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Abstract

In this paper, a stabilization problem of quantum spin systems in gen-
eral dimension under continuous measurement is considered and it is shown
that the global stabilization at arbitrary eigenstates by continuous inputs is
possible. Quantum states of spin systems under continuous measurement by
mutual interference with laser beams can be estimated by quantum filtering
and with its information, the intension of magnetic field, which is applied
to atoms, can be controlled. Our proposing control input is the sum of two
terms: a term which attracts the quantum states to a target and the other term
which draws apart from the other equilibrium points.

1 Introduction

Quantum feedback control is indispensable for the realizations of many quantum
technologies and the theory for it has been constructed. Belavkin [1] and others
[21] showed that the time evolution of estimated quantum states under continuous
measurement can be described by a classical stochastic differential equation in the
early 1990’s. After that, research on feedback control by using estimated quantum
states has been actively investigated [20, 3, 22] and its effectiveness has been also
demonstrated by actual experiments [5].

A recent notable result [18] is on feedback control of single spin 1/2 systems
by using a continuous control rule. This result is important for a possibility of

∗This paper is the technical report version of the conference paper [17]
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feedback control, however it is also limited with respect to its applications from
the point of the generalization of the dimension.

This limitation has been solved recently by Mirrahimi & van Handel [10]. They
proposed a switching control for a group of atoms to globally stabilize the angular
moments at arbitrary eigenstates. The proof is done by the strict analysis on the
sample paths of the quantum state. This is the first result to show the global stability
for quantum spin systems in general dimensions.

With this result, our interest naturally moves to a question on the global stabi-
lizability of the quantum system by continuous feedback. This problem is impor-
tant from the viewpoint of realizability of apparatus or pure physics and mathemat-
ics, and it is the main subject of this paper.

Recently, Tsumura [15, 16] proved that global stabilizability is possible by
a continuous control law. This control scheme was firstly considered in [8] and
its effectiveness was demonstrated by numerical examples. However, the target
state is limited to the maximum energy eigenstate. This paper solves this diffi-
culty and proves that the global stability at arbitrary eigenstates is possible for
N -dimensional quantum spin systems.

This paper is organized as follows. In section 2, we introduce the problem
setting and some preliminaries. In section 3 we give the main result of this paper
and its proof. The method for the proof is similar to that of Mirrahimi & van
Handel [10] and Tsumura [15, 16]. In section 4, we show some examples in order
to demonstrate the efficiency of our proposing control rule and in section 5, we
conclude this paper.

2 Formulation

In this paper, we deal with the system in Fig. 1 [18, 19, 10] withcontinuous mea-
surement.

photo detector

laser

u estimator
controller

y
magnetic
field

magnetic field
generator

Fig.1: Quantum spin system under continuous measurement
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A group of atoms is held in a cavity. When the number of atoms isn, the
dimension of the quantum state on the angular moment isN = 2J + 1 where
J = 1

2n is the absolute value of the moment. The mutual interaction between the
laser beam and the atoms is observed by a photo detector where the intensity of
the interference laser beam brings the information on the angular moment of the
atoms. The observation of this indirect information causes a back action on the
quantum state of the atoms.

Magnetic field is also applied to the group of the atoms and its intension is con-
trolled. By using the history of the indirectly observed information, the conditional
expectation of the observable can be calculated [1]. This is calledquantum filtering
and the time evolution of the estimated quantum state becomes a quantum version
of a classical Kushner-Stratonovich equation [1, 2, 18].

When we observe the angular moment onz-axis and apply the magnetic field
alongy-axis, the corresponding nonlinear Itô stochastic differential equation is:

dρt =− iut[Fy, ρt]dt− 1
2
[Fz, [Fz, ρt]]dt

+
√

η(Fzρt + ρtFz − 2tr (Fzρt)ρt)dWt, (1)

dy =2
√

ηtr (Fzρ)dt + dWt (2)

where

S : {ρ ∈ CN×N : ρ = ρ∗, tr (ρ) = 1, ρ ≥ 0}
ρt : ρt ∈ S, a quantum state at timet,

dWt : an infinitesimal Wiener increment satisfying

E[(dWt)2] = dt, E[dWt] = 0,

ut : control input(ut ∈ R),
yt : output(yt ∈ R),
η : the detector efficiency(0 < η ≤ 1),

Fy: the angular momentum along the axisy of the form [9]

Fy =
1
2i




0 −c1

c1 0 −c2

... ... ...
c2J−1 0 −c2J

c2J 0




,

cm =
√

(2J + 1−m)m, (3)
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Fz: the angular momentum along the axisz of the form [9]

Fz =




J
J − 1

...
−J + 1

−J




. (4)

This is called SME (stochastic master equation) and it has been mainly inves-
tigated in the research field of quantum control. It should be noted that the solution
of (1) is continuous in time [12] ifut is continuous. We also define some notations:

ψi := [0 · · · 0 1︸︷︷︸
i−th

0 · · · 0]∗, (5)

ρψi := ψiψ
∗
i , (6)

V I
ρf

(ρ) := 1− tr (ρρf), (7)

V II
ρf

(ρ) := 1− (tr (ρρf))2, (8)

V III
ρf

(ρ) := λi − tr (Fzρ), (9)

λi := J − (i− 1), (10)

whereρf ∈ S is one of eigenstates. The control objective is to globally stabilize
the quantum stateρt on some desired stateρf by controlling the intensityut of the
magnetic field, which is decided byρt or its record. Note that0 ≤ V I

ρf
(ρ) ≤ 1

(0 ≤ V II
ρf

(ρ) ≤ 1), andV I
ρf

(ρ) = 0 (V II
ρf

(ρ) = 0) iff ρ = ρf . Moreover, forε > 0,
define

S<ε
ρf

:=
{
ρ | 0 ≤ V I

ρf
(ρ) < ε

}
, (11)

Sε
ρf

:=
{
ρ |V I

ρf
(ρ) = ε

}
, (12)

Sε<
ρf

:=
{
ρ | ε < V I

ρf
(ρ)

}
. (13)

We define the stochastic stability of (1) as follows.

Definition 2.1 [7] Let ρe be an equilibrium point of(1), i.e. dρt|ρt=ρe = 0. Then

1. the equilibriumρe is said to be stable in probability if

∀ε > 0 lim
ρ0→ρe

Pr
(

sup
0<t<∞

‖ρt − ρe‖ ≥ ε

)
= 0, (14)

where‖ · ‖ is an arbitrary norm of a matrix inCN×N .

2. The equilibriumρe is globally stable if it is stable in probability and addi-
tionally

∀ρ0 ∈ S Pr
(

lim
t→∞ ρt = ρe

)
= 1. (15)
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For showing the stochastic stabilities, a stochastic version of the Lyapunov
theorem is available. At first define a nonnegative real-valued continuous function
V (·) onS. Also defineρz

t := ρt such thatρ0 = z, a level setQε such thatQε :=
{ρ ∈ S : V (ρ) < ε}, τε := inf{t : ρz

t /∈ Qε} andρ̃z
t = ρz

t∧τε
, t ∧ τε = min(t, τε),

L: infinitesimal operator,Lε: restriction ofL on ρ̃t. Then, we get the following
propositions.

Proposition 2.1 [7] Let LεV ≤ 0 in Qε. Then, the followings hold:

1. limt→∞ V (ρ̃z
t ) exists a.s., soV (ρz

t ) converges for a.e. path remaining inQε.

2. Pr–limt→∞ LεV (ρ̃z
t ) = 0, soLεV (ρz

t ) → 0 in probability ast → ∞ for
almost all paths which never leaveQε.

3. For z ∈ Qε andα ≤ ε we have the uniform estimate

Pr( sup
0≤t<∞

V (ρz
t ) ≥ α) = Pr( sup

0≤t<∞
V (ρ̃z

t ) ≥ α)

≤ V (z)
α

. (16)

4. If V (z̃) = 0 andV (ρ) 6= 0 for ρ 6= z̃, thenz̃ (z̃ ∈ Qε) is stable in probability.

Definition 2.2 An invariant setC is defined as a set with the property that if sys-
tem’s initial state is inC then its whole path (forward and backward) lies inC.

Proposition 2.2 [10] Assume the followings:

1. Qε is bounded and thatLεV (ρ) ≤ 0 within Qε.

2. For any bounded scalar continuous functiong(ρ) and a fixedt, E[g(ρz
t )] is

continuous onz = ρ0.

3. For any positive real numberκ andz ∈ Qε, Pr(‖ρ− z‖ > κ) → 0, t → 0.

LetR be the set of all points withinQε whereLεV (ρ) = 0, and letM be the largest
invariant set inR. Then, every solutionρt in Qε tends toM ast →∞

Here we consider the control problem:

Problem 2.1 For the controlled spin system (1), find a globally stabilizing con-
troller ut on an eigenstateρf = ρψi .

This is not a trivial problem from the following reasons: 1) (1) is a nonlinear
stochastic system, 2) there exist plural locally stable equilibrium points whenu = 0
because of the nonlinearity, 3) because of a kind of symmetry of the dynamics,
many of locally stabilizing control scheme on one of above equilibrium points also
preserve the other equilibrium points.

Mirrahimi & van Handel found a globally stabilizing control scheme on target
eigenstates by introducing a switching rule in order to solve above difficulties [10].
Tsumura showed global stabilizability by using continuous control signal [15, 16],
however, the target state is limited to the maximum energy eigenstate:
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Proposition 2.3 [15, 16] Consider the system(1) evolving in the setS. Letρf =
ρψ1 andη > 0. Then,

ut = αu1(ρt) + βV I
ρf

(ρt)
α, β > 0 (17)

globally stabilizes(1) aroundρf andE[ρt] → ρf ast →∞ when

β2

8αη
< 1. (18)

The main purpose of this paper is to remove the limitation of the target state.

3 Main Result

In this section, we show the stabilizability of (1) by a continuous feedback and
provide the strict proof for the global stabilizability at arbitrary eigenstatesρf =
ρψi . We get the following theorem:

Theorem 3.1 Consider the system(1) evolving in the setS. Let ρf = ρψi and
η > 0. Then,

ut = αu1(ρt) + βV III
ρf

(ρt)
α, β > 0 (19)

globally stabilizes(1) aroundρf andE[ρt] → ρf ast →∞ when

β2

8αη
< 1. (20)

Remark 3.1 This is the first result to show the global stabilizability of general
finite dimensional quantum systems at arbitrary eigenstates by continuous feedback
for the type of the master equation (1). Note thatα andβ are design parameters
and we can always find them satisfying the condition (20) ifη > 0.

We prove Theorem 3.1 in the followings. The procedure of the proof is similar
to that in [10, 15, 16] and it is composed of the following three parts:

Step 1) ρf = ρψi is stable in probability.

Step 2) there exists0 < γ < 1 and almost all sample paths which never leave the
domainS<1−γ

ρf converge toρf .

Step 3) for almost all sample paths there exists a finite timeT and after it, they
never leaveS<1−γ

ρf .
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Step 1)
In order to show the statement of the Step 1), we should find some Lyapunov

function which satisfies the conditions of Proposition 2.1 aroundρf . We get a key
lemma for it.

Lemma 3.1 With the control input (19),

LεV
II
ρf

≤ 0 (21)

is satisfied in the subsetsS<1−γ0
ρf , where

γ0 =
β2

8αη
< 1. (22)

Proof By the direct calculation ofLV II
ρf

, we get the following:

LV II
ρf

= −2tr (ρtρf) ut tr (−i[Fy, ρt]ρf)

− 4η(λi − tr (Fzρt))2(tr (ρtρf))2

= −2tr (ρtρf)(αu1 + βV III
ρf

)u1

− 4η(λi − tr (Fzρt))2(tr (ρtρf))2

= −2tr (ρtρf)
{
(αu1 + βV III

ρf
)u1

+ 2η(λi − tr (Fzρt))2tr (ρtρf)
}

. (23)

The factortr (ρtρf) outside the curly brackets is always nonnegative, therefore, the
factor in the brackets should be nonnegative forLV II

ρf
to be nonpositive. The factor

is
(
αu1 + βV III

ρf

)
u1 + 2η(λi − tr (Fzρt))2tr (ρρf)

= α

(
u1 +

β

α

V III
ρf

2

)2

− β2

α

(V III
ρf

)2

4

+ 2ηtr (ρρf)(V III
ρf

)2

= α

(
u1 +

β

α

V III
ρf

2

)2

+ 2η(V III
ρf

)2
(

tr (ρρf)− β2

8αη

)
. (24)

Therefore, when

β2

8αη
< 1 (25)

is satisfied, we can set

γ0 :=
β2

8αη
(26)
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and for the case:

γ0 < ρii ≤ 1, (27)

we concludeLV II
ρf
≤ 0. This means with the setting

γ = γ0, S<1−γ
ρf

= S<1−γ0
ρf

, (28)

L1−γ0V
II
ρf
≤ 0 for anyρ ∈ S<1−γ0

ρf .
¤

With Lemma 3.1 and Proposition 2.1,ρ = ρf is stable in probability and in the
subsetS<1−γ0

ρf aroundρf , the statements in Proposition 2.1 are concluded.

Step 2)
From Lemma 3.1 and Lemma 3.4, the master equation (1) with the control

input (19) satisfies the conditions in Proposition 2.2, therefore, the sample paths
which never leave the subsetS<1−γ0

ρf converge toρf in probability. Moreover,V II
ρf

converges almost surely from Proposition 2.1. With this and Lebesgue’s dominated
convergence, we can show that almost all paths converge toρf by employing the
similar discussion in [10]:

Lemma 3.2 ρt converges toρf as t → ∞ for almost all paths that never exit the
setS<1−γ0

ρf .

We omit the proof here.
Step 3)

We next show the behavior of the paths when they leaveS<1−γ0
ρf or the initial

state is outside it. We get the following key lemma:

Lemma 3.3 The solutionρt of (1) whereρ(0) ∈ S>1−γ0
ρf satisfies

sup
ρ0∈S>1−γ0

ρf

E[min t : ρt /∈ S>1−γ0
ρf

] < ∞. (29)

At first introduce propositions which are used for the proof of Lemma 3.3.

Proposition 3.1 [14, 6] Consider a Stratonovich’s stochastic differential equa-
tion:

dϕt = f0(ϕt, t)dt +
n∑

l=1

fl(ϕt, t) ◦ dW l(t). (30)

Assume that the coefficientsfl(x, t), l = 0, 1, 2, . . . , n are of the classCk+1,δ
b for

somek ≥ 2 andδ > 0 (see Appendix for the definition ofCk+1,δ
b ). Letϕt be the

Brownian flow determined by (30). Then the support ofϕ(t) = ϕt as theCk−1-
flow is equal to the closure{ϕt : ξ ∈ Ξ} of

dϕt

dt
= f0(ϕt, t) +

n∑

l=1

fl(ϕt, t)ξl(t) (31)
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in the spaceWk−1, whereΞ is the set of all deterministic piecewise smooth function
andWk = C([0, T ] : Ck).

Proposition 3.2 [4] Consider diffusion processxt ∈ E starting fromx whereE
is the domain ofxt. Let Γ be a subset ofE and τx(Γ) be the first exit time ofxt

fromΓ. Then for allT ≥ 0, x ∈ E,

E[τx(Γ)] ≤ T

1− supx∈E Pr{τx(Γ) > T} . (32)

Proof of Lemma 3.3 At first, we claim that the support ofV I
ρf

(ρt) contains[0, γ]
whenV I

ρf
(ρ0) = γ by using Proposition 3.1.

The Stratonovich form of (1) is given as [13]

dρt = DFz(ρt)dt

− 1
2
η (−2EFz(ρt)HFz(ρt) +KFz(ρt)) dt

+ utGFy(ρt)dt +
√

ηHFz(ρt) ◦ dW (33)

where

DFz(ρ) = −1
2
[Fz, [Fz, ρ]]

EFz(ρ) = 2tr (Fzρ)
HFz(ρ) = Fzρ + ρFz − 2tr (Fzρ)ρ
KFz(ρ) = F 2

z ρ + 2FzρF ∗
z + ρ(F ∗

z )2

− tr (F 2
z ρ + 2FzρF ∗

z + ρ(F ∗
z )2)ρ

GFy(ρ) = −i[Fy, ρ] (34)

and the corresponding deterministic differential equation is

d

dt
ρt = DFz(ρt)

− 1
2
η (−2EFz(ρt)HFz(ρt) +KFz(ρt))

+ uGFy(ρt) +
√

ηHFz(ρt)ξ (35)

whereξ is an associated input. With this solution, we get

d

dt
V I

ρf
(ρ)

= −tr
(

dρ

dt
ρf

)

= −tr
({

−1
2
η(−2EFz(ρ)HFz(ρ) +KFz(ρ))

+ uGFy(ρ) +
√

ηHFz(ρ)ξ
}

ρf

)
. (36)
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The term which includesξ in (36) is

tr (HFz(ρ)ξρf)
= tr ((Fzρ + ρFz − 2tr (Fzρ)ρ)ρf)ξ
= 2 (λi − tr (Fzρ)) tr (ρρf)ξ
= 2V III

ρf
(ρ)ρiiξ. (37)

The case (37) = 0 forξ 6= 0 is whenρii = 0, ρii = 1 (i.e.，ρ = ρf )，orV III
ρf

(ρ) = 0.
When ρii = 0 and V III

ρf
(ρ) 6= 0, u = V III

ρf
(ρ) and from [10], it is known

that {ρ |V I
ρf

(ρ) = 1} is not an invariant set withut 6= 0. Next, it is known that
{ρ |V III

ρf
(ρ) = 0, ρii 6= 1} is not an invariant set of (1) from Lemma 3.4. Finally,

whenρii = 1 (V II
ρf

(ρ) = 0), ρ = ρf and it is the target point. In the other cases,
(37) except forξ is nonzero.

From above and Proposition 3.1, the assertion that the support ofV I
ρf

(ρt) con-
tains[0, γ] whenV I

ρf
(ρ0) = γ is proved. Therefore, we can getmint∈[0,T ] E[V I

ρf
] <

1− γ0 and finally with Proposition 3.2, we can conclude the statement [10].¤

Lemma 3.4 {ρ |V III
ρf

(ρ) = 0, ρii 6= 1} is not an invariant set of (1).

Proof

d

dt
V III

ρf
(ρ)

= −tr
(

dρ

dt
Fz

)

= −tr
({

−1
2
η(−2EFz(ρ)HFz(ρ) +KFz(ρ))

+ uGFy(ρ) +
√

ηHFz(ρ)ξ
}

Fz

)
. (38)

The term which includesξ in (38) is

tr (HFz(ρ)ξFz)
= tr ((Fzρ + ρFz − 2tr (Fzρ)ρ)Fz)ξ
= 2

(
trF 2

z ρ− (trFzρ)2
)
ξ. (39)

The case (39) = 0 forξ 6= 0 is only whenρ = ρψi = ρf , however, whenρ = ρψj 6=
ρf , it is known not to be an invariant set of (1) [10]. With the similar discussion in
the proof of Lemma 3.3, we can conclude the statement of this lemma. ¤

By using Lemma 3.3 and employing the similar discussion of [10], we can
derive the following lemma.

Lemma 3.5 For almost every sample path ofρt there exists a timeT < ∞ after
which the path never exits the setS<1−γ0

ρf .
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We omit the proof.

Proof of Theorem 3.1By unifying the results of Step 1)∼ 3), we can conclude the
convergence of the solution to the target point. The convergence of the expectation
can be also derived by dominated convergence. ¤

4 Numerical Example

We demonstrate the efficiency of the proposing continuous feedback by using nu-
merical simulations. Here we consider spin systems whereN = 4. The initial and
the target states are

ρ0 =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 , ρf =




0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0




respectively. We simulate the solutionρt with Case 1)η = 0.8, α = 1, β = 1 and
Case 2)η = 0.1, α = 1, β = 1, 10 times respectively. The former case satisfies
the condition (20), on the other hand, the latter does not satisfy it. Fig. 2 and Fig. 3
show the average of the transitions ofV I

ρf
, which indicates the gap between the

targetρf andρt, with the above two cases respectively.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
I ρ
f

t

Fig.2: Average of transitions ofV I
ρf

with η = 0.8, α = 1, β = 1
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0.3
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V
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f

t

Fig.3: Average of transitions ofV I
ρf

with η = 0.1, α = 1, β = 1
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From the simulations, we can confirm the efficiency of our proposing con-
tinuous feedback. Note that (20) is a sufficient condition for the global stability,
therefore, even if it is not satisfied, the system may be stable. However, we can see
the significance of the condition (20) from these simulations.

5 Conclusion

In this paper, we considered control problem ofN -dimensional quantum spin sys-
tems and showed that continuous feedback is possible to stochastically globally
stabilize the systems on arbitrary eigenstates. The control scheme is composed of
two distinctive terms and the stability is proved by following the sample paths of
the stochastic master equation strictly.

Acknowledgement:This research is supported by the Ministry of Education, Cul-
ture, Sports, Science and Technology, Japan, under Grant No. 19560436.

A Appendix

The notationCm,δ
b is the set{f ∈ Ck+1, Dαf (|α| = m) : δ-Hölder continuous,

‖f‖m+δ < ∞ } and

‖f‖m+δ := ‖f‖m +
∑

|α|=m

sup
Dαf(x)−Dαf(y)

|x− y|δ . (40)
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