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Abstract

A mixed polynomial matrix is a polynomial matrix which has two kinds of nonzero
coefficients: fixed constants that account for conservation laws and independent parameters
that represent physical characteristics. This paper presents an algorithm for computing the
degrees of all cofactors simultaneously in a regular mixed polynomial matrix. The algorithm
is based on the valuated matroid intersection and all pair shortest paths. The technique is
also used for improving the running time of the algorithm for minimizing the index of the
differential-algebraic equation in the hybrid analysis for circuit simulation.

1 Introduction

This paper deals with the computation of the degrees of all cofactors in polynomial matrices,
motivated by analysis of differential-algebraic equations (DAEs). Consider a linear DAE with
constant coefficients

A0x(t) + A1
dx(t)

dt
= f(t), (1)

where A0 and A1 are constant matrices. With the use of the Laplace transformation, the DAE
is expressed as A(s)x̃(s) = f̃(s) + A1x(0) by the polynomial matrix A(s) = A0 + sA1, where
s is the variable for the Laplace transform that corresponds to d/dt, the differentiation with
respect to time.

A polynomial matrix A(s) is said to be regular if A(s) is square and detA(s) is a non-
vanishing polynomial. Since the solution x(t) is the inverse Laplace transform of x̃(s) =
A(s)−1(f̃(s) + A1x(0)), the positive powers of s in A(s)−1 represent the number of differenti-
ations of f(t) that appear in x(t). Thus the difficulty of the numerical solution of (1) depends
on the degrees of entries of A(s)−1, which can be determined from degrees of cofactors by
Cramer’s rule.

For regular polynomial matrices whose entries are of degree at most one, Bujakiewicz [1]
proposed an efficient algorithm for finding the degrees of all cofactors under the assumption
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that coefficients of nonzero entries are independent parameters. Such a genericity assumption
is supported by an argument that physical parameters like resistances in electric circuits are
not precise in practice because of noises. However, there do exist exact numbers such as ±1
that appear in the coefficients of Kirchhoff’s conservation laws. This observation led Murota
and Iri [12] to introduce the notion of a mixed matrix, which is a constant matrix that consists
of two kinds of numbers as follows.

Accurate Numbers (Fixed Constants) Numbers that account for conservation laws are
precise in values. These numbers should be treated numerically.

Inaccurate Numbers (Independent Parameters) Numbers that represent physical char-
acteristics are not precise in values. These numbers should be treated combinatorially as
nonzero parameters without reference to their nominal values. Since each such nonzero
entry often comes from a single physical device, the parameters are assumed to be inde-
pendent.

In order to deal with dynamical systems, it is natural to consider the polynomial matrix version,
which is called a mixed polynomial matrix [11].

For a regular mixed polynomial matrix A(s), we propose an algorithm for finding the degrees
of all cofactors simultaneously, which is an extension of the result of Bujakiewicz [1]. The time
complexity of the proposed algorithm is the same as that of the algorithm for the degree of
detA(s) described by Murota [10]. The technique is also used to improve the complexity of
the algorithm in [6] for finding an optimal hybrid analysis in which the index of the DAE to
be solved attains the minimum.

The organization of this paper is as follows. Section 2 provides preliminaries on mixed
polynomial matrices and valuated matroids. In Section 3, we describe the algorithm of Murota
for computing the degree of the determinant of a regular mixed polynomial matrix. Section 4
gives a characterization of the degree of a cofactor. We present an algorithm for computing the
degrees of all cofactors simultaneously in a regular mixed polynomial matrix and analyze its
running time in Section 5. Finally, in Section 6, we discuss a similar problem which appears in
the index minimization of the DAE in the hybrid analysis [6].

2 Preliminaries

This section is devoted to preliminaries on mixed polynomial matrices and valuated matroids.
Valuated matroids are combinatorial abstractions of polynomial matrices.

A generic matrix is a matrix in which each nonzero entry is an independent parameter.
A matrix A(s) is called a mixed polynomial matrix if A(s) is given by A(s) = Q(s) + T (s)
with a pair of polynomial matrices Q(s) =

∑N
h=0 shQh and T (s) =

∑N
h=0 shTh that satisfy the

following two conditions.

(MP-Q) The coefficients Qh (h = 0, . . . , N) in Q(s) are constant matrices.

(MP-T) The coefficients Th (h = 0, . . . , N) in T (s) are generic matrices.
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A layered mixed polynomial matrix (or an LM-polynomial matrix for short) is defined to
be a mixed polynomial matrix such that Q(s) and T (s) satisfying (MP-Q) and (MP-T) have
disjoint nonzero rows. An LM-polynomial matrix A(s) is expressed by A(s) =

(Q(s)
T (s)

)
.

Dress and Wenzel [2] defined a valuated matroid to be a triple M = (V,B, ω) of a finite set
V , a nonempty family B ⊆ 2V , and a function ω : B → R that satisfy the following axiom
(VM).

(VM) For any B, B′ ∈ B and u ∈ B \B′, there exists v ∈ B′ \B such that B \ {u} ∪ {v} ∈ B,
B′ ∪ {u} \ {v} ∈ B, and ω(B) + ω(B′) ≤ ω(B \ {u} ∪ {v}) + ω(B′ ∪ {u} \ {v}).

The function ω is called a valuation. For B ∈ B, u ∈ B, and v ∈ V \B, we define

ω(B, u, v) = ω(B \ {u} ∪ {v})− ω(B).

By convention, we put ω(B, u, v) = −∞ if B \ {u} ∪ {v} /∈ B.
The local optimality for the valuation implies the global optimality as follows.

Theorem 2.1 ([11, Theorem 5.2.7]). A base B ∈ B satisfies ω(B) ≥ ω(B′) for any B′ ∈ B if
and only if ω(B, u, v) ≤ 0 holds for any u ∈ B and v ∈ V \B.

For B ∈ B and B′ ⊆ V , we consider a bipartite graph, called the exchangeability graph,
G(B, B′) = (B \B′, B′ \B; H) with

H = {(u, v) | u ∈ B \B′, v ∈ B′ \B, B \ {u} ∪ {v} ∈ B}.

We denote by ω̂(B,B′) the maximum weight of a perfect matching in G(B, B′), with respect
to the edge weight ω(B, u, v), i.e.,

ω̂(B, B′) = max{
∑

(u,v)∈M

ω(B, u, v) | M is a perfect matching in G(B, B′)}.

A necessary and sufficient condition for the unique existence of the maximum-weight perfect
matching in G(B, B′) is given as follows.

Lemma 2.2 ([11, Lemma 5.2.32]). Let B ∈ B and B′ ⊆ V with |B′ \ B| = |B \ B′| = h.
There exists exactly one maximum-weight perfect matching in G(B, B′) if and only if there
exist q : (B \ B′) ∪ (B′ \ B) → R and indexings of elements of B \ B′ and B′ \ B, say
B \B′ = {u1, . . . , uh} and B′ \B = {v1, . . . , vh}, such that

ω(B, uj , vi) + q(uj)− q(vi)





= 0 (1 ≤ i = j ≤ h)

≤ 0 (1 ≤ i < j ≤ h)

< 0 (1 ≤ j < i ≤ h).

(2)

Then, ω̂(B, B′) =
∑h

i=1 q(vi)−
∑h

i=1 q(ui) holds.

The following lemma is called the “unique-max lemma.”

Lemma 2.3 ([11, Lemma 5.2.35]). Let B ∈ B and B′ ⊆ V with |B′| = |B|. If there exists
exactly one maximum-weight perfect matching in G(B, B′), then B′ ∈ B and ω(B′) = ω(B) +
ω̂(B,B′).
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Murota [8] introduced the valuated independent assignment problem as a generalization
of the independent assignment problem [5]. The valuated independent assignment problem
VIAP(r) parametrized by an integer r is as follows [11, p. 307].

[VIAP(r)] Given a bipartite graph G = (V +, V −; E) with vertex sets V +, V − and edge set E,
a pair of valuated matroids M+ = (V +,B+, ω+) and M− = (V −,B−, ω−), and a weight
function w : E → R, find a triple (M, B+, B−) that maximizes

Ω(M, B+, B−) := w(M) + ω+(B+) + ω−(B−),

where w(M) =
∑{w(a) | a ∈ M}, subject to the constraint that M ⊆ E is a matching

of size r and
∂+M ⊆ B+ ∈ B+, ∂−M ⊆ B− ∈ B−, (3)

where ∂+M and ∂−M denote the set of vertices in V + and V − incident to M , respectively.

An augmenting path algorithm for solving VIAP(r) has been developed in [9], where the
unique-max lemma plays a key role.

3 Degree of Determinant

For a polynomial a(s), we denote the degree of a(s) by deg a, where deg 0 = −∞ by convention.
Let Ã(s) = Q̃(s)+T̃ (s) be an n×n regular mixed polynomial matrix with row set R̃ and column
set C̃. We denote by Ã[I, J ] the submatrix of Ã(s) with row set I ⊆ R̃ and column set J ⊆ C̃.
In this section, we expound that the computation of

δr(Ã) = max
I,J

{deg det Ã[I, J ] | |I| = |J | = r},

the highest degree of a minor of order r, is reduced to solving VIAP(r) [10, 11].
Let us define

gi = max
j∈C̃

deg Q̃ij(s) (i ∈ R̃), (4)

where Q̃ij(s) denotes the (i, j) entry of Q̃(s). We now construct an associated 2n × 2n LM-
polynomial matrix

A(s) =

(
Q(s)
T (s)

)
=

( R̃ C̃

RQ DQ(s) Q̃(s)
RT −DT (s) T̃ (s)

)
(5)

with column set C = R̃ ∪ C̃ and row set R = RQ ∪ RT , where RQ and RT are disjoint copies
of R̃. For each i ∈ R̃, we denote its copies by iQ ∈ RQ and iT ∈ RT . Both DQ(s) and DT (s)
are diagonal matrices. For each i ∈ R̃, the (iQ, i) entry of DQ(s) is sgi , and the (iT , i) entry of
DT (s) is tis

gi , where ti is a new independent parameter.
For an LM-polynomial matrix A(s) =

(Q(s)
T (s)

)
in general, let RQ and RT denote the row sets

of Q(s) and T (s). We also denote |RQ| and |RT | by mQ and mT , respectively. The degree of
detA is expressed as follows.
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Theorem 3.1 ([11, Theorem 6.2.5]). For a regular LM-polynomial matrix A(s) =
(Q(s)
T (s)

)
, we

have
deg detA = max

J⊆C,|J |=mQ

{deg detQ[RQ, J ] + deg detT [RT , C \ J ]}.

The degrees of detQ[RQ, J ] and detT [RT , C \ J ] correspond to the valuation and the
maximum weight of bipartite matchings, respectively. For r = 0, 1, . . . , mT , we define

δLM
r (A) = max

I,J
{deg detA[RQ ∪ I, J ] | I ⊆ RT , J ⊆ C, |I| = r, |J | = mQ + r},

which designates the highest degree of a minor of order mQ + r with row set containing RQ.
Note that we have δLM

mT
(A) = deg detA for a square LM-polynomial matrix A(s).

For an associated LM-polynomial matrix A(s) with an n×n mixed polynomial matrix Ã(s),
we have mQ = mT = n. The relation between δr(Ã) and δLM

r (A) is as follows.

Lemma 3.2 ([11, Lemma 6.2.6]). Let Ã(s) = Q̃(s)+ T̃ (s) be an n×n mixed polynomial matrix
with row set R̃. We denote by A(s) the associated LM-polynomial matrix defined by (4) and
(5). For an integer r with 0 ≤ r ≤ n, we have

δr(Ã) = δLM
r (A)−

∑

i∈R̃

gi. (6)

Remark 3.3. In fact, (6) holds for an associated LM-polynomial matrix defined by (5) if each
gi satisfies gi ≥ maxj∈C̃ deg Q̃ij(s).

Example 3.4. Consider a mixed polynomial matrix

Ã =




1 0 s

0 1 0
0 t1s 1 + t2s


 =




1 0 s

0 1 0
0 0 1


 +




0 0 0
0 0 0
0 t1s t2s




with row set R̃ = {x1, x2, x3} and column set C̃ = {y1, y2, y3}. The associated LM-polynomial
matrix defined by (4) and (5) is

A =




x1 x2 x3 y1 y2 y3

x1Q s 0 0 1 0 s

x2Q 0 1 0 0 1 0
x3Q 0 0 1 0 0 1
x1T −t3s 0 0 0 0 0
x2T 0 −t4 0 0 0 0
x3T 0 0 −t5 0 t1s t2s




.

Then we have δ3(Ã) = 1 and δLM
3 (A) = 2, which satisfy (6).

By Lemma 3.2, δr(Ã) is determined from δLM
r (A). We now describe how to reduce the

computation of δLM
r (A) to VIAP(r).
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Figure 1: A bipartite graph G of Example 3.4.

Let MQ = (C,BQ, ωQ) be a valuated matroid defined by

BQ = {B ⊆ C | det Q[RQ, B] 6= 0}, ωQ(B) = deg detQ[RQ, B] (B ∈ BQ).

We denote the (i, j) entry of T (s) by Tij(s). Consider a bipartite graph G = (V +, V −;E)
with V + = RT , V − = C, and E = {(i, j) | i ∈ RT , j ∈ C, Tij(s) 6= 0}. Let VIAP(A; r)
denote VIAP(r) defined on G as follows. The valuated matroids M+ = (V +,B+, ω+) and
M− = (V −,B−, ω−) attached to V + and V − are defined by

B+ = {RT }, ω+(RT ) = 0,

and

B− = {B ⊆ C | C \B ∈ BQ}, ω−(B) = ωQ(C \B) (B ∈ B−).

The weight w(a) of an arc a = (i, j) ∈ E is given by w(a) = deg Tij(s). Figure 1 illustrates G

of Example 3.4.
A pair (M, B) of a matching M ⊆ E and a base B ∈ B− is called feasible for VIAP(A; r) if

|M | = r and ∂−M ⊆ B. The value of a feasible pair (M,B) is given by

Ωr(M, B) = w(M) + ω+(RT ) + ω−(B)

= w(M) + ωQ(C \B)

= deg detQ[RQ, C \B] +
∑

(i,j)∈M

deg Tij(s).

A feasible pair that maximizes Ωr(M,B) is called optimal for VIAP(A; r). The following
theorem shows that the optimal value of VIAP(A; r) coincides with δLM

r (A).

Theorem 3.5 ([11, Theorem 6.2.8]). For a square LM-polynomial matrix A(s) and an integer
r with 0 ≤ r ≤ mT , we have

δLM
r (A) = max{Ωr(M, B) | (M, B) is feasible for VIAP(A; r)},

where the right-hand side is defined to be −∞ if there exists no feasible pair (M,B).
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We now describe the algorithm for computing δLM
r (A), proposed by Murota [10, 11]. The

algorithm solves VIAP(A; r) successively for r = 0, 1, . . . ,mT . It maintains a feasible pair
(M, B) that maximizes Ωr(M,B).

Let us denote the reorientation of a ∈ E by a◦. With reference to G and (M, B), we
construct an auxiliary graph G∗ = (RT ∪ C, E∗) with arc set E∗ = E ∪ E− ∪M◦, where

E− = {(v, u) | u ∈ B, v ∈ C \B, B \ {u} ∪ {v} ∈ B−}, M◦ = {a◦ | a ∈ M}.

Note that the arcs in E− have both ends in C and that the arcs in M◦ are directed from C to
RT . The arc length γ : E∗ → Z is defined by

γ(a) =





−w(a) (a ∈ E)

w(a◦) (a ∈ M◦)

−ω−(B, u, v) (a = (v, u) ∈ E−),

(7)

where ω−(B, u, v) = ω−(B \{u}∪{v})−ω−(B). We put S+ = RT \∂+M and S− = B \∂−M .
Let ∂+a and ∂−a denote the initial and terminal vertices of a, respectively. Then the following
fact holds.

Theorem 3.6 ([11, Theorem 5.2.62]). Let (M, B) be an optimal pair for VIAP(A; r) and P

be a shortest path from S+ to S− with respect to the arc length γ in G∗ having the smallest
number of arcs. Then (M̂, B̂) defined by

M̂ = M \ {a ∈ M | a◦ ∈ P ∩M◦} ∪ (P ∩ E), (8)

B̂ = B \ {∂−a | a ∈ P ∩ E−} ∪ {∂+a | a ∈ P ∩ E−} (9)

is optimal for VIAP(A; r + 1).

Theorem 3.6 leads to the following algorithm for computing the degree of the determinant
of a regular LM-polynomial matrix.

Algorithm for degree of determinant

Step 1: Find a maximum-weight base B ∈ B− with respect to ω−. Put M := ∅.

Step 2: Repeat (2-1)–(2-3) until |M | = mT .

(2-1) Construct an auxiliary graph G∗ with respect to (M, B).

(2-2) Find a shortest path P having the smallest number of arcs from S+ to S− with
respect to the arc length γ in G∗.

(2-3) Update (M, B) according to (8) and (9).

At each stage of this algorithm, it holds that δLM
r (A) = Ωr(M, B) for r = |M |. At the end of

the algorithm, we obtain an optimal pair (M,B) for VIAP(A;n).
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4 Degree of Cofactor

Let Ã(s) be an n × n regular mixed polynomial matrix and A(s) be the associated LM-
polynomial matrix defined by (4) and (5). In this section, we discuss the degree of a cofactor
in Ã(s). We first show that the degree of a cofactor in Ã(s) is determined by that of the
corresponding cofactor in A(s).

Lemma 4.1. Let Ã(s) be an n × n mixed polynomial matrix and A(s) be the associated LM-
polynomial matrix defined by (4) and (5). For k ∈ R̃ and l ∈ C̃, we have

deg det Ã[R̃ \ {k}, C̃ \ {l}] = deg detA[R \ {kT }, C \ {l}]−
∑

i∈R̃

gi. (10)

Proof. Applying Remark 3.3 to a mixed polynomial matrix Ã[R̃ \ {k}, C̃ \ {l}] and an LM-
polynomial matrix A[R \ {kQ, kT }, C \ {k, l}], we have

deg det Ã[R̃ \ {k}, C̃ \ {l}] = deg detA[R \ {kQ, kT }, C \ {k, l}]−
∑

i∈R̃\{k}
gi.

Since the degree of the (kQ, k) entry of A is gk and A[R \ {kQ, kT }, {k}] = O, it follows that

deg det A[R \ {kQ, kT }, C \ {k, l}] = deg detA[R \ {kT }, C \ {l}]− gk.

Thus we obtain (10).

By Lemma 4.1, it suffices to compute deg detA[R \ {kT }, C \ {l}] for k ∈ R̃ and l ∈ C̃. We
now define the following problem.

[DOC(A; kT , l)] Find a pair (M, B) of a matching M ⊆ E and a base B ∈ B− maximizing
w(M) + ω−(B) subject to

∂+M = RT \ {kT }, ∂−M = B \ {l}, l ∈ B. (11)

A pair (M,B) that satisfies (11) is feasible for DOC(A; kT , l). Similarly to Theorem 3.5,
the degree of detA[R \ {kT }, C \ {l}] coincides with the optimal value of DOC(A; kT , l). The
following proposition gives a sufficient condition for the optimality of DOC(A; kT , l).

Proposition 4.2. A feasible pair (M, B) for DOC(A; kT , l) is optimal if there exists a pair of
vectors p : RT → R and q : C → R with q(l) = 0 such that

(i) w(a)− p(∂+a) + q(∂−a) ≤ 0 holds for a ∈ E,

(ii) w(a)− p(∂+a) + q(∂−a) = 0 holds for a ∈ M ,

(iii) B maximizes ω−[−q], where ω−[−q](B) ≡ ω−(B)−∑
u∈B q(u).
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Proof. For any feasible pair (M ′, B′) for DOC(A; kT , l), we show that

w(M ′) + ω−(B′) ≤ w(M) + ω−(B). (12)

By (i) and the feasibility of (M ′, B′), we have

w(M ′) + ω−(B′) ≤ p(∂+M ′)− q(∂−M ′) + ω−(B′) = p(RT \ {kT })− q(B′ \ {l}) + ω−(B′),

where p(I) =
∑

i∈I p(i) and q(J) =
∑

j∈J q(j). It follows from q(l) = 0 that

−q(B′ \ {l}) + ω−(B′) = −q(B′) + ω−(B′) = ω−[−q](B′).

By (iii), we have ω−[−q](B′) ≤ ω−[−q](B). Thus we obtain

w(M ′) + ω−(B′) ≤ p(RT \ {kT }) + ω−[−q](B) = p(RT \ {kT }) + ω−(B)− q(B),

which implies (12) by (ii) and q(l) = 0.

With reference to an optimal pair (M, B) for VIAP(A; n), we construct the auxiliary graph
G∗. For each pair of vertices u and v, let d(u, v) denote the shortest path distance from u to
v with respect to the arc length γ in G∗. If there exists no path from u to v, then we put
d(u, v) = ∞. The degree of a cofactor is now characterized as follows.

Theorem 4.3. Let (M, B) be an optimal pair for VIAP(A;n). Then we have

deg det A[R \ {kT }, C \ {l}] = Ωn(M,B)− d(l, kT )

for any kT ∈ RT and l ∈ C.

Let (M,B) be an optimal pair for VIAP(A; n) and P be a shortest path from l to kT with
respect to the arc length γ in G∗ having the smallest number of arcs. We update (M, B) to
(M̂, B̂) according to (8) and (9). Let {(vi, ui) | i = 1, . . . , h} = P ∩ E−, where h = |P ∩ E−|,
and the indices are chosen so that vh, uh, . . . , v1, u1 appear on P in this order. In order to prove
Theorem 4.3, we make use of the following lemma.

Lemma 4.4. Let G(B, B̂) be the exchangeability graph with respect to the valuated matroid
(V −,B−, ω−). Then there exists exactly one maximum-weight perfect matching in G(B, B̂).
Moreover, we have

ω̂−(B, B̂) =
h∑

i=1

d(l, vi)−
h∑

i=1

d(l, ui). (13)

Proof. Consider q(v) = d(l, v) for each v ∈ V −. Then we have q(vi)−ω−(B, uj , vi) ≥ q(uj) for
any (vi, uj) ∈ E−. The equality holds if i = j and the strict inequality does if j < i. Hence, by
Lemma 2.2, there exists exactly one maximum-weight perfect matching in G(B, B̂), and (13)
holds.
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We are now ready to complete the proof of Theorem 4.3. Note that (M̂, B̂) is feasible for
DOC(A; kT , l). We claim that (M̂, B̂) is optimal for DOC(A; kT , l).

Consider p(u) = d(l, u) for u ∈ V + and q(v) = d(l, v) for v ∈ V −. We show that p, q, and
(M̂, B̂) satisfy (i)–(iii) in Proposition 4.2. The definition of p and q implies that (i) and (ii)
hold. By Lemmas 2.3 and 4.4, we have

ω−(B̂) = ω−(B) + ω̂−(B, B̂). (14)

It follows from (13) that

ω̂−(B, B̂) =
∑

v∈B̂\B
q(v)−

∑

u∈B\B̂
q(u) = q(B̂ \B)− q(B \ B̂) = q(B̂)− q(B).

Thus we obtain ω−(B̂)−q(B̂) = ω−(B)−q(B). This can be written as ω−[−q](B̂) = ω−[−q](B).
By the definition of q, for any u ∈ B and v ∈ V − \B, we have q(v)−ω−(B, u, v) ≥ q(u), which
implies that ω−(B) ≥ ω−(B \ {u} ∪ {v}) + q(u)− q(v). Hence

ω−[−q](B \ {u} ∪ {v}) = ω−(B \ {u} ∪ {v})− q(B) + q(u)− q(v)

≤ ω−(B)− q(B) = ω−[−q](B)

holds. Since the triple (V −,B−, ω−[−q]) is a valuated matroid, it follows from Theorem 2.1 that
ω−[−q](B′) ≤ ω−[−q](B) = ω−[−q](B̂) holds for any B′ ∈ B−, which implies (iii). Therefore,
by Proposition 4.2, (M̂, B̂) is optimal for DOC(A; kT , l).

Since the degree of detA[R\{kT }, C\{l}] coincides with the optimal value of DOC(A; kT , l),
we have deg detA[R \ {kT }, C \ {l}] = w(M̂) + ω−(B̂). It follows from (7) and (8) that

w(M̂) = w(M)−
∑

a◦∈P∩M◦
w(a) +

∑

a∈P∩E

w(a) = w(M)−
∑

a∈P∩M◦
γ(a)−

∑

a∈P∩E

γ(a).

By (13) and (14), we obtain

ω−(B̂) = ω−(B) + ω̂−(B, B̂) = ω−(B)−
∑

a∈P∩E−
γ(a).

Therefore, we have w(M̂) + ω−(B̂) = w(M) + ω−(B) − ∑
a∈P γ(a) = Ωn(M, B) − d(l, kT ).

Thus deg detA[R \ {kT }, C \ {l}] = Ωn(M, B) − d(l, kT ) holds, which completes the proof of
Theorem 4.3.

Example 4.5. For the LM-polynomial matrix of Example 3.4, Figure 2 exhibits an optimal
pair (M, B) for VIAP(A; 3) and an auxiliary graph G∗ with

M = {(x1T , x1), (x2T , x2), (x3T , y3)} and B = {x1, x2, y3}.

Then we have Ω3(M,B) = 2. Consider the degree of detA[R \ {x2T }, C \ {y1}]. A shortest
path P from y1 to x2T in G∗ is

P = {(y1, y3), (y3, x3T ), (x3T , y2), (y2, x2), (x2, x2T )}

and its shortest path distance is d(y1, x2T ) = γ(P ) = −1. It follows from Theorem 4.3 that

deg det A[R \ {x2T }, C \ {y1}] = Ω3(M, B)− d(y1, x2T ) = 3.
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Figure 2: An auxiliary graph G∗ of Example 3.4, where ª and • denote arcs in M and vertices
in B, respectively.

5 Degrees of All Cofactors

In this section, we present an algorithm for computing the degrees of all cofactors simultaneously
and analyze its running time.

Theorem 4.3 suggests the following algorithm for computing the degrees of all cofactors in
an n×n regular mixed polynomial matrix Ã(s) = Q̃(s)+T̃ (s). The output of this algorithm is a
matrix Ψ whose (k, l) entry, denoted by ψkl, is the degree of the cofactor det Ã[R̃\{k}, C̃ \{l}].

Algorithm for degrees of all cofactors

Step 1: Construct the 2n× 2n associated LM-polynomial matrix A(s) defined by (4) and (5).

Step 2: Find an optimal pair (M, B) for VIAP(A;n) by Algorithm for degree of determinant.
Construct an auxiliary graph G∗ with respect to (M, B).

Step 3: Compute the shortest path distances for all pairs of kT ∈ RT and l ∈ C̃. For each
k ∈ R̃ and l ∈ C̃, set ψkl := Ωn(M, B)− d(l, kT )−∑

i∈R̃ gi.

Step 4: Return Ψ.

We now discuss the running time of Algorithm for degrees of all cofactors. In Step 3, we can
compute the shortest path distances for all pairs by the Warshall-Floyd method [3, 13] in O(n3)
time. This is dominated by Algorithm for degree of determinant in Step 2. Thus the overall time
complexity of Algorithm for degrees of all cofactors is the same as that of Algorithm for degree of

determinant.
In order to reflect the dimensional consistency in conservation laws, Murota [7] introduced

the following assumption.

(MP-Q2) Every nonvanishing minor of Q̃(s) is a monomial in s.

For example, consider a linear time-invariant electric circuit. As for the coefficient matrix
Ã(s) of circuit equations, which consist of Kirchhoff’s conservation laws (KCL and KVL) and
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constitutive equations, we assume that the physical parameters are independent. Then, Ã(s)
is an LM-polynomial matrix that satisfies (MP-Q2).

The assumption (MP-Q2) holds if and only if

Q̃(s) = DR(s)Q̃(1)DC(s) (15)

for some diagonal matrices DR(s) and DC(s) with each diagonal entry being a monomial in s.
Consequently, VIAP(A; r) reduces to an independent assignment problem [11, Remark 6.2.10],
which allows us to state the time complexity of Algorithm for degree of determinant as follows.

Lemma 5.1. Let Ã(s) be an n×n regular mixed polynomial matrix. If Ã(s) satisfies (MP-Q2),
we obtain an optimal pair for VIAP(A; n) in O(n4) time.

Proof. Note that the associated LM-polynomial matrix A(s) satisfies (MP-Q2). As an initial
B in Step 1 of Algorithm for degree of determinant, we can set B = C̃. In Step 2, E− can be
constructed in O(n3) time. We can find the shortest path in Step 3 in O(n2) time. Thus the
total complexity of Algorithm for degree of determinant is O(n4) time.

Lemma 5.1 implies that the time complexity of Algorithm for degrees of all cofactors is O(n4)
as follows.

Theorem 5.2. Let Ã(s) be an n× n regular mixed polynomial matrix that satisfies (MP-Q2).
Then the time complexity of Algorithm for degrees of all cofactors is O(n4).

Proof. In Step 3, shortest path distances for all pairs of vertices are computed in O(n3) time by
the Warshall-Floyd method. Hence Lemma 5.1 implies that the total complexity is O(n4).

Gabow and Xu [4] devised an efficient scaling algorithm for an independent assignment
problem. By using this algorithm, Algorithm for degrees of all cofactors can be implemented to
run in O(n3 log n log(nN)) time, where N denotes the highest degree of all the entries in Ã(s).

6 Degree Matrix

This section presents an algorithm for computing a degree matrix defined as follows.

Definition 6.1 (degree matrix). Let A(s) =
(Q(s)
T (s)

)
be an n× n regular LM-polynomial matrix

with row set R = RQ ∪ RT and column set C. Consider another LM-polynomial matrix A′(s)
defined by

A′(s) =

( C Ĉ

RQ Q(s) Q(s)
RT T (s) O

)
,

where Ĉ is the copy of C. We denote the copy of j ∈ C by ĵ ∈ Ĉ. The degree matrix is the
matrix Θ = (θkl) whose row and column sets are both identical with C such that each entry θkl

is given by θkl = deg detA′[R,C \ {l} ∪ {k̂}].
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We now explain the meaning of this degree matrix. Let us assume that Q(s) is a constant
matrix Q for simplicity. For an LM-polynomial matrix A(s) =

( Q
T (s)

)
, consider the following

transformation (
S O

O ImT

)(
Q

T (s)

)
, (16)

where S is a nonsingular constant matrix and ImT is the identity matrix of order mT . The
transformation (16) does not change the entries in row set RT and brings an LM-polynomial
matrix into another LM-polynomial matrix. By a certain transformation of this type, we obtain
an LM-polynomial matrix

Ǎ(s) =

(
RQ ImQ Q′

RT T (s)

)
.

We denote by X the column set of ImQ . Note that there exists a one-to-one correspondence
between kQ ∈ RQ and l ∈ X with the (kQ, l) entry of Ǎ(s) being nonzero. The relation between
the degree of a cofactor in Ǎ(s) and an entry of the degree matrix Θ is as follows.

Lemma 6.2. For any kQ ∈ RQ and l ∈ C, we have θkl = deg det Ǎ[R \ {kQ}, C \ {l}], where
k ∈ X is the column corresponding to row kQ.

Proof. Since we can transform A(s) into Ǎ(s) by row operations, we may assume that Θ is
defined in terms of Ǎ(s). Hence we have

θkl = deg det

(
Ǎ[RQ, C \ {l}] Ǎ[RQ, {k}]
Ǎ[RT , C \ {l}] 0

)
= deg det Ǎ[R \ {kQ}, C \ {l}],

because Ǎ[RQ, {k}] has only one nonzero entry in row kQ.

By Lemma 6.2, the entries in row k of Θ coincide with the degrees of cofactors obtained by
deleting row kQ from Ǎ(s).

We now define the following problem.

[DM(A; k, l)] Find a pair (M, B) of a matching M ⊆ E and a base B ∈ B− maximizing
w(M) + ω−(B) subject to

∂+M = RT , ∂−M = B \ {l} ∪ {k}, l ∈ B, k /∈ B.

The value of θkl coincides with the optimal value of DM(A; k, l). The conditions (i)–(iii) in
Proposition 4.2 also give a sufficient condition for the optimality of DM(A; k, l).

Let A(s) =
(Q(s)
T (s)

)
be an n× n regular LM-polynomial matrix. We can find an optimal pair

(M, B) for VIAP(A; mT ) by using Algorithm for degree of determinant. We then construct the
auxiliary graph G∗ with respect to (M,B). The following theorem leads to an algorithm for
computing the degree matrix. The proof is omitted as it is quite similar to that of Theorem 4.3.

Theorem 6.3. Let (M,B) be an optimal pair for VIAP(A; mT ). For any k ∈ C and l ∈ C,
we have

θkl = ΩmT (M, B)− d(l, k),

where d(l, k) denotes the shortest path distance from l to k with respect to the arc length γ in
G∗.
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The algorithm for computing a degree matrix is summarized as follows. The output of this
algorithm is a degree matrix Θ = (θkl).

Algorithm for degree matrix

Step 1: Find an optimal pair (M, B) for VIAP(A; mT ) by Algorithm for degree of determinant.

Step 2: Construct an auxiliary graph G∗ with respect to (M, B).

Step 3: Compute the shortest path distances for all pairs of k ∈ C and l ∈ C. For each k and
l, set θkl := ΩmT (M, B)− d(l, k).

Step 4: Return Θ.

The time complexity of Algorithm for degree matrix is the same as that of Algorithm for degree

of determinant, because the shortest path distances in Step 3 can be computed in O(n3) time
by the Warshall-Floyd method [3, 13]. For example, if an LM-polynomial matrix A(s) satisfies
(MP-Q2), the total running time is O(n4). If A(s) is a coefficient matrix of circuit equations,
the complexity is improved under the genericity assumption that the physical parameters in
the constitutive equations are algebraically independent.

Theorem 6.4. For a linear time-invariant electric circuit with n elements, we denote by A(s)
a 2n × 2n coefficient matrix of circuit equations. Then Algorithm for degree matrix can be
implemented to run in O(n3) time, if the set of nonzero entries coming from the physical
parameters are algebraically independent.

Proof. Let us denote the row sets of A(s) corresponding to KCL and KVL by RI and RV ,
respectively. We show that the time complexity of Algorithm for degree of determinant is O(n3).
An initial B in Step 1 can be found in O(n3) time, because A[RI ∪RV , C] is a constant matrix.
In Step 2, the construction of E− is as follows. Let B be a base, and Γ be a network graph
of the circuit with vertex set W and edge set F . We split C \ B into BI and BV such that
A[RI , BI ] and A[RV , BV ] are nonsingular. Let us denote a spanning tree corresponding to BI

in Γ by TI , and a cotree corresponding to BV by T V . Consider subgraphs ΓI = (W,TI) and
ΓV = (W,F \ T V ) of Γ. For each e = (u, v) ∈ F \ TI , we find a path PI(e) from u to v in ΓI in
O(n) time, because the number of edges is O(n). Similarly, for each e = (u, v) ∈ T V , we find
a path PV (e) from u to v in ΓV in O(n) time. Then, we obtain E− = {(ē, e) | e ∈ F \ TI , ē ∈
PI(e)} ∪ {(e, ē) | e ∈ T V , ē ∈ PV (e)}. Thus E− can be constructed in O(n2) time. A shortest
path in Step 3 can be found in O(n2) time. Therefore, the time complexity of Algorithm for

degree of determinant is O(n3), which implies that Step 1 of Algorithm for degree matrix requires
O(n3) time.

In Step 3, the Warshall-Floyd method finds the shortest path distances in O(n3) time.
Thus, the total time complexity of Algorithm for degree matrix is O(n3).

The notion of the degree matrix plays a key role in the index reduction method for the
DAE arising from the hybrid analysis in circuit simulation. Since the LM-polynomial matrix
considered there is a coefficient matrix of the circuit equations, the degree matrix can be
obtained in O(n3) time by Theorem 6.4. This improves the time complexity of finding the
minimum index hybrid analysis in [6] by a factor of n3.
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