisfies rank(F0) = nf ≤ m.

We utilize the fact that any matrix Ki ∈ Rm×n in (8) is written as

Ki =
r∑

j=1

βijb
T
ij , (10)
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where βij ∈ Rm and bij ∈ Rn are constant vector. It is usual that r depends on i. How-
ever, throughout the paper we write r instead of ri for simplicity. Indeed, we can take r =
max {rank(Ki) : i = 1, . . . , s} without loss of generality. It is often that r is relatively small, es-
pecially in the static analysis of uncertain structures as discussed in section 6. If Ki is a symmetric
matrix, then βij and bij in (10) are obtained through the eigenvalue decomposition as shown in
Example 3.2 and Example 3.3 below.

Example 3.2 (decomposition of symmetric Ki). Suppose that Ki ∈ Sn is symmetric with
m = n. Then the eigenvalues λj of Ki are defined as

Kiφj = λjφj , j = 1, . . . , n. (11)

Here, φj ∈ Rn (j = 1, . . . , n) are the eigenvectors which are supposed to be orthonormal as

φjφk = δjk,

where δjk denotes Kronecker’s delta. Since Ki is symmetric, the eigenvalues λj (j = 1, . . . , n) are
real values. From the eigenvalue decomposition it follows that Ki can be written as

Ki =
n∑

j=1

λjφjφ
T
j . (12)

Hence, by putting

βij = φj , bij = λjφj , j = 1, . . . , n,

we see that Ki in (12) is decomposed in the form of (10).

Example 3.3 (decomposition of positive semidefinite Ki). As a particular case of Example 3.2,
suppose that Ki ∈ Sn is a symmetric and positive semidefinite matrix. For example, the member
stiffness matrix of a structure satisfies this condition; see section 6. In the standard eigenvalue prob-
lem (11), suppose that λj (j = 1, . . . , n) are arranged in non-ascending order and that rank(Ki) = r,
i.e.

λ1 ≥ λ2 ≥ · · · ≥ λr > 0, λr+1 = λr+2 = · · · = λn = 0.

Then, by putting

bij =
√

λjφj , j = 1, . . . , r,

the matrix Ki can be decomposed as

Ki =
r∑

j=1

bijbT
ij ,

which is a particular case of (10).

We next specify the uncertainty models of ζa and ζf . Let ∆l ∈ Rml×nf
(l = 1, . . . , n∆) denote

constant matrices, where ml (l = 1, . . . , n∆) are natural numbers. Define the sets Za ⊂ Rs and
Zf ⊂ Rnf

by

Za = {ζa ∈ Rs| 1 ≥ ‖ζa‖∞} , (13)

Zf =
{

ζf ∈ Rnf
∣∣∣ 1 ≥ ‖∆lζf‖2, l = 1, . . . , n∆

}
. (14)
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Assumption 3.4. The set Zf defined by (14) is bounded.

Assumption 3.4 is satisfied if the matrix ∆ defined by

∆ =

 ∆1

. . .

∆n∆


satisfies rank(∆) = nf . Examples of ∆l (l = 1, . . . , n∆) will be shown in Example 3.6 and section 6.1.
It is obvious that Za defined by (13) is bounded. The uncertain parameters ζa and ζf are assumed
to be running through the uncertainty sets Za and Zf as

ζa ∈ Za, ζf ∈ Zf . (15)

By using (8), (9), (10), and (15), the uncertainty sets K and F of K and f , respectively, are obtained
as

K =

K ∈ Rm×n

∣∣∣∣∣∣ K = K̃ +
s∑

i=1

a0
i ζai

r∑
j=1

βijb
T
ij , ζa ∈ Za

 , (16)

F =
{

f ∈ Rm
∣∣∣ f = f̃ + F0ζf , ζf ∈ Zf

}
, (17)

where Za and Zf have been defined in (13) and (14). As a consequence, the uncertainty model of
the linear equations (7) is written as

Ku = f , (K, f) ∈ K × F , (18)

which is the explicit formulation of the system of uncertain linear equations dealt with in this paper.
Define U ⊂ Rn by

U = {u ∈ Rn| ∃(K, f) ∈ K × F , Ku = f} , (19)

which is the set of all possible solutions to the system (18) of uncertain linear equations. In what
follows, we assume the following condition:

Assumption 3.5. The set U is bounded.

A sufficient condition for Assumption 3.5 will be given for the uncertain analysis of structures
in section 6.2.

Example 3.6 (interval uncertainty of f). The interval uncertainty model of the right-hand side
vector f of the uncertain linear equations (18) is conventionally used in the interval linear algebra [1,
19], in which each component of f is assumed to perturb independently. For the static analysis of
structures under uncertainties, this uncertainty model corresponds to the interval uncertainty of the
external load and has been used extensively [9, 17, 18]. We show in this example that the uncertainty
model of f defined by (14) and (17) includes the interval uncertainty model as a particular case.
Let

m1 = · · · = mn = 1, n∆ = m.
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Let e
(m)
l ∈ Rm denote the lth column vector of the identity matrix I ∈ Rm×m. Note that (e(m)

l )Tζf

corresponds to the lth component ζfl of ζf . By putting

∆l = (e(m)
l )T, l = 1, . . . ,m,

the set Zf defined by (14) is explicitly written as

Zf = {ζf ∈ Rm| 1 ≥ ‖ζf‖∞} . (20)

Letting

F0 = Diag(f0),

and by using (20), the set F defined by (17) is written as

F =
{

f ∈ Rm
∣∣∣ fj ∈

[
f̃j − f0

j , f̃j + f0
j

]
, j = 1, . . . ,m

}
.

Consequently, the uncertainty model f ∈ F can be explicitly written as

f̃j − f0
j ≤ fj ≤ f̃j + f0

j , j = 1, . . . ,m,

which corresponds to the conventional interval uncertainty model.

Example 3.7 (interval uncertainty of K). In a manner similar to Example 3.6, we investigate
the interval uncertainty model of the coefficient matrix K, which is often used in the interval linear
algebra [1]. The interval uncertainty model of K is written as

K ∈
{
K = (Kpq) ∈ Rm×n

∣∣ Kpq ≤ Kpq ≤ Kpq (p = 1, . . . ,m; q = 1, . . . , n)
}

i.e. each element Kpq of K is included in the interval [Kpq,Kpq], and no correlation is assumed
between any two elements. Define Kint by

Kint =

K ∈ Rm×n

∣∣∣∣∣∣ K = K̃ +
m∑

p=1

n∑
q=1

a0
pqζapqe

(m)
p (e(n)

q )T, ζa ∈ Za

 (21)

where

Za =
{
ζa ∈ Rm×n | 1 ≥ |ζapq| (p = 1, . . . ,m; q = 1, . . . , n)

}
(22)

By re-arranging the matrix ζa ∈ Rm×n in (21) and (22) as the vector in Rmn, it is easy to see that
(21) and (22) can be embedded into the forms of (16) and (13), respectively, where s = mn and
r = 1. The set Kint is equivalently rewritten as

Kint =
{

K = (Kpq) ∈ Rm×n
∣∣∣ K̃pq − a0

pq ≤ Kpq ≤ K̃pq + a0
pq (p = 1, . . . ,m; q = 1, . . . , n)

}
,

which is nothing but an interval uncertainty model of K.

Example 3.6 and Example 3.7 imply that our uncertainty model defined by (16) and (17) includes
the uncertainty model used in the conventional interval analysis as a particular case. However, we
do not pay much attention to the interval uncertainty model from the view-point of application
in structural analysis. It should be emphasized that the uncertainty model in (16) and (17) is
motivated by a special property of the stiffness matrix of structures and the natural uncertainty
model of external forces. This topic will be discussed in section 6 in detail, in which we will see that
the uncertainty model in (16) and (17) is natural and suitable for static analysis of structures under
uncertainties.
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4 Minimum bounding ellipsoid

In this section, we formulate a problem for finding the minimal ellipsoid which bounds the solution
set of the system (18) of uncertain linear equations. More precisely, we take notice of the projection
of the set of all possible solutions to (18) when K and f are running through the uncertainty sets
introduced in (16) and (17). Then we formulate the optimization problem for finding the minimal
ellipsoid including the projection that we are interested in.

4.1 Ellipsoids

An ellipsoid in the µ-dimensional space can be described as

E =
{
z ∈ Rµ

∣∣ z = ẑ + Dy, 1 ≥ ‖y‖2, y ∈ Rmy }
, (23)

where ẑ ∈ Rµ is the center of the ellipsoid. The matrix D ∈ Rµ×my
is called the shape matrix , and

satisfies rank(D) = my ≤ µ. By putting P = DDT ∈ Sµ, (23) is alternatively represented as

E(P, ẑ) =

{
z ∈ Rµ

∣∣∣∣∣
(

P (z − ẑ)
(z − ẑ)T 1

)
º O

}
, (24)

where P º O. Note that tr(P ) corresponds to the sum of squares of the semi-axes lengths. We
adopt tr(P ) as the measure of size of an ellipsoid (24).

For µ = 1, we see that (24) is reduced to

E(P, ẑ) =
[
ẑ − P 1/2, ẑ + P 1/2

]
,

i.e. the ellipsoid E(P, ẑ) coincides with the interval. This observation implies that finding a bounding
ellipsoid includes finding a confidence interval as a particular case.

4.2 Problem formulation

Let G ∈ Rn×µ be a constant matrix. A typical choice of G in structural analysis will be given in
section 6.4 explicitly. Define UG ⊆ Rµ by

UG =
{

GTu
∣∣ u ∈ U

}
, (25)

where U has been introduced in (19). Note that UG is the set of all possible realizations of GTu

when u is a solution to the uncertain linear equations (18).
An ellipsoid E(P, û) in the µ-dimensional space is called a bounding ellipsoid of UG if it satisfies

UG ⊆ E(P, û). (26)

The condition (26) means that the ellipsoid E(P, û) includes all possible realization of GTu when
K and f are running through the uncertainty sets introduced in (16) and (17). Hence, a bounding
ellipsoid is regarded as an outer, or a conservative, approximation of UG.

Obviously, the bounding ellipsoid is desired to be as ‘tight’ as possible. Hence, we attempt to
compute the minimum ellipsoid, in the sense of the measure tr(P ), containing UG. This problem is
formulated in the variables P ∈ Sµ and û ∈ Rµ as

min {tr(P ) : UG ⊆ E(P, û)} . (27)
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If K and f are an interval matrix and vector, respectively, then finding an exact interval of xi is
known to be an NP-hard problem [24]. Thus, it is very difficult to find a global optimal solution
of Problem (27). In the following section, we consider a tractable approximation problem of (27)
which provides an outer approximation of UG. By an outer approximation we mean a set including
all possible realization of GTu.

5 Semidefinite programming approximation

The purpose of this section is to construct an efficiently computable problem approximating Prob-
lem (27).

Define the matrix Ψj and the vector qj by

Ψj =
(
β1j , . . . , βsj

)
∈ Rm×s, j = 1, . . . , r. (28)

qj = (qij) ∈ Rs, j = 1, . . . , r. (29)

Let N (FT
0 ) denote the left nullspace of F0. The basis of N (FT

0 ) is denoted by (FT
0 )⊥. Let F †

0 ∈ Rnf×n

denote the Moore–Penrose pseudo-inverse of F0.

Proposition 5.1. u ∈ U if and only if there exists a set of vectors qj ∈ Rs (j = 1, . . . , r) satisfying

[
(FT

0 )⊥
]T [

K̃u +
r∑

j=1

Ψjqj − f̃
]

= 0, (30)

F †
0

[
K̃u +

r∑
j=1

Ψjqj − f̃
]

= ζf , (31)

qij = a0
i ζaibT

iju, j = 1, . . . , r; i = 1, . . . ,m, (32)

ζf ∈ Zf , (33)

ζa ∈ Za. (34)

Proof. Observe that the relation

s∑
i=1

a0
i ζaiβijb

T
iju =

(
β1j , . . . , βsj

) a0
1ζa1bT

1ju

. . .

a0
sζasbT

sju

 = Ψjqj (35)

holds, where qj is defined by (29) and (32). From (16) and (35), we see that K ∈ K satisfies

Ku = K̃u +
r∑

j=1

(
s∑

i=1

a0
i ζaiβijb

T
iju

)
= K̃u +

r∑
j=1

Ψjqj (36)

with (32) and (34). Accordingly, by using the definition (17) of F , the uncertain linear equations
(18) are equivalently rewritten as

K̃u +
r∑

j=1

Ψjqj = f̃ + F0ζf (37)

11



with (32), (33), and (34). For simplicity, we introduce p ∈ Rm by

p = K̃u +
r∑

j=1

Ψjqj − f̃ . (38)

Then the condition (37) is equivalently rewritten as

F0ζf = p. (39)

Note that (39) is regarded as a system of linear equations in terms of ζf . Observe that there exists
ζf satisfying (33) and (39) if and only if (i) (39) has a solution ζf and (ii) the solution ζf satisfies
(33). The condition (i) holds if and only if p is orthogonal to N (FT

0 ) [25], i.e.[
(FT

0 )⊥
]T

p = 0. (40)

Substitution (38) into (40) yields (30). Recall that F0 has the full row rank from Assumption 3.1,
which implies N (F0) = ∅. Hence, any solution to (39) is written as

ζf = F †
0p. (41)

By substituting (38) into (41), we see that the condition (ii) is equivalent to (31) and (33).

Remark 5.2. We investigate the formulations (30)–(34) in some degenerate cases. If rank(F0) = n,
then we see that F †

0 = F−1
0 and N (FT

0 ) = ∅. Hence, in this case, (30) is omitted from the set of
conditions (30)–(34). On the other hand, if f is certain, which is modeled by letting nf = 0, then it
is easy to see that u ∈ U if and only if there exist qj ∈ Rs (j = 1, . . . , r) satisfying

K̃u +
r∑

j=1

Ψjqj − f̃ = 0,

(32), and (34). These formulations are valid even if a0
i = 0 for some i ∈ {1, . . . , s}.

Proposition 5.1 implies that the uncertain equilibrium equations (18) are equivalent to the system
(30)–(34). In comparison with the original system (18), it is of interest to note that the unknown
parameters ζf and ζa appear only on the right-hand side of the equations (30)–(32). We next
eliminate these unknown parameters ζf and ζa by using the quadratic embedding technique [8, 13].
The following proposition shows the key idea of the elimination of the unknown parameters:

Proposition 5.3. Let y = (yi) ∈ Rr and z = (zi) ∈ Rr. There exists ζ ∈ R satisfying

y = ζz,

1 ≥ |ζ|

if and only if y and z satisfy

‖y‖2 ≤ ‖z‖2,

yizi+1 = yi+1zi, i = 1, . . . , r − 1.

12



It is easy to prove Proposition 5.3, and hence the proof is omitted.
Define the matrix Ψ and the vector q by

Ψ =
(
Ψ1, . . . , Ψr

)
∈ Rm×sr,

q =

q1

. . .

qr

 ∈ Rsr,

in order to simplify the notation. Let e
(s)
i ∈ Rs denote the ith column vector of the identity matrix

I ∈ Rs×s. Define the vector êi by

êi =

e
(s)
i

. . .

e
(s)
i

 ∈ Rsr.

Let Ej,k
i ∈ Rsr×sr denote a matrix, the (j, k)-block of which is equal to Diag(e(s)

i ) and the remaining
blocks are equal to s × s zero matrices. For example, if r = 3, then E2,3

i denotes

E2,3
i =

O O O

O O Diag(e(s)
i )

O O O

 ∈ R3s×3s.

Let n̂ be

n̂ = sr + n (42)

for simplicity. Define the constant symmetric matrices Ω0 ∈ Sbn+1, Ωfl ∈ Sbn+1, Ωai ∈ Sbn+1, and
Θij ∈ Sbn+1 by

Ω0 = −

 ΨT

K̃T

−f̃
T

 (FT
0 )⊥

[
(FT

0 )⊥
]T (

Ψ K̃ −f̃
)

, (43)

Ωfl = Diag(0,0, 1) −

 ΨT

K̃T

−f̃
T

 (F †
0 )T∆T

l ∆lF
†
0

(
Ψ K̃ −f̃

)
, l = 1, . . . , n∆, (44)

Ωai = (a0
i )

2

 O

Ψ
0T

Diag(êi)
(
O ΨT 0

)
− Diag(êi,0, 0), i = 1, . . . , s, (45)

Θij =

 I

O

0T

[
Ej,j+1

i − Ej+1,j
i

] (
O ΨT 0

)
+

 O

Ψ
0T

[
Ej,j+1

i − Ej+1,j
i

] (
I O 0

)
,

j = 1, . . . , r − 1, i = 1, . . . , s. (46)

In the following proposition, the uncertain parameters ζa and ζf in (30)–(34) are eliminated
based on the idea of the quadratic embedding (Proposition 5.3):

13



Proposition 5.4. There exist ζf and ζa satisfying (30)–(34) if and only if ξ ∈ Rbn+1 defined by

ξ =

q

u

1


satisfies

ξTΩ0ξ ≥ 0, (47)

ξTΩflξ ≥ 0, l = 1, . . . , n∆, (48)

ξTΩaiξ ≥ 0, i = 1, . . . , s, (49)

ξTΘijξ = 0, j = 1, . . . , r − 1; i = 1, . . . , s. (50)

Proof. Observe that the equation (30) is equivalently rewritten as the quadratic inequality∥∥∥∥[
(FT

0 )⊥
]T [

K̃u + Ψq − f̃
]∥∥∥∥2

2

≤ 0, (51)

because the left-hand side of (51) is nonnegative. From the definition (43) of Ω0, we see that (51)
is equivalent to (47). For each l = 1, . . . , n∆, observe that the condition

1 ≥ ‖∆lζf‖2

is satisfied if and only if

1 − ζT
f ∆T

l ∆lζf ≥ 0 (52)

is satisfied. By substituting (31) into (52) and using the definition (44) of Ωfj , we see that the
condition (31) and (33) is equivalently rewritten as (48). For each i = 1, . . . , s, it follows from
Proposition 5.3 that there exists a ζai ∈ R satisfying

qij = a0
i ζaibT

iju, 1 ≥ |ζai|, j = 1, . . . , r

if and only if qij and u satisfy

(a0
i )

2
r∑

j=1

(bT
iju)2 −

r∑
j=1

q2
ij ≥ 0, (53)

qij(bT
i,j+1u) − qi,j+1(bT

i u) = 0, j = 1, . . . , r − 1. (54)

From the definition (45) of Ωai, we see that the condition (53) is equivalent to

ξΩaiξ ≥ 0.

Similarly, from the definition (46) of Θij , the condition (54) is equivalently rewritten as

ξΘijξ = 0, j = 1, . . . , r − 1.

From this observation it follows that there exists ζa satisfying (32) and (34) if and only if ξ satisfies
(49) and (50), which completes the proof.

14



Remark 5.5. If r = 1 in (10), i.e. if K1, . . . ,Ks in (8) are rank-one matrices, then the quadratic
equations (50) are omitted from the assertion of Proposition 5.4.

Proposition 5.4 implies that the uncertain linear equations (30)–(34) are equivalent to a finite
number of quadratic inequalities (47)–(49) and quadratic equations (50). It should be emphasized
that the unknown parameters ζf and ζa have been eliminated as a result of this quadratic embedding.

Let w0 ∈ R, wf = (wfl) ∈ Rn∆
, wa = (wai) ∈ Rs, and S = (Sij) ∈ Rs×(r−1). Define the

matrix-valued function Y : R × Rn∆ × Rs × Rs×(r−1) → Sbn+1 by

Y (w0, wf , wa, S) = w0Ω0 +
n∆∑
l=1

wflΩfl +
s∑

i=1

waiΩai +
s∑

i=1

r−1∑
j=1

SijΘij . (55)

Proposition 5.6. The condition

UG ⊆ E(P, û) (56)

is satisfied if there exist w0, wf , wa, and S satisfying
P

(
O GT −û

)
 O

G

−ûT

 Diag(0,0, 1) − Y (w0, wf , wa, S)

 º O, (57)

w0 ≥ 0, wf ≥ 0, wa ≥ 0. (58)

Proof. Letting Ĝ ∈ R(bn+1)×µ be

ĜT =
(
O GT −û

)
,

we see that

ĜTξ = GTu − û. (59)

From (24) and (59), we see that the ellipsoid E(P, û) contains the point GTu if and only if the
condition (

P ĜTξ

ξTĜ 1

)
º O (60)

is satisfied. By using Lemma 2.4, (60) is equivalently rewritten as

1 − (ĜTξ)P †(ĜTξ) ≥ 0, (61)

P º O, (62)

(I − P †P )ĜTξ = 0. (63)

The ellipsoid E(P, û) that lies in the space {GTu |u ∈ Rn } satisfies the flatness condition (see
Proposition 4.2 in [13])

(I − P †P )ĜT = O. (64)
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Note that (64) implies (63). Moreover, (62) should be satisfied from the definition (24) of the
ellipsoid E(P, û). It follows from Proposition 5.4 that the ellipsoid E(P, û) satisfying (62) satisfies
the condition

UG ⊆ E(P, û) ⊆
{
GTu |u ∈ Rn

}
if and only if (64) holds, and (61) is satisfied for any ξ satisfying (47)–(50). Observe that (61) is
equivalently rewritten as

ξT
[
Diag(0,0, 1) − ĜP †ĜT

]
ξ ≥ 0.

Hence, by applying Corollary 2.3, (61) is satisfied for any ξ satisfying (47)–(50) if there exist w0,
wf , wa, and S satisfying [

Diag(0,0, 1) − ĜP †ĜT
]
º Y (w0, wf , wa, S), (65)

w0 ≥ 0, wf ≥ 0, wa ≥ 0. (66)

where Y has been defined in (55). From Lemma 2.4 it follows that the conditions (62), (64), and
(65) are equivalent to (57), which concludes the proof.

Proposition 5.6 implies that E(P, û) is guaranteed to be a confidence ellipsoid of UG if (57) and
(58) are satisfied, i.e. Proposition 5.6 presents a sufficient condition of the constraint condition of
Problem (27). This naturally motivates us to solve the following problem in the variables P ∈ Sµ,
û ∈ Rµ, w0 ∈ R, wf ∈ Rn∆

, wa ∈ Rs, and S ∈ Rs×(r−1):

min tr(P )

s.t.


P

(
O GT −û

)
 O

G

−ûT

 Diag(0,0, 1) − Y (w0, wf , wa, S)

 º O,

w0 ≥ 0, wf ≥ 0, wa ≥ 0.


(67)

Note that (67) is an SDP problem, because Y defined by (55) is a (matrix-valued) linear function
of w0, wf , wa, and S. Hence, (67) can be solved by using the primal-dual interior-point method
efficiently. The optimal solution of (67) yields an outer ellipsoidal approximation of UG, that is
optimal in the sense of the sufficient condition provided by Proposition 5.6.

6 Static response of braced frames

Consider a linearly elastic, rigidly-jointed frame with some pin-jointed braces in the two- or three-
dimensional space. Small rotations and small strains are assumed. An example of a five-story braced
frame is illustrated in Figure 1 (i). Each brace is modeled as a truss element. Let nb and nt denote
the numbers of beam elements and truss elements. The total number of elements is denoted by
nm = nb + nt. In this and the following section, let ai (i = 1, . . . , nm) denote the elastic modulus of
the ith member.
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Figure 1: 5-story framed structure.

Let u ∈ Rnd
and f ∈ Rnd

denote the vectors of nodal displacements and external forces,
respectively, where nd denotes the number of degrees of freedom of nodal displacements. The
system of equilibrium equations is written as

Ku = f , (68)

where K ∈ Snd
denotes the stiffness matrix. In the case of the example of Figure 1 (i), we see that

nd = 30, nb = 15, and nt = 10. We assume that both the stiffness matrix K and the external load
f have uncertainties. Thus, the uncertainty analysis of structures fall into a particular case of the
uncertain linear equations (18) with m = n = nd.

Suppose that the uncertainty of K is caused by the uncertainty of stiffness of each member.
The locations of nodes are assumed to be certain. We describe the uncertainty of stiffness of each
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Figure 2: Local coordinate of the ith member.

member in terms of the uncertainty of the elastic modulus ai. The nominal values of the elastic
moduli and the external load, respectively, are denoted by ã = (ãi) ∈ Rnb+nt

and f̃ = (f̃j) ∈ Rnd
.

Consider the local coordinate system for the ith member illustrated in Figure 2. The element
displacement vector ue

i with respect to the local coordinate is written as

ue
i =

(
u1

x u1
y θ1 u2

x u2
y θ2

)T
. (69)

The global coordinate system which defines u and f are assigned as illustrated in Figure 1 (i). Let
Ti ∈ R6×nd

denote the constant transformation matrix from the global coordinate system of the
displacements to the local coordinate system, i.e.

ue
i = Tiu. (70)

6.1 Uncertainty of nodal load

We define the global coordinate system for the nodal load vector f ∈ Rnd
in a manner similar to u

illustrated in Figure 1 (i), where nd = 30. Suppose that the uncertain external forces are applied to
all free nodes (b)–(f) and (h)–(l). Note that no external moments are applied.

Let f (l) ∈ R2 denotes the external forces applied at the lth free node, where the indices of
nodes are labeled in the order of (b), . . . ,(f), (h), . . . ,(l). A component of f (l) coincides with an
appropriate component of f . For example, f (1) = (f1, f2)T denotes the external force vector applied
at the node (b). It may be reasonable to assume that the uncertainties of external forces applied
to two different nodes have no correlation, while f (l) is included in one ellipsoid. This implies that
the external load f is running through the ellipsoids depicted with the dashed lines in Figure 1 (ii).
In this uncertainty model, two parameters are required to represent the uncertainty of f (l) for each
l = 1, . . . , 10. Hence, we see that the total number of uncertain parameters ζf in (14) and (17) is
nf = 20.

Assume that, for each l = 1, . . . , 10, the two semi-axes of the ellipsoid including f (l) are parallel
to the x- and y-directions in Figure 1. For example, the ellipsoidal uncertainty model of f (1) is
written as

f (1) =

(
f̃1

f̃2

)
+

(
f0
1 ζf1

f0
2 ζf2

)
, 1 ≥ ‖∆1ζf‖2,
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where ∆1 ∈ R2×20 is defined by

∆1 =

(
1 0 0 . . . 0 0
0 1 0 . . . 0 0

)
.

Here, f0
1 and f0

2 represent the ‘magnitudes’ of uncertainties of f (1) in the x- and y-directions,
respectively.

Accordingly, by defining F0 and ∆l as

F0 = Diag(f0), (71)

∆l =

(
(e(20)

2l−1)
T

(e(20)
2l )T

)
, l = 1, . . . , 10 (72)

with f0 = (f0
j ) ∈ R20 and n∆ = 10, we see that the uncertainty model of f is embedded into

(14) and (17). In this model, the external force vector f (l) of the lth node is running through the
ellipsoid, and hence the components of f (l) have some correlation with each other. Moreover, for
l 6= l′, f (l) and f (l′) are included in two different ellipsoids and have no correlation. Thus, we see that
the uncertainty model of f introduced in section 3 is naturally required in the structural analysis
considering uncertainties.

6.2 Uncertainty of member stiffnesses

Let Ki ∈ Snd

+ denote the member stiffness matrix divided by the elastic modulus of the ith member,
the explicit form of which shall be given in section 6.3. The stiffness matrix K in (68) is written in
terms of the elastic moduli as

K =
nm∑
i=1

aiKi. (73)

Note that Ki (i = 1, . . . , nm) are positive semidefinite and assumed to be certain, because we have
supposed that the locations of nodes are certain.

We next specify the uncertainty model of a. Since a braced-frame is an assemblage of nodes
connected by some independent members, the uncertainty of elastic modulus of a member may not
affect those of the other members. Let ã = (ãi) ∈ Rnm

denote the nominal value of a, which satisfies
ãi > 0 (i = 1, . . . , nm). We describe the uncertainty of a in terms of the uncertain parameters
ζa ∈ Za, where Za has been defined in (13) and we put s = nb + nt. Suppose that a depends on ζa

affinely as

ai = ãi + a0
i ζai, i = 1, . . . , nm, (74)

where a0
i ∈ R+ is a constant which represents the magnitude of uncertainty of ai.

Define K̃ ∈ Snd
by

K̃ =
nm∑
i=1

ãiKi. (75)
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It follows from (73), (74), and (75) that the stiffness matrix K is written in terms of ζa as

K = K̃ +
nm∑
i=1

a0
i ζaiKi.

Hence, from (16), the uncertainty set of K is obtained as

K =

{
K ∈ Sn

∣∣∣∣∣ K = K̃ +
nm∑
i=1

a0
i ζaiKi, ζa ∈ Za

}
, (76)

where Za has been defined in (13).
Assume that a0 satisfies

ãi > a0
i , i = 1, . . . , nm, (77)

which implies

ai > 0, i = 1, . . . , nm, ∀ζa ∈ Za. (78)

From the mechanical point of view, it is natural to assume the condition (78), because ai denotes the
elastic modulus of the ith member. Recall that the member stiffness matrices aiKi (i = 1, . . . , nm)
are positive semidefinite. Hence, any K ∈ K is positive semidefinite if (77) is satisfied. Thus, we see
that (77) is a sufficient condition for Assumption 3.5.

6.3 Decomposition of stiffness matrix

In this section, the uncertainty set (76) of K is embedded into the form of (16). We assume without
loss of generality that the beam elements are labeled by the indices i = 1, . . . , nb, while the truss
elements are labeled as i = nb + 1, . . . , nb + nt.

Firstly, we consider the contributions of the beam elements to the stiffness matrix. Let c = (ci) ∈
Rnb

denote the vector of cross-sectional areas of beam elements. The vector of second-moments of
areas, or moments of inertia, is denoted by t = (ti) ∈ Rnb

. Recall that ai denotes the elastic modulus
of the ith member. The member stiffness matrix aiK

b
i ∈ S6 with respect to the local coordinate in

Figure 2 is written as

aiK
b
i =

ai

l3i



cil
2
i 0 0 −cil

2
i 0 0

0 12ti 6tili 0 −12ti 6tili

0 6tili 4til
2
i 0 −6tili 2til

2
i

−cil
2
i 0 0 cil

2
i 0 0

0 −12ti −6tili 0 12ti −6tili

0 6tili 2til
2
i 0 −6tili 4til

2
i


,

where li denote the undeformed length of the ith member. Observe that Kb
i can be decomposed as

Kb
i =

3∑
j=1

b̂ij b̂
T
ij , (79)
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with

b̂i1 =
√

ci

li



1
0
0
−1
0
0


, b̂i2 =

√
ti
l3i



0
2
√

3√
3li

0
−2

√
3√

3li


, b̂i3 =

√
ti
li



0
0
1
0
0
−1


.

Note that Kb
i is positive semidefinite and rank(Kb

i ) = 3. We can see that b̂i1, b̂i2, and b̂i3 are the
eigenvectors of Kb

i corresponding to the non-zero eigenvalues of Kb
i . Thus, the decomposition (79)

is regarded as the Cholesky factorization.
Secondly, we consider the truss elements, which are labeled as i = nb + 1, . . . , nb + nt. Let ai

and ci denote the elastic modulus and cross-sectional area of the ith member, respectively. Since
the truss member can transmit the axial force only, the member stiffness matrix aiK

t
i ∈ S6 with

respect to the local coordinate in Figure 2 is written as

aiK
t
i =

aici

li



1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0


. (80)

It is easy to see that Kt
i is positive semidefinite and rank(Kt

i ) = 1. The Cholesky factorization
yields the decomposition

Kt
i = b̂i1b̂

T
i1.

Finally, we construct the stiffness matrix K of the whole structure by condensing the member
stiffness matrices. Let K(a) ∈ Snd

denote the stiffness matrix of the structure with respect to
the global coordinate system, which is regarded as the (matrix-valued) function of a. Recall that
the transformation from the local coordinate to the global coordinate is given by (70). Hence, the
stiffness matrix K in (73) is obtained as

K =
nb∑
i=1

aiTT
i Kb

i Ti +
nb+nt∑
i=nb+1

aiTT
i Kt

i Ti. (81)

For each i = 1, . . . , nb + nt, define the vectors bij ∈ Rnd
(j = 1, 2, 3) as

bij = TT
i b̂ij , j = 1, . . . , 3.

Then (81) is equivalently rewritten as

K =
nb∑
i=1

ai

3∑
j=1

bijbT
ij +

nb+nt∑
i=nb+1

aibi1bT
i1. (82)
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Thus, we see in (10) that r = 3 for beam elements and r = 1 for truss elements. From (76) and
(82), the uncertainty set K of K is explicitly written as

K =

K ∈ Sn

∣∣∣∣∣∣ K = K̃ +
nb∑
i=1

a0
i ζai

3∑
j=1

bijbT
ij +

nb+nt∑
i=nb+1

a0
i ζaibi1bT

i1, ζa ∈ Za

 ,

which is in the form of (16).

6.4 Bound for nodal displacement

Recall that the global coordinate system defining the displacement vector u ∈ Rnd
is assigned as

shown in Figure 1 (i). In section 6.1, we have investigated an uncertainty model of f such that the
external force applied at each node is included in the independently defined ellipsoid. In accordance
with this uncertainty model, it is natural to seek for a bounding ellipsoid for each nodal displacement
vector. Note that bounds for rotation angles of the nodes are not considered.

Let u(l) ∈ R2 denotes the nodal displacement vector of the lth free node. For example, u(1) =
(u1, u2)T denotes the displacement of the node (b). What we attempt to do is finding a minimum
ellipsoid satisfying

ul ∈ E(P , û), ∀u ∈ U ,

where

P ∈ S2, û ∈ R2, µ = 2.

In the case of the node (b), define G ∈ Rnd×2 in (25) by

G =

(
1 0 0 . . . 0 0
0 1 0 . . . 0 0

)T

.

Then the minimum bounding ellipsoid including all possible u(1) is obtained by solving Problem (67).
Accordingly, we now obtain the details of explicit formulation of Problem (67) in the case of the

braced frame in Figure 1. It should be emphasized that the procedures in section 6 are not restricted
to frame structures. It is easy to apply the proposed method to a general finitely-discretized struc-
ture. Particularly, we can decompose element stiffness matrices by using the numerical Cholesky
factorization, although we have shown the analytical decomposition in section 6.3. It is often that
r in (10) is small for an element stiffness matrix.

7 Numerical experiments

The minimum bounding ellipsoids are computed for structures by solving Problem (67). We solve
the SDP problem (67) by using SeDuMi Ver. 1.05 [26], which implements the primal-dual interior-
point method for the linear programming problems over symmetric cones. Computation has been
carried out on Pentium M (1.5 GHz with 1.0 GB memory) with MATLAB Ver. 6.5.1 [28].
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Figure 3: 2-bar frame.

u  , fx x

u  , fy y

θ  , mz z

Figure 4: Coordinate system of the 2-bar frame.

7.1 2-bar plane frame

Consider a two-bar plane frame illustrated in Figure 3. The nodes (a) and (b) are fixed-supports lo-
cated at (x, y) = (0, 0) and (0, 200.0) in cm, respectively, while the node (c) is free. The members (1)
and (2) are modeled as the Euler–Bernoulli beam elements, i.e. nd = 3 and nb = 2. The lengths
of members (1) and (2) are 200.0 cm and 200

√
2 cm, respectively. We assume that the member

stiffnesses and the external forces are uncertain. The uncertainty of stiffness of each member is
represented in terms of the uncertainty of elastic modulus.

The cross-sectional areas and the moment of inertia are given as

ci = 24.0 cm2, ti = 72.0 cm4, i = 1, 2.
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Figure 5: Bounding ellipsoid and bounding box for (ux, uy) at the node (c) of the 2-bar frame.

Let ai denote the elastic modulus of the ith member. The nominal elastic moduli are given as

ãi = 200.0 GPa, i = 1, 2.

The nominal external load is given as

f̃ =

 fx

fy

mz

 =

 0
−4000.0

0

 kN,

where the definition of coordinate system is illustrated in Figure 4.
Consider the ellipsoidal uncertainty model for the external forces investigated in section 6.1. Note

that the uncertain external moment is not considered. The uncertainties of a and f are defined as

ai = ãi + a0
i ζai, 1 ≥ |ζai|, i = 1, 2, (83)

f = f̃ +

f0
1 ζf1

f0
2 ζf2

0

 , 1 ≥

∥∥∥∥∥
(

ζf1

ζf2

)∥∥∥∥∥ . (84)

The uncertainty model (84) is embedded in the form of (17) by putting

F0 =

f0
1 0
0 f0

1

0 0

 , ∆l = I ∈ R2×2, n∆ = 1,

where nf = 2. In (83) and (84), the coefficients of uncertainty are given as

a0
i = 20.0 GPa, i = 1, 2;

f0
j = 200.0 kN, j = 1, 2.
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Table 1: Definition of the nominal load f̃ .

node force (kN)
x-direction y-direction

(b) 150.0 0
(c) 200.0 0
(d) 250.0 0
(e) 300.0 0
(f) 350.0 −1000.0
(l) 0 −1000.0

Consequently, the external forces are running through the circle depicted with the dotted line in
Figure 3. Note again that no external moments are applied even in uncertain cases.

Let u = (ux, uy, θz) ∈ R3 denote the displacement vector of the node (c), where the definition of
coordinate system is shown in Figure 4. We randomly generate a number of ζa and ζf satisfying (83)
and (84), and solve the corresponding equilibrium equations (7). The solutions (ux, uy) obtained are
shown in Figure 5 as many points. Note that we do not aim at finding the bound for the rotation
angle θz in this example.

The minimal confidence bounds on (ux, uy) are found by solving the SDP problem (67). The
bounding ellipsoid for (ux, uy) is computed in a manner similar to section 6.4. The obtained param-
eters of a bounding ellipsoid are

P ∗ =

(
0.1716 0.2317
0.2317 0.9744

)
, û∗ =

(
−1.6926
−6.4722

)
.

Figure 5 depicts the bounding ellipsoid E(P ∗, û∗) obtained.
Optimal bounding intervals for ux and uy are also computed by putting µ = 1 in (67). The

obtained optimal bounding box is also shown in Figure 5, whose parameters are(
−1.9845
−7.4496

)
≤

(
ux

uy

)
≤

(
−1.4023
−5.4907

)
.

It is observed from Figure 5 that all generated (ux, uy) are included in the computed bounding
ellipsoid and bounding box. We can also see that these bounds are sufficiently tight. Moreover,
the bounding ellipsoid seems to represent the characteristics of distribution of (ux, uy) more clearly
compared with the bounding box.

7.2 Braced plane frame

Consider the plane frame shown in Figure 1, which consists of 10 columns, 5 beams, and 10 braces.
The columns and beams are modeled as the Euler–Bernoulli beam-column elements, while the braces
are modeled as the truss elements, i.e. nb = 15 and nt = 10. The nodes (a) and (g) are the fixed-
supports, and hence nd = 30. We set W = 400.0 cm and H = 300.0 cm. The equilibrium equations
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Table 2: Definition of the uncertainty coefficients f0 of the external force.

node f0
j (kN)

x-direction y-direction

(b), (h) 16.0 32.0
(c), (i) 32.0 32.0
(d), (j) 48.0 32.0
(e), (k) 64.0 32.0
(f), (l) 80.0 32.0

with uncertainties are embedded into the standard form (18) of uncertain linear equations with

m = n = nd, s = nb + nt.

The cross-sectional area and the moment inertia of each beam are 60.0 cm2 and 500.0 cm4,
respectively. For each column, the cross-sectional area and the moment inertia are set as 40.0 cm2

and 213.3 cm4, respectively. The cross-sectional area of each brace is 8.0 cm2.
Suppose that the stiffnesses of all members are uncertain, and the uncertain external forces

are applied at all free nodes (b)–(f) and (h)–(l). The uncertainty of stiffness of each member is
represented in terms of the uncertainty of elastic modulus. Let ai denote the elastic modulus of the
ith member. The nominal elastic moduli are given as

ãi = 200.0 GPa, i = 1, . . . , nb + nt

for both the beam and truss elements. In (74), the coefficients of uncertainty are given as

a0
i = 20.0 GPa, i = 1, . . . , nb + nt.

As the nominal external force f̃ , the nodal loads are applied to the nodes (b)–(f) and (l) as
listed in Table 1. As discussed in section 6.1, suppose that uncertainties of external forces applied
to two different nodes have no correlation, and each external nodal load is included in one ellipsoid.
Consequently, the external load f is running through the 10 ellipsoids depicted with the dashed lines
in Figure 1 (ii). The semi-axes of each ellipsoid are parallel to the x- and y-directions in Figure 1 (ii).
The uncertainty model F in (17) is defined by (71) and (72), where n∆ = 10. The coefficients f0 of
the uncertainty in (71) are listed in Table 2.

Based on the formulation investigated in section 6, we compute the minimal bounding ellipsoid
of the nodal displacement of each free node by solving the SDP problem (67). Note that we have
solved 10 SDP problems in total. Each SDP problem has 71 variables, 36 linear inequalities, and
the constraint that the symmetric matrix in S88 should be positive semidefinite. The average and
the standard deviation of CPU time, respectively, required for solving one SDP problem are 7.89 sec
and 1.42 sec. The ellipsoids obtained are shown in Figure 6. We randomly generate a number of ζa

and ζf , and compute the corresponding displacements. The obtained displacements are also shown
in Figure 6 as many dots.
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Figure 6: Bounding ellipsoids and the nodal displacements (in cm) for randomly generated ζa and
ζf .

Similarly, we compute the minimal bounding interval for each component of the displacements
by solving the SDP problem (67) with µ = 1. Note that bounds for the rotation angles of nodes
are not computed, and hence we have solved 20 SDP problems in total. Each SDP problem has
68 variables, 36 linear inequalities, and the constraint that the symmetric matrix in S87 should be
positive semidefinite. The average and the standard deviation of CPU time, respectively, required
for solving one SDP problem are 6.06 sec and 0.71 sec. The obtained intervals (boxes) are illustrated
in Figure 7. The displacements corresponding to randomly generated ζa and ζf are also depicted in
Figure 7. It is observed from Figure 6 and Figure 7 that the bounds obtained are sufficiently tight.

8 Conclusions

In this paper, we have proposed a technique for computing confidential bounds on the solution set
of the uncertain linear equations. We have proposed the general framework of uncertainty model for
the data matrix and right-hand-side vector of the linear equations, which is applicable to the static
analysis of structures affected by uncertainties. Both external forces and elastic moduli of structural
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Figure 7: Bounding boxes and the nodal displacements (in cm) for randomly generated ζa and ζf .

elements are assumed to be imprecisely known and bounded.
It has been shown that an ellipsoidal bound for all realizations of static response of a structure

can be obtained efficiently by solving a semidefinite programming (SDP) problem, which is a convex
optimization problem. By using the quadratic embedding of uncertainty parameters and the S-
lemma, we formulated an approximation problem for finding the minimal bounding ellipsoid as an
SDP problem. Since finding a confidence ellipsoid is a generalization of finding a confidence interval,
our problem dealt with in this paper includes the conventional interval analysis of structures (or
the uncertain linear equations) as a particular case. Our method has polynomial-time complexity
of problem size, while interval calculus approaches have in general exponential complexity.

It should be emphasized that the so-called convex model approaches have been developed based
on the first-order perturbation with respect to the uncertain parameters, whereas the proposed
method uses a semidefinite relaxation technique without the first-order approximation. Hence, the
proposed method can be applied to cases in which the magnitudes of uncertainties are relatively
large. Compared with confidence intervals, confidence ellipsoids may help intuitive understanding
of characteristics of mechanical response, e.g. distribution of nodal displacements. Besides these
advantages, SDP problems can be solved by using the well-developed software. Hence, our major
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task is limited to input the constant matrices and vectors defining the SDP problems, and no effort
is required to develop any software for the special purpose.

In the numerical examples, the SDP problems presented have been solved by using the primal-
dual interior-point method. It has been shown that confidence ellipsoids of nodal displacements of
frame structures can be obtained effectively. We have also illustrated through numerical examples
that the obtained ellipsoidal or interval bounds are sufficiently tight even for moderately large
magnitudes of perturbations, although no theoretical result is to date available for sharpness of
approximation.
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