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Abstract

In this paper, a stabilization problem of quantum spin systems in gen-
eral dimension under continuous measurement is considered and it is shown
that the global stabilization at arbitrary eigenstates by continuous inputs is
possible. Quantum states of spin systems under continuous measurement by
mutual interference with laser beams can be estimated by quantum filtering
and with its information, the intension of magnetic field, which is applied
to atoms, can be controlled. Our proposing control input is the sum of two
terms: a term which attracts the quantum states to a target and the other term
which draws apart from the other equilibrium points.

1 Introduction

Quantum feedback control is indispensable for the realizations of many quantum
technologies and the theory for it has been constructed. Belavkin [1] and others
[21] showed that the time evolution of estimated quantum states under continuous
measurement can be described by a classical stochastic differential equation in the
early 1990's. After that, research on feedback control by using estimated quantum
states has been actively investigated [20, 3, 22] and its effectiveness has been also
demonstrated by actual experiments [5].

A recent notable result [18] is on feedback control of single spin 1/2 systems
by using a continuous control rule. This result is important for a possibility of

*This paper is the technical report version of the conference paper [17]



feedback control, however it is also limited with respect to its applications from
the point of the generalization of the dimension.

This limitation has been solved recently by Mirrahimi & van Handel [10]. They
proposed a switching control for a group of atoms to globally stabilize the angular
moments at arbitrary eigenstates. The proof is done by the strict analysis on the
sample paths of the quantum state. This is the first result to show the global stability
for quantum spin systems in general dimensions.

With this result, our interest naturally moves to a question on the global stabi-
lizability of the quantum system by continuous feedback. This problem is impor-
tant from the viewpoint of realizability of apparatus or pure physics and mathemat-
ics, and it is the main subject of this paper.

Recently, Tsumura [15, 16] proved that global stabilizability is possible by
a continuous control law. This control scheme was firstly considered in [8] and
its effectiveness was demonstrated by numerical examples. However, the target
state is limited to the maximum energy eigenstate. This paper solves this diffi-
culty and proves that the global stability at arbitrary eigenstates is possible for
N-dimensional quantum spin systems.

This paper is organized as follows. In section 2, we introduce the problem
setting and some preliminaries. In section 3 we give the main result of this paper
and its proof. The method for the proof is similar to that of Mirrahimi & van
Handel [10] and Tsumura [15, 16]. In section 4, we show some examples in order
to demonstrate the efficiency of our proposing control rule and in section 5, we
conclude this paper.

2 Formulation

In this paper, we deal with the system in Fig. 1 [18, 19, 10] withtinuous mea-
surement

photo detector

u |estimator,
S
controller

magnetic field
generator

laser

Fig.1: Quantum spin system under continuous measurement



A group of atoms is held in a cavity. When the number of atoms, ithe
dimension of the quantum state on the angular momen¥ is- 2.J + 1 where
J = 3n is the absolute value of the moment. The mutual interaction between the
laser beam and the atoms is observed by a photo detector where the intensity of
the interference laser beam brings the information on the angular moment of the
atoms. The observation of this indirect information causes a back action on the
quantum state of the atoms.

Magnetic field is also applied to the group of the atoms and its intension is con-
trolled. By using the history of the indirectly observed information, the conditional
expectation of the observable can be calculated [1]. This is calledtum filtering
and the time evolution of the estimated quantum state becomes a quantum version
of a classical Kushner-Stratonovich equation [1, 2, 18].

When we observe the angular momentzeaxis and apply the magnetic field
alongy-axis, the corresponding nonlinead Btochastic differential equation is:

. 1
dpr = — iu[Fy, pr]dt — §[Fz7 [F, pe]]dt

+ N Fope + pe e — 2tr (Fopy) pe)dWr, (1)
dy =2\/ntr (F,p)dt + dW; (2)

where

S:{peC N :p=p" tr(p)=1, p>0}
pt: pr € S,aquantum state at tinte
dW, : an infinitesimal Wiener increment satisfying
E[(dW;)?] = dt, E[dW;] = 0,
ug = control input(u; € R),
ye : output(y; € R),
n : the detector efficienci) < n < 1),

F,: the angular momentum along the ayisf the form [9]
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F,: the angular momentum along the axisf the form [9]

J
J—1
(4)

-J+1
—J

This is called SME gtochastic master equatipand it has been mainly inves-
tigated in the research field of quantum control. It should be noted that the solution
of (1) is continuous in time [12] ifi; is continuous. We also define some notations:

- [0...0\1/0...0]*’ (5)
i—th

Py = Uiy, (6)

Vo(p) == 1—tr(ppr), @)

VI(p) = 1 (o), ®

Vl(p) == Ai—tr(Fup), 9)

o= J—(i—1), (10)

whereps € S is one of eigenstates. The control objective is to globally stabilize
the quantum statg; on some desired stage by controlling the intensity:; of the

magnetic field, which is decided by or its record. Note thah < Vplf(p) <1

0 < V,l(p) < 1),andV, (p) = 0 (V,!(p) = 0) iff p =

pt. Moreover, fore > 0,

define
Sy = @msmw<&, (11)
Spe = ApVy(p) =€}, (12)
S = {,0|6<VI ()} - (13)

We define the stochastic stability of (1) as follows.

Definition 2.1 [7] Let p. be an equilibrium point ofl), i.e. dp;|,,—,, = 0. Then

1. the equilibriump, is said to be stable in probability if

Ve >0

lim Pr( sup ||p

PO Pe

0<t<oo

where|| - || is an arbitrary norm of a matrix iV >,

—mmﬁ

(14)

2. The equilibriump, is globally stable if it is stable in probability and addi-

tionally

VppeS Pr (tlim pr = pe> =1.

(15)



For showing the stochastic stabilities, a stochastic version of the Lyapunov
theorem is available. At first define a nonnegative real-valued continuous function
V(-) onS. Also definep; := p; such thatpy = z, a level set), such that). :=
{peS:V(p) <€}, e :=inf{t: pf ¢ Qc} andp; = pi.,., t A 7e = min(t, 7o),

L: infinitesimal operator.: restriction ofC on p,. Then, we get the following
propositions.

Proposition 2.1 [7] Let L.V < 0in Q.. Then, the followings hold:

1. lim; . V(p7) exists a.s., s& (p;7) converges for a.e. path remaining@h.

2. Pimy oo LV (p7) = 0, S0 LV (pf) — 0 in probability ast — oo for
almost all paths which never lea¥g..

3. Forz € Q. anda < € we have the uniform estimate

Pr( sup V(i) >a) = Pr( sup V(7) > a)
0<t<o0o 0<t<oo
< e (16)
«

4. IfV(2) = 0andV (p) # 0for p # Z, thenz (Z € Q.) is stable in probability.

Definition 2.2 An invariant setC' is defined as a set with the property that if sys-
tem’s initial state is inC' then its whole path (forward and backward) liesGh

Proposition 2.2 [10] Assume the followings:
1. Q. is bounded and thaf. V' (p) < 0 within Q..

2. For any bounded scalar continuous functigfp) and a fixed;, E[g(p7)] is
continuous orx = pyg.

3. For any positive real numberandz € Q., Pr(|lp — z|| > k) — 0,t — 0.

Let R be the set of all points withi@. whereL V' (p) = 0, and letM be the largest
invariant set inR. Then, every solutiop; in Q. tends toM ast — oo

Here we consider the control problem:

Problem 2.1 For the controlled spin system (1), find a globally stabilizing con-
troller u; on an eigenstatg; = py,.

This is not a trivial problem from the following reasons: 1) (1) is a nonlinear
stochastic system, 2) there exist plural locally stable equilibrium points wheo
because of the nonlinearity, 3) because of a kind of symmetry of the dynamics,
many of locally stabilizing control scheme on one of above equilibrium points also
preserve the other equilibrium points.

Mirrahimi & van Handel found a globally stabilizing control scheme on target
eigenstates by introducing a switching rule in order to solve above difficulties [10].
Tsumura showed global stabilizability by using continuous control signal [15, 16],
however, the target state is limited to the maximum energy eigenstate:
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Proposition 2.3 [15, 16] Consider the systelfl) evolving in the sef. Letp; =
py, andn > 0. Then,

w = aui(p) + BV, (pr)
a, B3>0 (17)

globally stabilizeg1) aroundps andE[p;] — pr ast — oo when

2
8in < 1. (18)

The main purpose of this paper is to remove the limitation of the target state.

3 Main Result

In this section, we show the stabilizability of (1) by a continuous feedback and
provide the strict proof for the global stabilizability at arbitrary eigenstates
py,;- We get the following theorem:

Theorem 3.1 Consider the systerfi) evolving in the sefS. Letpr = p,, and
n > 0. Then,

w = aui(pr) + BV, (pr)
a, >0 (19)

globally stabilizeg1) aroundps andE[p;] — pr ast — oo when

2
fan <1 (20)

Remark 3.1 This is the first result to show the global stabilizability of general
finite dimensional quantum systems at arbitrary eigenstates by continuous feedback
for the type of the master equation (1). Note thatnd 5 are design parameters

and we can always find them satisfying the condition (2)if 0.

We prove Theorem 3.1 in the followings. The procedure of the proof is similar
to that in [10, 15, 16] and it is composed of the following three parts:

Step 1) pr = py, is stable in probability.

Step 2) there exis®® < v < 1 and almost all sample paths which never leave the
domainS;;' ™7 converge tqy.

Step 3) for almost all sample paths there exists a finite firend after it, they
never leaves;;' 7.



Step 1)

In order to show the statement of the Step 1), we should find some Lyapunov
function which satisfies the conditions of Proposition 2.1 araundVe get a key
lemma for it.

Lemma 3.1 With the control input (19),

LV, <0 (21)
is satisfied in the subs —7 where
2
o=t < 22)
arn

Proof By the direct calculation of V!, we get the following:

EVprI = =2tr (pepr) we tr (—i[Fy, pe)pr)
— dn(Xi — tr (Fzpr))?(tr (pepr))”
= —=2tr (pepr)(aus + ﬂVIfH)ul
—dn(\i — tr (Fzp))?(tr (pepr))”
= —2tr (ppr) {(au1 + BVIfH)ul
+2n(A\i — tr (Fopr))tr (pepr) } (23)

The factortr (p.p¢) outside the curly brackets is always nonnegative, therefore, the
factor in the brackets should be nonnegative[f&x;}fI to be nonpositive. The factor
is

(o + BV ur + 2n(Ni — tr (Fopi))?tr (ppr)
1\ 2 1112
(oY o
o

2 « 4
+ 2ntr (ppg) (V))?
VHI 2
= « <u1 + — ) >
+ op(vVIy2 ( *(opr) — ¢ ) | (24)
arf)
Therefore, when
62
5 (25)
0”7
is satisfied, we can set
2
Y=o (26)
an



and for the case:
Yo < pii <1, (27)
we concludeﬁVprI < 0. This means with the setting
v =10, S5 T =851, (28)

L1,V < 0foranyp e Sy
O
With Lemma 3.1 and Proposition 2.4~ px is stable in probability and in the
subsetS;l_”‘) aroundps, the statements in Proposition 2.1 are concluded.

Step 2)

From Lemma 3.1 and Lemma 3.4, the master equation (1) with the control
input (19) satisfies the conditions in Proposition 2.2, therefore, the sample paths
which never leave the subsﬁ,ﬁlﬂ0 converge tgs in probability. Moreover,VprI
converges almost surely from Proposition 2.1. With this and Lebesgue’s dominated
convergence, we can show that almost all paths convergeltg employing the
similar discussion in [10]:

Lemma 3.2 p; converges tpr ast — oo for almost all paths that never exit the
setSy:' .
We omit the proof here.
Step 3)

We next show the behavior of the paths when they legye ™° or the initial
state is outside it. We get the following key lemma:

Lemma 3.3 The solutiorp; of (1) wherep(0) € 8;1_70 satisfies

sup E[min ¢: p; ¢ S;l_'yo] < 00. (29)
P0€5p>fliﬂ/O

At first introduce propositions which are used for the proof of Lemma 3.3.

Proposition 3.1 [14, 6] Consider a Stratonovich’s stochastic differential equa-
tion: .
dipy = folpr, )t + > fileer, t) o dW'(t). (30)
=1
Assume that the coefficienfgx,t), . = 0,1,2,...,n are of the cIas:C,f“"S for

somek > 2 andd > 0 (see Appendix for the definition Gfﬂ"s). Lety; be the
Brownian flow determined by (30). Then the supporp@) = ¢; as theC*~1-
flow is equal to the closurgyp, : £ € =} of

L1~ folont) + Y flon () (31)
=1
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in the spacéV;._, where= is the set of all deterministic piecewise smooth function
andWj, = C([0,T] : C¥).

Proposition 3.2 [4] Consider diffusion process; € E starting fromz whereE
is the domain of;. LetI" be a subset o and 7, (I") be the first exit time af;
fromI'. Thenforalll' > 0,z € FE,

Blra(I)] < L

~ 1 —sup,cp Pr{rn() > T} (32)

Proof of Lemma 3.3 At first, we claim that the support (M;If (p¢) containg0, ]
whenV (po) = 7 by using Proposition 3.1.
The Stratonovich form of (1) is given as [13]

dpt = Dr.(p)dt

— 571 (=285 ()M (pr) + K. (p0)) d

+wGr, (pr)dt + /nHE, (pr) o AW (33)
where

;[Fm [F., pl]

= 2tr(F.p)
= F.p+pF, —2tr (Fyp)p
= FZp+2F.pF; + p(F7)?
—tr (F2p + 2F.pF7 + p(F5)%)p
Gr,(p) = —ilFy,pl (34)
and the corresponding deterministic differential equation is

d
—pt = Dr.(pr)

dt
— %77 (—2&p. (p)HF. (pt) + Kr.(p1))

+uGr, (pt) + VTHE. (pt)€ (35)
where¢ is an associated input. With this solution, we get

d

I

= —tr dp

- it ({;numpm (p) + Kr. ()

G, () + ViR (P)E ] pr) (36)

>,
5

p

p
p
p

&

S I
S

5

(p)
(p)
(p)
(p)
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The term which includes in (36) is

tr (Hr. (p)éps)
= tr((Fap + pF. — 2tr (Fap)p)pr)€
= 2(N —tr (Fop)) tr (ppr)€
= 2V, (p)piit. (37)

The case (37) =0 faf # 0is whenp;; = 0, p;; = 1 (i.edp = pr)Dor V) (p) = 0.
Whenp; = 0 andV,"(p) # 0, u = V() and from [10], it is known
that{p|V,,(p) = 1} is not an invariant set with, # 0. Next, it is known that
{p|V)I'(p) = 0, pii # 1} is not an invariant set of (1) from Lemma 3.4. Finally,
whenp; = 1 (VI(p) = 0), p = p; and it is the target point. In the other cases,
(37) except fok is nonzero.
From above and Proposition 3.1, the assertion that the suppb’g;((pit) con-
tains0, y] whenV, (po) = v is proved. Therefore, we can getn,c(o 11 E[V,] <
1 — ~9 and finally with Proposition 3.2, we can conclude the statement [1Q]l

Lemma 3.4 {p|V,'(p) = 0, pi # 1} is not an invariant set of (1).

Proof

d 111

o)
. ({_;m—zsg (PYHr.(p) + K. (p)

+uGr, () + VIHE (P)E} F) (38)

The term which includes in (38) is

tr (HFZ (P)sz)
= tr ((sz-l-pFZ — 2tr (sz)p)Fz)f
= 2 (tr F2p— (tr sz)Z) €. (39)

The case (39) = 0 fof # 0 is only whenp = p,, = p¢, however, whem = p,,. #
pr, itis known not to be an invariant set of (1) [10]. With the similar discussion in
the proof of Lemma 3.3, we can conclude the statement of this lemma. [

By using Lemma 3.3 and employing the similar discussion of [10], we can
derive the following lemma.

Lemma 3.5 For almost every sample path pf there exists a timd& < oo after
which the path never exits the s&f' .

10



We omit the proof.

Proof of Theorem 3.1By unifying the results of Step 1 3), we can conclude the
convergence of the solution to the target point. The convergence of the expectation
can be also derived by dominated convergence. O

4 Numerical Example

We demonstrate the efficiency of the proposing continuous feedback by using nu-
merical simulations. Here we consider spin systems wheee 4. The initial and
the target states are

100 0 0000
loooo 0100
PP=10 00 0o’ |o 00 0

000 0 000 0

respectively. We simulate the solutippwith Case 1 = 0.8, a = 1,3 =1 and
Case 2y = 0.1, « = 1, 8 = 1, 10 times respectively. The former case satisfies
the condition (20), on the other hand, the latter does not satisfy it. Fig. 2 and Fig. 3
show the average of the transitions‘éjf, which indicates the gap between the
targetpr andp;, with the above two cases respectively.

Fig.3: Average of transitions dfplf withn=0.1,a=1,8=1

11



From the simulations, we can confirm the efficiency of our proposing con-
tinuous feedback. Note that (20) is a sufficient condition for the global stability,
therefore, even if it is not satisfied, the system may be stable. However, we can see
the significance of the condition (20) from these simulations.

5 Conclusion

In this paper, we considered control problemMéfdimensional quantum spin sys-
tems and showed that continuous feedback is possible to stochastically globally
stabilize the systems on arbitrary eigenstates. The control scheme is composed of
two distinctive terms and the stability is proved by following the sample paths of
the stochastic master equation strictly.

Acknowledgement: This research is supported by the Ministry of Education, Cul-
ture, Sports, Science and Technology, Japan, under Grant No. 19560436.

A Appendix
The notationO;”"; is the set{ f € C**1, D*f (|a| = m) : §-Holder continuous,
[fllm+s < oo } and

“f(@) — D*f(y)

|z —y|°

D
1F lmss = [l + D sup

|a|=m

(40)
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