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Abstract

We introduce a new formulation of asset trading games in continuous time in the
framework of the game-theoretic probability established by Shafer and Vovk [13]. In
our formulation, the market moves continuously but an investor trades in discrete
times, which can depend on the past path of the market. We prove that an investor
can essentially force that the asset price path behaves with the variation exponent
exactly equal to two. Our proof is based on embedding high-frequency discrete time
games into the continuous time game and the use of the Bayesian strategy of Kumon,
Takemura and Takeuchi [10] for discrete time coin-tossing games. We also clarify
that the main growth part of the investor’s capital processes is lucidly described by
the information quantities, which are derived from the Kullback-Leibler information
with respect to the empirical fluctuation of the asset price.

Keywords and phrases: Bayesian strategy, beta-binomial distribution, game-theoretic
probability, Hölder exponent, Kullback-Leibler information, modulus of continuity, square
root of dt effect.
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1 Introduction

In this paper we present a new formulation of asset trading games in continuous time in the
framework of the game-theoretic probability of Shafer and Vovk [13]. In the book by Shafer
and Vovk, continuous-time games are formulated as limits of discrete time games by using
techniques of nonstandard analysis. Although their approach is rigorously formulated in
the framework of nonstandard analysis, it is desirable to give another formulation of
continuous-time games in the game-theoretic probability within the conventional theory
of analysis.

An asset trading game is a complete information game between an investor and the
market. Following Chapter 9 of Shafer and Vovk [13] we denote these two players as
Investor and Market. In our formulation Market moves continuously, but Investor moves
in discrete times, depending on the past path of Market. The trading times of Investor
need not be equally spaced. In this paper we mainly consider “limit order” strategy
(rather than the “market order” strategy) of Investor. In the limit order strategy Investor
trades a financial asset when the asset price or the increment of the asset price hits a
certain level. We shall prove that by a high-frequency limit order type Bayesian strategy,
Investor can essentially force the variation exponent of two in the price path of Market.
The precise definition of essential forcing will be given in Section 2.

In an infinitely repeated series of fair betting games, a gambler cannot make gain
for sure. This fact has been formulated and proved in the theory of martingales. But
when the games are favorable to a gambler, for example if the results of the games are
stochastically independent with positive expected value, to what extent can he exploit
the situation and what would be a good strategy to be adopted? Several years after the
advent of Shannon’s celebrated work [14], this problem was first systematically studied by
Kelly [7] in relation to the betting game interpretation of Shannon’s mutual information
quantity. In this spirit, betting games have been investigated among information theorists,
which led to the notion of Cover’s universal portfolios [2], [3]. One of the authors also
wrote a note on it about forty years ago in Japanese, and presented the results in [16].

Recently Shafer and Vovk originated a new attractive field of game-theoretic prob-
ability and finance [13]. The most important point of their approach is that stochastic
behavior of Market is not assumed a priori, but follows from the protocol of the game
between Investor and Market. Shafer and Vovk established the general fact that in or-
der to prevent Investor to make infinitely large gain, Market must behave as if she is
stochastic and make the game fair in a stochastic sense. However the question remains
what Inventor can make from Market’s failure to do so. This issue was treated by Kumon
and Takemura [8], where it is proved that when Market’s moves are bounded, a simple
single strategy forces the strong law of large numbers (SLLN) with the convergence rate
of O(

√
log n/n). Kumon, Takemura and Takeuchi [9] proved several versions of SLLN for

the case that Market’s moves are unbounded. For coin-tossing games, Kumon, Takemura
and Takeuchi [10] considered a class of Bayesian strategies for Investor and established
the important fact that if Market violates SLLN, then Investor can increase his capital ex-
ponentially fast and the the exponential growth rate is precisely described in terms of the
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Kullback-Leibler information between the average of Market’s moves when she violates
SLLN and the average when she observes SLLN.

In this paper, we apply the results of [10] to asset trading games in continuous time.
We consider implications of high-frequency limit order type Bayesian strategies and prove
that Investor can make arbitrarily large gain if Market does not move jaggedly with the
variation exponent exactly equal to two. In the literature on the mathematical finance,
this phenomenon has been long recognized and understood as the fact that the fractional
Brownian motion with the Hölder exponent H 6= 1/2 is not a semimartingale. See Rogers
[12], Section 4.2 of Embrechts and Maejima [4] and Section 3 of Hobson [5]. Kunitomo
[11] presented a similar result earlier. Vovk and Shafer [17] treated the

√
dt effect using

nonstandard analysis. The game-theoretic approach in the present paper and in [17] is
advantageous, because no probabilistic model, such as the fractional Brownian motion, is
imposed on the paths of Market. It can be an arbitrary continuous path in our formula-
tion. Another fundamental strength of the game-theoretic approach is that we can give
statements on an individual path of Market, whereas in measure-theoretic probability one
can only make statements on measurable sets of the space of appropriate paths.

The organization of this paper is as follows. In Section 2 we formulate asset trading
games and set up necessary notations and definitions. We also review the results on
the Bayesian strategy of [10] for discrete time games embedded into the continuous-time
game. We investigate the consequences of high-frequency Bayesian strategy in Section
3 and establish that Market is essentially forced to move with the variation exponent
exactly equal to two. We end the paper with some concluding remarks in Section 4.

2 Asset trading games in continuous time

In this section we formulate asset trading games in continuous time and set up appropriate
notations and definitions. We begin with an informal description of asset trading games
in continuous time and its embedded discrete time game in Section 2.1. More precise
definitions of the game and the move spaces of the players are presented in Section 2.2. In
particular we will define the notion of essential forcing of an event by Investor. In Section
2.3 we review notions of the variation exponent and the Hölder exponent. In Section 2.4
we summarize results on Bayesian strategy for coin-tossing games in [10].

2.1 Formulation of asset trading games in continuous time

Suppose that there is a financial asset which is traded in a market in continuous time.
Let S(t) denote the price of the unit amount of the asset at time t. We assume that S(t)
is positive and a continuous function of t. We view that the price path S(·) is chosen by
a player “Market”. “Investor” enters the market at time t = t0 = 0 (knowing the initial
price S(0)) with the initial capital of K(0) = 1 and he can buy or sell any amount of the
asset at any time, provided that his capital always remains nonnegative. It is assumed
that Investor can trade only at discrete time points 0 = t0 < t1 < t2 < · · · , although
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he can decide the trading time ti and the amount he trades at ti, based on the path of
S(t) up to time ti. Since S(t) is continuous, when we say “up to time ti”, we do not
need to distinguish whether Investor is allowed to use the value S(ti) or not. His repeated
tradings up to time ti also decide the amount Mi of the asset he holds for the interval
[ti, ti+1). Again Mi can only depend on the path of S(t) up to time ti.

Let K(t) denote the capital of Investor at time t. It is written as

K(0) = 1,

K(t) = K(ti) + Mi(S(t) − S(ti)) for ti ≤ t < ti+1. (1)

When Mi is negative, K(t) is the Investor’s capital (expressed in cash), when he buys back
|Mi| units of the asset at the current price S(t) at time t. As mentioned above Investor is
required to keep K(t) nonnegative, whatever price path S(·) Market chooses. Also note
that K(t) is continuous in t, since S(t) is continuous in t.

By defining

θi =
MiS(ti)

K(ti)
,

we rewrite (1) as

K(t) = K(ti)

(
1 + θi

S(t) − S(ti)

S(ti)

)
for ti ≤ t < ti+1

in terms of the return (S(t) − S(ti))/S(ti) of the asset.
In this paper we mainly consider that Investor decides the trading times t1, t2, . . .

by “limit order” strategy. Let δ1, δ2 > 0 be some constants and determine t1, t2, . . . as
follows. After ti are determined, let ti+1 be the first time after ti when either

S(ti+1)

S(ti)
= 1 + δ1 or =

1

1 + δ2

(2)

happens. In this scheme, although Investor enters the market at time t0 = 0, he begins
trading at time t1. This process leads to a discrete time coin-tossing game embedded into
the asset trading game as follows. Let

xn =
(1 + δ2)S(tn+1) − S(tn)

(δ1 + δ2 + δ1δ2)S(tn)
=

{
1, if S(tn+1) = S(tn)(1 + δ1),

0, if S(tn+1) = S(tn)/(1 + δ2).

The risk neutral probability ρ of the coin-tossing game ([10],[15]) is given from

ρδ1 −
(1 − ρ)δ2

1 + δ2

= 0,

which yields

ρ =
δ2

δ1 + δ2 + δ1δ2

.
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Also write

K̃n = K(tn+1), νn =
δ1 + δ2 + δ1δ2

1 + δ2

θn.

Then we have the the following protocol of an embedded discrete time coin-tossing game.

Embedded Discrete Time Coin-Tossing Game
Protocol:

K̃0 := 1.
FOR n = 1, 2, . . . :

Investor announces νn ∈ R.
Market announces xn ∈ {0, 1}.
K̃n = K̃n−1(1 + νn(xn − ρ)).

END FOR

This embedded discrete time game allows us to apply results on coin-tossing games to
the asset trading game in continuous time. In particular we can apply the strong law of
large numbers for coin-tossing games.

However it is to be noted that in the embedded game Market may decide to keep the
variation of S(t) small after tn :

S(tn)

1 + δ2

< S(t) < S(tn)(1 + δ1), ∀t ≥ tn.

Then the embedded coin-tossing game is played only for n rounds and SLLN cannot be
applied. Naturally we are tempted to make δ1, δ2 smaller, so that the total number of
rounds increases, and we expect Investor’s high-frequency tradings when δ1 and δ2 are
small. But once δ1, δ2 are announced, Market can always make the variation even smaller.
This suggests that we should formulate the asset trading game and the move spaces of
the players more carefully.

2.2 Formal definition of asset trading games and the notion of
essential forcing

Here we give definitions of asset trading games and the move spaces of the players. Also
we define the notion of essential forcing of an event.

Market is required to choose a positive continuous function S(·) as her price path. Let

Ω = C>0[R+]

denote the set of positive continuous functions on R+ = [0,∞). This is the move space
of Market, i.e. Market chooses an element S(·) ∈ Ω. We also call Ω the path space or the
sample space. A subset E of Ω is called an event. A variable is a real-valued function
f : Ω → R on the path space.
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In order to define the move space of Investor, we need a game-theoretic definition of
a stopping time (Section 5.3 of [13] and Section 1.1 of [6]) and a marked stopping time.
A variable τ : Ω → [0,∞) ∪ {∞} is called a stopping time if

τ(S(·)) < ∞ and S(u) = S̃(u), 0 ≤ u < τ(S(·)) ⇒ τ(S̃(·)) = τ(S(·)).

Investor’s trading times are stopping times. When τ(S(·)) = t < ∞, we say that τ is
realized at time point t. Investor also decides how many assets to hold at the time when
τ is realized. A pair of variables

(τ,m) : Ω → ([0,∞) ∪ {∞}) × R

is a marked stopping time if τ is a stopping time and m depends only on the path up to
the realized time of τ , i.e.

τ(S(·)) < ∞ and S(u) = S̃(u), 0 ≤ u < τ(S(·)) ⇒ m(S̃(·)) = m(S(·)).

We call m the mark associated with the stopping time τ . For definiteness, we define
m(S(·)) = 0 if τ(S(·)) = ∞.

A strategy P of Investor is a set of countably many marked stopping times

P = {(τ1,m1), (τ2,m2), . . .} (3)

with the additional requirement that the stopping times are “discrete” in the following
sense.

Definition 2.1. A set of countably many stopping times {τ1, τ2, . . . } is discrete if for each
S(·) ∈ Ω there is no accumulation point of the set of realized stopping times.

In the above definition, we are not requiring τ1 ≤ τ2 ≤ · · · . For example, a strategy of
Investor may consist of just two marked stopping times P = {(τ1, m1), (τ2,m2)}, where
τ1 is the first time S(t) hits a predetermined high value and τ2 is the the first time S(t)
hits a predetermined low value. Then τ1 may realize before τ2 or vice versa. We use the
notation τ(1) ≤ τ(2) ≤ · · · for the ordered realized stopping times.

By discreteness of the stopping times we require Investor to trade only finite number
of times in every finite interval. The limit order type strategy in (2) clearly satisfies this
requirement, because any continuous function on [0,∞) is uniformly continuous on the
finite interval [0, t]. Under the above requirement, given a strategy P of Investor and a
path S(·) of Market, the capital process KP(t) = KP(t, S(·)) of Investor is defined as in
(1) with ti = τ(i)(S(·)) and Mi = m(i)(S(·)), provided that the realized stopping times are
all distinct. When realized time points of some stopping times coincide, for example when
Investor employs nested strategies, we need to deal with obvious notational complications
in adding up associated marks. But even when realized time points of some stopping times
coincide, it is clear that discreteness requirement guarantees that the capital process KP(t)
is written as a finite sum for each t > 0.
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Furthermore we require that Investor observes his “collateral duty”, i.e. starting with
the initial capital of KP(0) = 1, his strategy P has to satisfy

KP(t, S(·)) ≥ 0, ∀t > 0,∀S(·) ∈ Ω.

In summary, the move space F0 = {P} of Investor is the set of strategies in (3) satisfying
the discreteness of Definition 2.1 and the collateral duty.

We note that F0 is closed under finite static mixtures. Let Pj = {(τij,mij)}∞i=1,
j = 1, 2, be two strategies belonging to F0. For 0 < c1, c2 < 1 with c1 + c2 = 1,
Investor sets up two accounts with the initial capitals cj, j = 1, 2. Then he employs
cjPj = {(τij, cjmij)}∞i=1 to account j. This mixture is written as c1P2 + c2P2 ∈ F0 with
the capital process Kc1P1+c2P2(t) = c1KP1(t) + c2KP2(t). By induction it is clear that F0

is closed with respect to any convex combination of finite number of strategies.
In the spirit of game-theoretic probability, we assume that Investor first announces his

strategy P to Market and then Market decides her path S(·). Therefore the protocol of
an asset trading game in continuous time is formulated as follows.

Asset Trading Game in Continuous Time
Protocol:

K(0) := 1.
Investor announces P ∈ F0.
Market announces S(·) ∈ Ω.

In game-theoretic probability, given some event E ⊂ Ω, Investor is interpreted as the
winner of the game if Market chooses a path S(·) ∈ E or else Investor’s capital increases to
infinity. In this case we say that Investor can force the event E. In order to prove forcing
of an event E, as shown in Shafer and Vovk [13], it is essential to consider static mixture
of countably many strategies of Investor. However in our formulation, countable mixing
has a conceptual difficulty, because by a mixture of trading strategies with frequencies
tending to infinity, we have to allow Investor to trade infinitely many times in a finite
interval. Hence in this paper we use the following notion of “essential forcing” of an event
E.

Definition 2.2. In the asset trading game in continuous time, Investor can essentially
force an event E, if for any C > 0 there exists a strategy PC ∈ F0 such that

sup
0≤t<∞

KPC

(t, S(·)) > C, ∀S(·) ∈ Ec.

We will discuss in Section 4 that essential forcing implies forcing in the sense of Shafer
and Vovk [13] if we allow countable static mixtures. Therefore the notion of essential
forcing is good enough for the development in the present paper. Also note that if Investor
can essentially force a finite number of events E1, . . . , EK , he can essentially force the
intersection E1 ∩ · · · ∩EK by a finite mixture of appropriate strategies (cf. Lemma 3.2 of
[13]).
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We also give a somewhat stronger definition of essential forcing for a finite interval
[T1, T2] ⊂ [0,∞).

Definition 2.3. Investor can essentially force an event E ⊂ Ω in [T1, T2] if for any C > 0
there exists a strategy PC ∈ F such that

sup
T1≤t≤T2

KPC

(t, S(·)) > C, ∀S(·) ∈ Ec.

2.3 Variation exponent and Hölder continuity

Here we summarize the notion of variation exponent and Hölder exponent (e.g. Section
4.1 of [4]). A continuous function f on the interval [T1, T2] is called Hölder continuous
(Lipschitz continuous) of order H on [T1, T2] if for some C > 0

|f(y) − f(x)|
|y − x|H

≤ C, T1 ≤ ∀x < ∀y ≤ T2.

H is usually called the modulus of continuity or the Hölder exponent. In this paper we
distinguish several closely related notions and we call H an upper Hölder exponent. In
Section 3 we consider the set of functions

EH,C,T1,T2
=

{
S ∈ Ω | | log S(y) − log S(x)|

|y − x|H
≤ C, T1 ≤ ∀x < ∀y ≤ T2

}
. (4)

We also consider to bound the modulus of continuity (jaggedness of S(·)) from below.
Let Q ⊂ [0,∞) be a given dense countable subset, such as the set of rational numbers.
We define

EH,C,T1,T2
= {S ∈ Ω | ∀ε > 0, ∀x ∈ [T1, T2 − ε] ∩ Q, ∃y ∈ (x, T2],

| log S(y) − log S(x)| ≥ CεH ,
| log S(y) − log S(x)|

|y − x|H
≥ C}. (5)

This definition of bounding the jaggedness from below by a lower Hölder exponent H is
convenient for our limit order type strategy.

Finally for A > 0 we write

EA,T1,T2 = {S ∈ Ω | | log S(y) − log S(x)| ≤ A, T1 ≤ ∀x < ∀y ≤ T2}. (6)

The modulus of continuity can also be understood from the viewpoint of total variation
of a continuous function. Here we use the notion of strong p-variation from Section 11.6
of [13]. Let κ : T1 = t0 < t1 < · · · < tn = T2 be a division of the interval [T1, T2]. For
p ≥ 1 and a continuous function f define

varf (p) = sup
κ

n∑
i=1

|f(ti) − f(ti−1)|p,
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where sup is taken over all positive integers n and over all divisions κ. There exists a
unique value vex f ∈ [1,∞] such that varf (p) < ∞ for p > vex f and varf (p) = ∞ for
for p < vex f . We call vex f the variation exponent of f . It can be easily shown that
S ∈ EH,C,T1,T2

implies vex log S ≤ 1/H and S ∈ EH,C,T1,T2
implies vex log S ≥ 1/H. Note

also that vex log S = vex S for S ∈ Ω. From these relations we call H = 1/ vex S the
Hölder exponent of S.

Results on the modulus of continuity of the paths of Brownian motion and fractional
Brownian motion are summarized in Chapter IV of [1], Section 4.1 of [4] and Section 11.6
of [13].

2.4 Bayesian strategy for coin-tossing games

As discussed in Section 2.1 we mainly consider that Investor decides the trading times by
the limit order type strategy in (2). In addition we consider that Investor specifies Mi by
the Bayesian strategy in [10]. Here we briefly review the results of [10].

Suppose that Investor models Market’s sequence of moves x1x2 . . . (xi ∈ {0, 1}) in the
embedded discrete time coin-tossing game of Section 2.1 by a probability distribution Q.
Let hn = nx̄n =

∑n
i=1 xi denote the number of heads and let tn = n − hn denote the

number of tails. The beta-binomial model is defined as

Q(x1 . . . xn) =
1

B(α, β)

∫ 1

0

phn+α−1(1 − p)tn+β−1dp

=
(Γ(α + hn)/Γ(α)) × (Γ(β + tn)/Γ(β))

Γ(α + β + n)/Γ(α + β)
,

where α, β > 0 are fixed and correspond to the prior numbers of heads and tails. We
denote the conditional probability of xi = 1 under Q given x1, . . . , xi−1 by

p̂Q
i = p̂Q

i (x1, . . . , xi−1) = Q(xi = 1 | x1, . . . , xi−1).

In this model

p̂Q
n =

B(α + hn−1 + 1, β + tn−1)

B(α + hn−1, β + tn−1)
=

α + hn−1

α + β + n − 1
,

and the Investor’s associated beta-binomial strategy is

ν∗
n =

p̂Q
n − ρ

ρ(1 − ρ)
. (7)

The capital process K̃∗
n for this Bayesian strategy is explicitly written as

K̃∗
n(x1 . . . xn) =

Q(x1 . . . xn)

ρhn(1 − ρ)tn
. (8)

When both hn and tn are large, by using Stirling’s formula

log Γ(x) =

(
x − 1

2

)
log x − x + log

√
2π + O(x−1),
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we can evaluate the log capital process log K̃∗
n as

log K̃∗
n = nD

(
hn

n

∥∥∥ρ

)
− 1

2
log n + O(1),

where

D(p‖q) = p log
p

q
+ (1 − p) log

1 − p

1 − q

denotes the Kullback-Leibler information between 0 < p < 1 and 0 < q < 1. This
expression together with the Taylor expansion

D(ρ + δ‖ρ) =
δ2

2ρ(1 − ρ)
+ O(δ3)

allows us to analyze the behavior of the capital process for a high-frequency Bayesian
strategy of Investor in the next section.

3 Essential forcing of variation exponent in the asset

trading game

Consider the asset trading game in continuous time in Section 2.2 and the events EH,C,T1,T2

in (4), EH,C,T1,T2
in (5) and EA,T1,T2 in (6). In this section we prove the following main

result of this paper.

Theorem 3.1. For every H > 0.5, A > 0, C > 0, 0 ≤ T1 < T2 ≤ T , Investor can
essentially force

EH,C,T1,T2
⇒ EA,T1,T2 .

For every H < 0.5, A > 0, C > 0, 0 ≤ T1 < T2 ≤ T , Investor can essentially force

EH,C,T1,T2
⇒ EA,T1,T2 .

Here “E1 ⇒ E2” stands for Ec
1 ∪ E2 (Section 4.1 of [13]) for two events E1, E2 ⊂ Ω.

Also from the proof of the theorem below, it will be clear that Investor can essentially
force these events in the interval [T1, T2]. This theorem says that, within arbitrarily small
constants, Market’s path is essentially forced to have the variation exponent of two, unless
she stays constant.

We give a proof of this theorem after some preliminary investigations of the limit order
type strategy in Section 2.1 combined with the Bayesian strategy in Section 2.4 for the
embedded discrete time game. Our proof is based on the limit order type strategy with
sufficiently small δ = δ1 = δ2 in (2). After the proof we also investigate the behavior of
Investor’s capital processes for the cases where δ1 and δ2 decrease with different rates.

First note that it suffices to consider the case T1 = 0, because we can think that
Investor enters the game at time t = T1 instead of t = 0 and that he uses the the strategy
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described below from T1 on. Write simply T = T2, and thus we only consider the case
[T1, T2] = [0, T ].

We take the limit order type strategy in Section 2.1. Write δ = (δ1, δ2), where δ1, δ2 >
0. Let t0 = 0 < t1 < t2 < · · · be the sequence of Investor’s trading time points determined
by (2). Then we have the embedded discrete time coin-tossing game and the associated
Mn’s are determined by the Bayesian strategy in Section 2.4 in the form of ν∗

n in (7).
The parameters α, β > 0 for the Bayesian strategy are fixed throughout the rest of this
section. It is clear that the resulting strategy P = Pδ1,δ2,α,β satisfies the collateral duty
KP(t, S(·)) ≥ 0, ∀t > 0, ∀S(·) ∈ Ω. We use the notation

ηi = log(1 + δi), δi = eηi − 1, i = 1, 2,

and η = (η1, η2). Define n∗ = n(T, δ, S(·)) by tn∗ < T ≤ tn∗+1. Note that

n∗(T, δ, S(·)) ≥ A

max(η1, η2)

for every S(·) ∈ Ec
A,0,T . Therefore n∗ can be made arbitrarily large, uniformly in S(·) ∈

Ec
A,0,T , by taking δ1, δ2 sufficiently small.

Now K(T ) = KPδ1,δ2,α,β
(T, S(·)) is written as

K(T ) = K̃∗
n∗

(
1 + θ∗n

S(T ) − S(tn∗)

S(tn∗)

)
, θ∗n =

1 + δ2

δ1 + δ2 + δ1δ2

ν∗
n.

Since
∣∣∣S(T )−S(tn∗ )

S(tn∗ )

∣∣∣ < max(δ1, δ2), we have

logK(T ) = log K̃∗
n∗ + O(1) = n∗D

(
hn∗

n∗

∥∥∥ρ

)
− 1

2
log n∗ + O(1). (9)

Define

TV (η, T ) =
n∗∑
i=1

| log S(ti) − log S(ti−1)| = hn∗η1 + tn∗η2, (10)

L(η, T ) = log S(tn∗) − log S(0) = hn∗η1 − tn∗η2, (11)

σ(η, T ) =
L(η, T )

TV (η, T )
=

hn∗η1 − tn∗η2

hn∗η1 + tn∗η2

.

We call TV (η, T ) the total η-variation of log S(t) in the interval [0, T ]. We also write

L(T ) = log S(T ) − log S(0) = L(η, T ) + O(max(η1, η2)).

Then we can express (9) as

logK(T ) = n∗D (p(η, T )‖ρ) − 1

2
log n∗ + O(1), (12)

11



where

p(η, T ) =
hn∗

n∗ =
η2(1 + σ(η, T ))

η1(1 − σ(η, T )) + η2(1 + σ(η, T ))
.

Also from (10) and (11), n∗ can be written as

n∗ =

(
η1 + η2 − σ(η, T )(η1 − η2)

2η1η2

)
TV (η, T ). (13)

Let η1k = a−k
1 , η2k = a−k

2 for a1, a2 > 1, k = 1, 2, . . . , and let log(1+δ1k) = η1k, log(1+
δ2k) = η2k. We consider a sequence of the discretized games with δk = (δ1k, δ2k) and let
Kk(T ) be the Investor’s capital at t = T for the beta-binomial strategy in each game. We
denote the values of n∗, ρ by n∗

k, ρk corresponding to ηk = (η1k, η2k).
We are now ready to give a proof of Theorem 3.1.

Proof of Theorem 3.1. Take a1 = a2 = a > 1 and write ηk = a−k, log(1 + δk) = ηk. Then
we have

n∗
k =

TV (ηk, T )

ηk

, p(ηk, T ) =
1 + σ(ηk, T )

2
, ρk =

1

2 + δk

.

Note that ρk → 1/2 as k → ∞. More precisely

ρk =
1

2
− δk

4
+ o(δk).

Consider n∗
kD(p(ηk, T )‖ρk) in (12). Since n∗

k can be made arbitrarily large uniformly in
S(·) ∈ Ec

A,0,T , we only need to consider k and S(·) ∈ Ec
A,0,T such that p(ηk, T ) is close to

1/2. Now use the Taylor expansion

D

(
1 + d1

2

∥∥∥1 + d2

2

)
=

1

2
(d1 − d2)

2 + o(|d1 − d2|2),

with d1 = σ(ηk, T ), d2 = −δk/2. Hence noting δk = eηk − 1 = a−k + O(a−2k), we can
evaluate n∗

kD (p(ηk, T )‖ρk) as

n∗
kD (p(ηk, T )‖ρk) ' akTV (ηk, T ) × 1

2

(
L(T )

TV (ηk, T )
+

1

2ak

)2

=
1

2

[
ak

TV (ηk, T )
L2(T ) + L(T ) +

1

4

TV (ηk, T )

ak

]
. (14)

Let H > 0.5 and consider S(·) ∈ EH,C,T1,T2
. It is easily seen that there exists some c

such that
TV (ηk, T ) ≤ caBk, B = (1 − H)/H < 1

for all k and for all S(·) ∈ EH,C,T1,T2
. In this case ak/TV (ηk, T ) → ∞ as k → ∞

uniformly in S(·) ∈ EH,C,T1,T2
. As seen from the argument below at the end of the

12



proof, for S(·) ∈ Ec
A,0,T we only need to consider the case |L(T )| ≥ A/4. Therefore

n∗
kD (p(ηk, T )‖ρk) → ∞ uniformly in S(·) ∈ EH,C,T1,T2

. Also it is easily verified that
log n∗

k in (9) is of smaller order than n∗
kD (p(ηk, T )‖ρk).

Now let H < 0.5 and consider S(·) ∈ EH,C,T1,T2
. Then there exist some c and k0 such

that
TV (ηk, T ) ≥ caBk, B = (1 − H)/H > 1

for all k ≥ k0 and for all S(·) ∈ EH,C,T1,T2
. In this case TV (ηk, T )/ak → ∞ as k → ∞

uniformly in S(·) ∈ EH,C,T1,T2
. Again log n∗

k can be ignored.
Thus we have the following behavior of Kk(T ) according as the values of the upper

and the lower Hölder exponents.

If H > 0.5, S(·) ∈ EH,C,T1,T2
∩ Ec

A,0,T and |L(T )| ≥ A

4
then Kk(T ) → ∞.

If H < 0.5, S(·) ∈ EH,C,T1,T2
∩ Ec

A,0,T then Kk(T ) → ∞.

We can guarantee the condition |L(T )| ≥ A/4 above in the following manner. Let
Investor divide his initial capital K(0) = 1 into two accounts with the initial capitals
K1(0) + K2(0) = 1. At the first account, Investor follows the high-frequency trading
strategy explained above. At the second account, Investor starts the game at the first time
tA(< T ) when | log S(tA) − log S(0)| ≥ A/2 and follows the same high-frequency trading
strategy. We denote Investor’s capitals of respective accounts at t = T by Kk1(T ), Kk2(T ).
Then

max(| log S(T ) − log S(0)|, | log S(T ) − log S(tA)|) ≥ A

4
.

on Ec
A,0,T . Therefore at least one of Kk1(T ), Kk2(T ) diverges to infinity. This proves the

theorem.

For numerical comparison of capital processes it is useful to approximate the capital
process for the simple case. If TV (ηk, T ) ' caBk, then (14) is rewritten as

n∗
kD (p(ηk, T )‖ρk) '

1

2

[
a(1−B)k

c
L2(T ) + L(T ) +

ca(B−1)k

4

]
. (15)

We also investigate the capital Kk(T ) for other two cases: (ii) a1 < a2, (iii) a1 > a2. From
(13) with TVk = TV (ηk, T ), pk = p(ηk, T ) we have

n∗
kpk ' 1

2
ak

1 (TVk + L) , n∗
k(1 − pk) '

1

2
ak

2 (TVk − L) ,

so that it follows

n∗
kD (pk‖ρk) = n∗

kpk log
pk

ρk

+ n∗
k(1 − pk) log

1 − pk

1 − ρk

' 1

2

[
ak

1 (TVk + L) log
pk

ρk

+ ak
2 (TVk − L) log

1 − pk

1 − ρk

]
. (16)
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(ii) a1 < a2 : In this case, pk, ρk → 0 as k → ∞. However the expression (16) has the
following approximation.

n∗
kD (pk‖ρk) '

1

2
ak

1 (TVk + L)

[
log

TVk + L

TVk − L
− 2L

TVk + L

]
'

(
ak

1

TV (ηk, T )

)
L2(T ). (17)

Suppose that TV (ηk, T ) ' caBk
1 . Then (17) is rewritten as

n∗
kD (pk‖ρk) '

a
(1−B)k
1

c
L2(T ), (18)

and we can derive the behavior of Kk(T ) as follows.

If H > 0.5 and |L(T )| ≥ A

4
then Kk(T ) → ∞,

which is the only case such that Kk(T ) → ∞.

(iii) a1 > a2 : In this case, pk, ρk → 1 as k → ∞. Again the expression (16) has the
following approximation.

n∗
kD (pk‖ρk) '

1

2
ak

2 (TVk − L)

[
log

TVk − L

TVk + L
+

2L

TVk − L
+

2L

TVk − L
a−k

2 +
1

2
a−2k

2

]
'

(
ak

2

TV (ηk, T )

)
L2(T ) + L(T ) +

1

4

(
TV (ηk, T )

ak
2

)
. (19)

Suppose that TV (ηk, T ) ' caBk
2 . Then (19) is rewritten as

n∗
kD (pk‖ρk) '

a
(1−B)k
2

c
L2(T ) + L(T ) +

ca
(B−1)k
2

4
, (20)

and as in the case of a1 = a2, the same behavior of Kk(T ) are derived.

If H > 0.5 and |L(T )| ≥ A

4
then Kk(T ) → ∞.

If H < 0.5 then Kk(T ) → ∞.

We note that when a = a2, the exponential growth part (20) is twice as large as (15).

4 Concluding remarks

In this paper we proposed a new formulation of continuous time games in the framework
of the game-theoretic probability of Shafer and Vovk [13]. The present approach can be
extended to prove that Investor can essentially force other properties of Market’s path
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corresponding to various probability laws in continuous-time stochastic processes. Vovk
[18] provided an approach to point processes and diffusion processes from prequential
viewpoint, but it was not further developed from game-theoretic viewpoint.

In Section 2.2 we gave two definitions of essential forcing of an event, and there are
other possibilities. For example we may allow [T1, T2] to depend on C in Definition 2.3.

From theoretical perspective it is most important to consider taking the countable
closure of the move space F0 of Investor. For the discrete time games, there is no concep-
tual difficulty in considering static mixtures of countably many strategies. As mentioned
already in Section 2.2, the operation of countable mixture is needed to prove forcing an
event in discrete time games. Even in continuous time games, conceptually there is no
difficulty in dividing the initial capital into countably many accounts and apply separate
strategies to each account. Suppose that Investor can essentially force an event E. Then
he can divide his initial capital of one as

1 =
1

2
+

1

4
+ · · ·

and put 1/2i to the i-th account as the initial capital. He applies P2i
to the i-th account

until KP2i

≥ 1. Then he collects one (dollar) from each account and his capital diverges
to infinity. This argument shows that if Investor can essentially force E, then he can force
E, provided that static mixture of countable strategies are allowed.

Mathematically, however, we need to define the space of strategies allowed to Investor
and show that the capital processes of strategies are well defined. These considerations
are left to our future works.

Our main Theorem 3.1 is stated in terms of the essential forcing of events (4) and (5).
There is some gap between these two sets of functions. In particular the set (5) may be too
small. We used this definition for convenience in employing our simple limit order type
strategy. A stronger statement should be stated in terms of the variation exponent vex S
defined at the end of Section 2.3 and this might require more sophisticated strategies of
Investor.

Acknowledgment The authors are grateful to Norio Kono and Makoto Maejima for
valuable suggestions.
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