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Abstract
It has been pointed out that the notion of the sum of roots can be uti-

lized for solving (parametric) polynomial spectral factorization. This paper
reveals another aspect of the sum of roots as an indicator of achievable per-
formance limitations. It is shown that performance limitations for some H2

control problems can be expressed as the difference of two sums of roots. An
optimization approach combining the two aspects of the sum of roots is also
shown possible that minimizes the achievable performance limitation over
plant parameters.

1 Introduction

There has been an increased interest in the search for fundamental performance
limitations achievable by feedback control [1, 2, 3]. Achievable performance lev-
els, in terms of various criteria, are expressed by various plant characteristics such
as unstable poles, non-minimum phase zeros, time delays, plant gain, and pole/zero
directions. There is however a restriction in such results in that it is in general diffi-
cult to relate plant physical parameters (length, mass, etc.) to those characteristics
and thus observation of the effect of physical parameters on the achievable perfor-
mance level is not straightforward.

In this paper it is attempted to characterize some H2 performance limitations
using what is called the sum of roots. It is still not simple to relate physical pa-
rameters to the sum of roots. Nevertheless the advantage of the characterization
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in terms of the sum of roots, rather than usual plant characteristics, is that it does
allow parametric optimization to be executed in case where the plant has some tun-
ing parameters. The optimization approach is accomplished by the exploitation of
the sum of roots as a means to solve polynomial spectral factorization.

The notion of the sum of roots is initially introduced as an indicator of ‘average
stability’ [4]. It is later discovered that the sum of roots allows observation of an
intriguing connection between polynomial spectral factorization and an algebraic
approach of Gröbner bases and that polynomial spectral factorization is solvable
by an algebraic approach in an efficient manner via the sum of roots [5]. Further-
more it is shown possible to extend the approach to the parametric case [6]. Thus
the notion of the sum of roots is proven useful for carrying out polynomial spectral
factorization. Another aspect of the sum of roots is revealed in this paper and an
interesting relationship between the sum of roots and some H2 performance limita-
tions is presented. More specifically it is shown that the performance limitation for
the H2 regulation problem is expressed in a simple manner in terms of two sums of
roots obtained from the plant and polynomial spectral factorization. By way of a
new analysis tool named the reciprocal transform [7, 8], an expression for the H2

tracking performance limitation is also derived.
The efficacy of the sum of roots is demonstrated by combining the two aspects

of the sum of roots. Given a plant with parameters, the best achievable perfor-
mance level cannot in general be related directly to parameters. Instead parametric
optimization is performed in such a way that the performance level is expressed as
a root of a polynomial whose coefficients contains parameters. Another algebraic
tool called quantifier elimination can then be employed for optimization over plant
parameters.

The paper is organized as follows. An illustrative example is firstly presented
in Section 2 in order to give readers some ideas on the sum of roots and the results
to be derived later in the paper. Section 3 is devoted to the exposition of the com-
putation tool aspect of the sum of roots, and solution of polynomial spectral factor-
ization via the sum of roots is reviewed. Then, in Section 4, the performance limi-
tation aspect of the sum of roots is shown and it is proven that the best achievable
performance levels for the H2 regulation and tracking problems can be expressed
simply as the difference of two sums of roots. Section 5 discusses the formulation
of the optimization problem over parameters as a quantifier elimination problem.
In Section 6, the numerical example presented in Section 2 is revisited and a further
explanation is provided. Some concluding remarks are made in Section 7.

2 An Illustrative Example

This section indicates what is shown in this paper by way of an example plant with
tuning parameters. The H2 regulation problem [9], which is formally formulated
in Subsection 4.1, is considered. However, unlike the ordinary optimal control
problem setting, it is assumed here that, given a fixed plant, the optimal controller
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can always be designed and also used to construct the closed-loop system. More
precisely, given a plant with tuning parameters, the task is to choose the values of
the parameters from an admissible region so that the best optimal (i.e., ‘best of the
best’) performance may be achieved. The idea is that the parameters correspond to
some physical quantities (such as mass) that a designer can decide under practical
restrictions and that those design parameters are to be determined for the best final
result. It is emphasized that parameters are tuning/design parameters, rather than
uncertain ones.

In [9], an expression for the best H2 regulation performance (achievable by an
optimal controller), which is denoted by E?, is derived in terms of some character-
istics of single-input-single-output (SISO) P (s):

E?(P ) = 2
∑

k

pa
k +

1

π

∫ ∞

0
log

(

1 + |P (jω)|2
)

dω , (1)

where pa
k’s are unstable poles of P . When a fixed plant (i.e., a plant without pa-

rameters) is given, the above formula may be used to compute the achievable per-
formance level. Nevertheless, in the case of a plant with parameters, it is in general
impossible to get exact expressions for pa

k’s (or one for
∑

k pa
k) and also to evaluate

the integral. Parametric optimization, i.e., getting an expression for E?(P ) in the
presence of parameters, based on (1) is thus impractical. An alternative character-
ization of the best performance level that can be exploited for optimization over
parameters is desired.

Now the following plant is employed as a numerical example:

P (s) =
(3 − 2q1)(1 + q2

2)

s(s − 2q2
1 + q2)

=:
PN (s)

PD(s)
,

where q = (q1, q2) are parameters which have to be chosen from the admissible
range

Q =
{

q = (q1, q2)
∣

∣ q1 ∈ [0, 1], q2 ∈ [0, 1]
}

.

The task is first to find an expression for E?(P ) with parameters and further to
optimize over Q the best performance level:

inf
q∈Q

E?(P ) .

Whilst it is in general impossible, exact computation can be carried out for this
particular low order system, yielding

E?(P ) = σM − σP , (2)

where

σM =
√

4q4
1 − 4q2

1q2 − 4q1q
2
2 + 7q2

2 − 4q1 + 6 , (3)

σP = −2q2
1 + q2 . (4)
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The characterization of σM and σP is revealed in the sequel. Firstly the poles
of P (that is, the roots of PD) are 0 and 2q2

1 − q2. It can be seen that −σP is the
sum of them:

−σP = 0 + (2q2
1 − q2) .

Similarly, −σM is shown to be the sum of roots of the spectral factor of an even
polynomial constructed from the plant. More specifically construct an even poly-
nomial in s from PN and PD:

PN (s)PN (−s) + PD(s)PD(−s)

= s4 − (2q2
1 − q2)

2s2 + (3 − 2q1)
2(1 + q2

2)
2 . (5)

Let MD(s) be a polynomial with a positive leading coefficient such that MD(s)MD(−s)
is equal to (5) and MD has roots in the open left half plane only. For this particular
example, MD can be written in closed form in terms of parameters:

MD(s) = s2 +
√

4q4
1 − 4q2

1q2 − 4q1q
2
2 + 7q2

2 − 4q1 + 6 s + (3 − 2q1)(1 + q2
2) .

It is observed that the coefficient of s is identical to σM in (3). This implies that
−σM is the sum of roots of MD since the negative of the coefficient of the second
highest term is the sum of roots of a monic polynomial. Even though it is not
always possible to get explicit expressions for E?(P ) or the sum of roots of MD, it
is always the case (under some assumptions) that E?(P ) can simply be expressed
as in (2), that is as the difference of the two sums of roots. In the H2 tracking
problem considered in Subsection 4.2, the achievable performance level can also
be related to two sums of roots. These facts indicate that the quantity of the sum of
roots has a direct link to the control performance limitation.

Interesting as it may be, readers would wonder how the relationship like (2)
can be of any use. Another aspect of the sum of roots is the key to its effectiveness.
It can be confirmed that (3) is the largest real root of the following polynomial in
σ:

σ4 − 2(2q2
1 − q2)

2σ2

+ (4q4
1 − 4q2

1q2 − 4q1q
2
2 + 7q2

2 − 4q1 + 6)

× (4q4
1 − 4q2

1q2 + 4q1q
2
2 − 5q2

2 + 4q1 − 6) . (6)

As is already stated, it is in general impossible to express the sum of roots of MD

(equivalently, σM) in closed form. Nevertheless it is shown possible to derive a
polynomial which has the quantity σM as its largest real root by making use of
a useful structural property of polynomial spectral factorization [5, 6]. (Finding
MD is in fact polynomial spectral factorization.) In [5], an intriguing connection
between polynomial spectral factorization and the Gröbner basis theory is pointed
out through the notion of the sum of roots. Based on the relationship an algebraic
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Figure 1: E?(P ) drawn from exact expression (2).

method for polynomial spectral factorization is devised that can deal with parame-
ters as they are (i.e., without substituting parameters with numbers) [6].

Now two aspects of the sum of roots have been stated: the sum of roots for
expressing performance limitations and the sum of roots for computation of poly-
nomial spectral factorization. It is in general impossible to get a expression of
the performance limitation explicitly in terms of parameters, but it is possible to
express the performance limitation in terms of the sum of roots and parameters,
and moreover to compute a polynomial which has the sum of roots as one of its
roots. Therefore, by way of the two aspects of the sum of roots, the performance
limitation can be related with parameters. This useful link can be exploited and
an algebraic method called quantifier elimination (QE) can be employed for opti-
mization over parameters. A QE package called QEPCAD B [10] shows that, when
q ∈ Q,

η1 ≤ E?(P ) ≤ 2 +
√

6 , (7)

where η1 is the third largest real root of

16η5 − 531η4 + 1488η3 + 2824η2 − 8640η + 1360 ,

i.e., η1 ' 2.1468. It is noted here that these lower and upper bounds are exact.
QEPCAD B also shows that the lower bound is achieved when q ' (0.27782, 0.43913).
The result agrees with the graph of E? in Fig. 1 plotted from the exact expression
(2), which shows the correctness of (7).
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3 Solution of Polynomial Spectral Factorization via the
Sum of Roots

3.1 Polynomial Spectral Factorization: Problem Formulation

Consider an even polynomial in x of degree 2n

f(x) = a2nx2n + a2n−2x
2n−2 + · · · + a2x

2 + a0 , (8)

where a2i, i = 0, . . . , n, are assumed to be real (i.e., not functions in parameters)
here for simplicity. It is assumed without loss of generality that the leading coeffi-
cient is positive: a2n > 0. Assume that f(x) does not have roots on the imaginary
axis. Polynomials derived from most control problems satisfy this assumption and
it is by no means a severe restriction. Because of the assumptions that f(x) is an
even polynomial and that f(x) has no pure imaginary roots, there are exactly n

roots in the open left half plane and n roots in the open right half plane. The task is
then to express f(x) as a product of two polynomials: one that captures the open
left half plane (LHP) roots and the other the open right half plane (RHP) roots.

Definition 1 The spectral factorization of f(x) in (8) is a decomposition of f(x)
of the following form:

a2nf(x) = (−1)ng(x)g(−x) , (9)

where

g(x) = bnxn + bn−1x
n−1 + · · · + b1x + b0 , bn = a2n ,

and g(x) has roots in the open left half plane only. The polynomial g(x) is called
the spectral factor of f(x).

3.2 Sum of Roots

In this subsection the notion of the sum of roots is formally reviewed. Let α1, . . . , αn

be the n roots of f(x) in the open left half plane. The n roots in the open right half
plane can then be written as −α1, . . . ,−αn. By using αi’s, f(x) and g(x) can be
written as

f(x) = a2n

n
∏

i=1

(x − αi)(x + αi) = a2n

n
∏

i=1

(x2 − α2
i ) ,

g(x) = a2n

n
∏

i=1

(x − αi) , (10)

respectively.
Now the sum of roots (SoR) is defined as the following quantity:

σ = −(α1 + α2 + · · · + αn) . (11)
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The name is derived from the fact that −σ is the sum of roots of the spectral factor
g(x). Note that Re (−αi) > 0. Also, for each non-real root of f(x), its complex
conjugate has the same real part, which leads to the following fact.

Fact 2 ([4]) The quantity σ is real and positive.

Remark 1 It may seem natural to define the quantity
∑

αi (rather than
∑

(−αi))
as the SoR. However the definition (11) is used to keep consistency with the nota-
tion in previous work [4, 5]. Moreover the SoR so defined yields an expression like
sn + σsn−1 + · · · , and is considered to make engineers ‘feel stable’. Some may
argue that this is something to do with the fact that the authors are all ‘positive’
thinkers!

3.3 Solution via the Sum of Roots

This subsection expounds the solution of the polynomial spectral factorization
problem via the SoR developed in [5, 6], to which readers are referred for fur-
ther detail. The solution approach is based on an interesting relationship between
polynomial spectral factorization and the theory of Gröbner bases that the SoR
makes conspicuous.

Firstly, by expanding the right hand side of (10) and comparing it with the right
hand side of (1), it is straightforward to find the relationship

bn−1 = a2nσ . (12)

The SoR σ and bn−1 can thus be viewed interchangeably. In particular, in the case
where a2n = 1, these two quantities are identical.

A set of algebraic equations in terms of bi’s can be obtained by considering bi’s
as variables and equating the coefficients of the both sides of (9). This set has a
useful property, which is the seminal point of the development that follows.

Lemma 3 Given f(x) and g(x) as in (8) and (1), respectively, consider bi, i =
0, . . . , n− 1, as variables. A set of algebraic equations in terms of bi’s is obtained
by comparing the coefficients of (9). Then the set G of the polynomials obtained
from the polynomial parts of the equations forms the reduced Gröbner basis of
the ideal generated by itself with respect to the graded reverse lexicographic order
bn−1 � · · · � b0.

For Gröbner bases and associated ideas such as the graded reverse lexico-
graphic order, readers are referred to, e.g., [11].

The ideal 〈G〉 is called the ideal of spectral factorization. The following lemma
can immediately be deduced from Lemma 3 and the Gröbner basis theory.

Lemma 4 The ideal of spectral factorization is 0 dimensional and the number of
its zeros with multiplicities counted is 2n.
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Let P =
{

(ε1, . . . , εn) | εi ∈ {1,−1}
}

. In the generic case, distinct combina-
tions of (ε1, . . . , εn) ∈ P give distinct values of ε1α1 + · · · + εnαn. The generic
case has a different basis which is easy to deal with.

Theorem 5 In the generic case the ideal of spectral factorization has a Gröbner
basis of so-called shape form with respect to any elimination ordering {b0, . . . , bn−2} ��
bn−1:

{

Ŝf (bn−1), bn−2 − ĥn−2(bn−1), . . . , b0 − ĥ0(bn−1)
}

,

where Ŝf is a polynomial of degree exactly 2n and ĥi’s are polynomials of degree
strictly less than 2n.

Given a set of multivariate polynomials, the set does not in general have a shape
basis, and, even if it does, computation of the shape basis may be prohibitively ex-
pensive. Nevertheless the properties of the set G of polynomials stated in Lemma 3
and Theorem 5 allow efficient computation. Due to the fact that G is a Gröbner
basis and also by knowing that the ideal 〈G〉 has a shape basis, computation of the
shape basis from G can effectively be performed by means of the basis conversion
(change-of-order) technique [11, Appendix D, §2], [12].

Theorem 5 along with the relationship (12) implies that there is a polynomial
of degree 2n defining the SoR σ and that each coefficient of g(x) is described as a
polynomial in σ:

Sf (σ) = 0 , bn−1 = a2nσ , bn−2 = hn−2(σ) , . . . , b0 = h0(σ) ,

where Sf (σ) := Ŝf (a2nσ) and hi(σ) := ĥi(a2nσ). The problem of polynomial
spectral factorization thus boils down to finding a root of Sf (σ). In fact the SoR
has a preferable property and not all roots are to be pursued. Of 2n roots of Sf (σ),
the true σ is always the largest real root. Furthermore, under the assumption that
there is no imaginary axis roots in f(x), the SoR σ is always a simple root of Sf .
That is, even though Sf may have multiple roots, the SoR is always a simple root
of Sf .

The singular case happens for instance when αi = αj for some pair of (i, j),
1 ≤ i, j ≤ n, i 6= j, or when αi + αj − αk = 0 for some 3-tuple (i, j, k),
1 ≤ i, j, k ≤ n, i 6= j, j 6= k, k 6= i. Even in this case it is possible to compute
a shape basis; the degree of Ŝf (or equivalently, that of Sf ) is smaller in that case.
Also it is still the case that the SoR is the largest real root of Sf and that it is a
simple root under the assumption that there is no imaginary axis roots in f(x).

In the case where the coefficients a2k of f(x) are polynomials in parameters
q = (q1, q2, . . . , qm), it is still possible to carry out polynomial spectral factor-
ization by means of the SoR. The crucial point in this case is to identify the area
C ⊂ R

m such that, for any c ∈ C, a2n(c) 6= 0 and the number of roots of f(x, c)
in the left half plane is n. As is seen in Section 4, imaginary axis roots of f(x,q)
result from pole-zero cancellation in the plant. In practice, a possibility of pole-
zero cancellation is to be examined beforehand, and conditions of parameters under
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which such cancellation occurs are to be identified so that the admissible region Q
belongs to C.

For such C, the polynomial set G can be computed from the equations (9) and
(1), and G is still a Gröbner basis for ideals generated by itself with respect to the
graded reverse lexicographic order bn−1 � · · · � b0. By using methods for com-
prehensive Gröbner systems of parametric ideals [13, 14, 15], the Gröbner basis
of the ideal of spectral factorization with respect to a fixed elimination ordering
{b0, . . . , bn−2} �� bn−1 can always be computed.

4 Characterization of Performance Limitations via the Sum
of Roots

4.1 H2 Regulation Problem

This subsection considers the H2 regulation problem and attempts to get an ex-
pression of the achievable performance level in terms of the SoR. In Fig. 2, P (s)
is the transfer function of the SISO continuous-time, linear, time-invariant plant to
be controlled, and K(s) is the transfer function of the controller. The signals r(t),
u(t), y(t), d(t), and e(t) := r(t) − u(t) are the reference input, the control input,
the control output, the disturbance input, and the error signal, respectively. In the
H2 regulation problem, the disturbance input is taken to be the impulse signal, and
it is assumed that there is no reference signal, i.e., d(t) = δ(t), r(t) ≡ 0. The task
is to regulate the plant output to zero under an input penalty. The quadratic cost
function

E(P, K) :=

∫ ∞

0

(

|y(t)|2 + |u(t)|2
)

dt

is employed to measure the performance level, and the best (minimal) performance
level is written as

E?(P ) := inf
K stabilizing

E(P, K) .

Some technical assumptions are made on the plant [9]:

• P is strictly proper;

• P is minimum phase (but can be unstable).
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Under these assumptions, E? can be expressed as in (1). A similar expression can
also be derived in the case of weighted control output penalty.

The aim here is to show that the best H2 regulation performance E? can be
expressed explicitly in terms of two sums of roots. As is pointed out in Section 2,
one sum of roots is directly obtained from the transfer function P . The other sum
of roots comes from the spectral factor of an even polynomial (as in Section 3)
constructed from the plant P .

Write the plant as

P (s) =
PN (s)

PD(s)
, (13)

where PN and PD are coprime polynomials. Without loss of generality, PD is
assumed to be monic. If the order of P is n, then PN and PD can be written as

PN (s) = cn
n−1s

n−1 + cn
n−2s

n−2 + · · · + cn
1s + cn

0 , (14)

PD(s) = sn + cd
n−1s

n−1 + · · · + cd
1s + cd

0 . (15)

(Note that P is strictly proper.) Let MD(s) be the spectral factor of

PN (s)PN (−s) + PD(s)PD(−s)
(

= MD(s)MD(−s)
)

. (16)

Notice that (16) does not have imaginary axis roots due to the coprimeness of PN

and PD. The assumption that there is no imaginary axis root in the even polynomial
to be factorized is therefore a natural one, rather than a restrictive one. Since the
degree of PD is strictly larger than that of PN , MD is monic in this case and thus
can be written as

MD(s) = sn + bn−1s
n−1 + · · · + b0 .

Define

σM := bn−1 , σP := cd
n−1 .

Notice that −σM is the sum of roots of MD and −σP is the sum of roots of PD,
as in Section 2. Furthermore, σP can be immediately read off from PD (i.e., from
the plant). The quantity σM arises from polynomial spectral factorization and thus
corresponds to the SoR discussed in Section 3. It can be confirmed that MD is in
fact the characteristic polynomial of the closed-loop system constructed with the
optimal controller. Therefore, σP and σM indicate the degrees of ‘average stability’
of the plant and of the achieved closed-loop system, respectively.

Now the following theorem is stated that shows that E? is the difference be-
tween the two sums of roots.

Theorem 6 The performance limitation E? of the H2 regulation problem can be
written as

E?(P ) = σM − σP . (17)

10



The proof is given in Appendix A.
Theorem 6 indicates an intriguing fact: the best achievable performance level

is the difference between the degrees of ‘average stability’ of the plant to be con-
trolled and of the closed-loop system constructed with the optimal controller. Roughly
speaking, the more unstable the plant is, the worse performance one can get. It
is pointed out however that the closed-loop poles are implicit functions in the
poles/zeros of the plant and even the plant gain. Therefore the performance im-
provement/deterioration with respect to plant pole locations is not so direct as it
looks.

4.2 H2 Tracking Problem

This subsection deals with the H2 tracking problem and derives an expression for
the best achievable performance level similar to the one for the H2 regulation case.
Whilst it may be possible to derive it directly, the expression for the optimal H2

tracking performance level is deduced from the H2 regulation problem counterpart.
A new tool named the reciprocal transform [7, 8] that ‘preserves’ performance
limitations is employed for the derivation.

Firstly the H2 tracking problem is formulated by using the feedback system
configuration in Fig. 2. Let the reference input be the step input, and suppose that
there is no disturbance signal: r(t) = 0 (t < 0), 1 (t ≥ 0), d(t) ≡ 0. The task is
to make the plant output follow the reference signal whilst penalizing the control
input. The performance level is measured by the quadratic cost function

J(P, K) :=

∫ ∞

0

(

|e(t)|2 + |u(t)|2
)

dt .

The best (minimal) performance level is denoted by

J?(P ) := inf
K stabilizing

J(P, K) .

It is assumed that [9]

• P is written as P (s) = P0(s)
s

where P0 is some (marginally) stable transfer
function;

• P does not have a zero at s = 0.

Notice that P should be marginally stable, but can be non-minimum phase. Under
these assumptions a closed form expression for J ? in terms of the plant character-
istics is derived [9]:

J?(P ) = 2
∑

k

1

za
k

+
1

π

∫ ∞

0

1

ω2
log

(

1 +
1

|P (jω)|2
)

dω ,

where za
k’s are non-minimum phase zeros of P .
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Now a new effective tool for unifying analysis on control performance limita-
tions achievable by feedback control is reviewed. Consider a class of systems

Γ :=
{

G(s) ∈ Rm×m
p

∣

∣ det
(

G(0)
)

6= 0
}

,

where Rp is the set of proper rational functions in s. The reciprocal transform of a
system in Γ is defined as follows.

Definition 7 ([7, 8]) For G(s) ∈ Γ, its reciprocal transform is defined as

RT
(

G(s)
)

:= G−1
(1

s

)

.

By this transform, a proper plant with an integrator is transformed into a strictly
proper plant. Also it can be confirmed that, when P (s) satisfies the assumptions
made for the H2 tracking problem, P̂ (s) := RT

(

P (s)
)

satisfies those for the H2

regulation problem. The best achievable performance levels for P and P̂ exhibit
an alluring connection.

Lemma 8 ([7, 8]) Consider P ∈ Γ and its reciprocal transform P̂ := RT
(

P
)

.
The best achievable performance level for P in the H2 tracking problem, J?(P ),
is the same as the best achievable performance level for P̂ in the H2 regulation
problem, E?(P̂ ):

J?(P ) = E?
(

P̂
)

.

The above lemma clearly indicates that J ? can again be expressed as the differ-
ence between two sums of roots, but those related to the reciprocal plant this time.
That is the sum of roots has a direct link to the performance limitation in the H2

tracking problem as well.
An investigation into the effect of reciprocal transform on poles and zeros leads

to an expression of J? in terms of the characteristics of the original plant P .

Theorem 9 The performance limitation J? of the H2 tracking problem can be
written as

J?(P ) =
∑

i

(

− 1

αi

)

−
∑

`

(

− 1

z`

)

, (18)

where αi’s are the roots of the spectral factor MD of (16) and z`’s are the zeros of
the plant P .

See Appendix B for the proof.
It is pointed out that MD is again the characteristic polynomial of the closed-

loop system constructed with the optimal controller. Contrary to the H2 regulation
case where the expression for E? is in terms of pole locations, the best H2 tracking
performance level is expressed in terms of time constants, or more specifically, as
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the difference between the ‘average response speed’ of the closed-loop system and
that of the plant zeros. Under the assumption that the achieved closed-loop poles
are the same, it is observed that having zeros of the plant far away from the origin
does not affect the performance level whether they are minimum phase or non-
minimum phase. As the time constant of a minimum phase zero increases, the plant
bandwidth widens and the controller can ‘see’ the plant more. As a result a better
performance can be accomplished. Conversely a non-minimum phase zero near the
origin brings about an inverse response and degrades the achievable performance.
Again it is emphasized that the closed-loop poles are determined by poles/zeros of
the plant and the plant gain and that the relationship between the plant zeros and
J? is not straightforward. However, in the case of the H2 tracking problem, it is
the time constants of the plant zeros (both minimum and non-minimum phase) that
have a direct impact on the best achievable performance level.

5 Parametric Optimization via Quantifier Elimination

Section 4 has shown that the best achievable H2 regulation and tracking perfor-
mance levels can be expressed in a very simple manner in terms of the sums of
roots. The results reviewed in Section 3 implies that, when a plant with parame-
ters is given as in the numerical example demonstrated in Section 2, a polynomial
with parametric coefficients can be obtained that has one of the sums of roots as a
root. These results can be exploited for parametric optimization based on quantifier
elimination (QE) [16].

A QE-based optimization approach has been proposed that can solve possi-
bly non-convex optimization problems under polynomial constraints [17]. Such an
approach is applicable to the parametric optimization problem considered in Sec-
tion 2 owing to the derived facts that E? may be expressed as a linear function in
σM and σP and that a polynomial that has σM as one of its roots can be computed.
In fact, σM can be removed from (17) and Sf , and a polynomial one of whose
roots is E? can be obtained, which is denoted by SE . Due to the linear relationship
between E? and σM, the true E? is the largest real root of SE , as well.

Now it is shown how the optimization problem is formulated as a QE problem.
Suppose that the set of constraints on parameters (i.e., q ∈ Q) can be written as
ϕ(q) where ϕ(q) is assumed to consist of a set of algebraic expressions (equali-
ties/inequalities) in parameters. The optimization problem may then be cast as

∃q
(

[ E? is the largest real root of SE(E?,q) ] ∧ ϕ(q)
)

.

In order to apply a QE algorithm, the condition ‘[ E? is the largest real root
of SE(E?,q) ]’ needs to be expressed as a set of algebraic expressions. Given a
polynomial, the fact that a particular value is its largest real root can be described
as the condition that the value is a root of the polynomial and also that there is no
real root between that value and +∞. The Sturm-Habicht sequence [18] yields
an algebraic condition for the number of polynomial roots in an interval on the

13



real axis when a polynomial with real parametric coefficients is provided. More
specifically the condition is written as a set of polynomial inequalities in terms of
the coefficients of the original polynomial (SE(E?,q), in this case).

It is thus shown that a QE package such as QEPCAD B [10] can be employed
for the parametric optimization problem. A QE algorithm will eliminate quantified
variables q (i.e., all the parameters) and give a set of polynomial inequalities defin-
ing the set of values that E? can take when q varies inside Q. Moreover, by tracing
down the intermediate results during a phase called the ‘lifting phase’, it can be
found which sets of values of parameters achieve its minimum and maximum.

6 Numerical Example Revisited

This section revisits the numerical example considered in Section 2 and a further
detail of how the example is solved is provided. Firstly expressions for σM and σP
are obtained. It is immediate from the denominator of P that σP is expressed as
in (4). In order to find a polynomial that has σM as one of its roots, polynomial
spectral factorization with parameters is performed for the even polynomial (5).
Write its spectral factor as

MD(s) = s2 + b1s + b0 .

By comparing the coefficients of (5) and those of MD(s)MD(−s), the following
polynomial equations are obtained:

{

b2
1 − 2b0 − 4q4

1 + 4q2
1q2 − q2

2 = 0 ,

b2
0 − (1 + q2

2)
2(3 − 2q1)

2 = 0 .

As is stated in Lemma 3, the polynomial parts form the reduced Gröbner basis
with respect to the graded reverse lexicographic order b1 � b0. By means of
‘parametric’ basis conversion, a shape basis is obtained, and the polynomial (6) is
obtained that has σM as its largest real root.

Theorem 6 along with (4) leads to

E? = σM − σP = σM + 2q2
1 − q2 .

Write

η = σM + 2q2
1 − q2 ,

and solve it for σM to substitute σM in (6). Then,

SE(η) := Sf (η − 2q2
1 + q2)

= η4 + (−8q2
1 + 4q2)η

3 + (16q4
1 − 16q2

1q2 + 4q2
2)η

2 − 36 + 96q1q
2
2

+ 48q1 − 72q2
2 − 16q2

1 − 36q4
2 + 48q1q

4
2 − 32q2

1q
2
2 − 16q2

1q
4
2
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is obtained. Notice that the largest real root of SE(η) is the best achievable perfor-
mance E?.

By computing the Sturm-Habicht sequence for SE and simplifying the ob-
tained condition, the condition that η is the largest real root of SE is shown to
be

SE(η) = 0 ∧ η − 2q2
1 + q2 > 0 ∧ η(η − 4q2

1 + 2q2) > 0 . (19)

The first equation SE(η) = 0 obviously requires that η should be a root of SE , and
the rest of the condition specifies that η should be the largest real one. Optimization
of E? over parameters q1, q2 thus boils down to the following QE problem:

∃q1 ∃q2 ( Condition (19) ∧ 0 ≤ q1 ≤ 1 ∧ 0 ≤ q2 ≤ 1 ) .

QEPCAD B is then applied to the above problem and (7) is obtained. By tracing
down the CAD tree during the lifting phase, it is found that the minimum value is
attained when q ' (0.27782, 0.43913) and that the maximum value is achieved
when (q1, q2) = (1, 0). Fig. 1 confirms that the obtained result is correct.

7 Concluding Remarks

This paper has shown that the quantity named the sum of roots is closely related to
the best achievable performance levels of the H2 regulation and tracking problems.
Also shown is an algebraic optimization approach that exploits the combination of
the derived result and another aspect of the sum of roots as a computation means for
polynomial spectral factorization. The property that the sum of roots is the largest
real root of a polynomial is further to be exploited for efficient optimization.
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A Proof of Theorem 6

To prove Theorem 6, the following formulae are required:

1

π

∫ ∞

0
log

(

ω2 + a2

ω2

)

dω = a , a ∈ C , Re a > 0 , (20)

1

π

∫ ∞

0
log

{(

ω2 + (ja)2

ω2

)2}

dω = 0 , a ∈ R . (21)

Theorem 6 can be proven as follows. The right hand side of (1) is to be proven
identical to the right hand side of (17). Firstly it is noted that imaginary axis poles
do not contribute to the value of the summation on the right hand side of (1). Thus
it can be assumed without loss of generality that unstable poles pa

k are in the open
right half plane, i.e., Re pa

k > 0. Further write the roots of PD in the closed left
half plane (i.e., (marginally) stable poles of P ) as ps

j . Then, PD can be written as

PD(s) =
∏

j

(s − ps
j)

∏

k

(s − pa
k) . (22)

Write the roots of (16) in the open left half plane as αi. (Remember that (16) does
not have imaginary axis roots.) The spectral factor MD of (16) can be written as

MD(s) =
∏

i

(s − αi) . (23)

By expanding (22) and (23), it can be seen that

σP =
∑

j

(−ps
j) +

∑

k

(−pa
k) , σM =

∑

i

(−αi) .
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Now another expression for the integrand is derived:

1 + |P (jω)|2 = 1 +
|PN (jω)|2
|PD(jω)|2 =

|PN (jω)|2 + |PD(jω)|2
|PD(jω)|2 =

|MD(jω)|2
|PD(jω)|2

=
MD(jω)MD(−jω)

PD(jω)PD(−jω)
=

∏

i

(

ω2 + (−αi)
2
)

∏

j

(

ω2 + (−ps
j)

2
)
∏

k

(

ω2 + (pa
k)

2
) .

(24)

Notice that the degrees of the numerator and the denominator of (24) in ω are iden-
tical and that the real parts of −αi, −ps

j and pa
k are all non-negative. Formulae (20),

(21) can then be used to derive

1

π

∫ ∞

0
log

(

1 + |P (jω)|2
)

dω =
∑

i

(−αi) −
(

∑

j

(−ps
j) +

∑

k

pa
k

)

.

From this and (1),

E? = 2
∑

k

pa
k +

{

∑

i

(−αi) −
(

∑

j

(−ps
j) +

∑

k

pa
k

)}

=
∑

i

(−αi) −
(

∑

j

(−ps
j) +

∑

k

(−pa
k)

)

= σM − σP .

This concludes the proof.

B Proof of Theorem 9

In this proof, symbols without the hat (ˆ) mark are used to denote those related to
the original plant P , whilst symbols with it denote those related to the transformed
plant P̂ . Denote by −σ̂M and −σ̂P the sum of roots of M̂D and that of P̂D, respec-
tively, as is defined in Subsection 4.1. Theorem 6 and Lemma 8 together imply
that

J?(P ) = E?
(

P̂
)

= σ̂M − σ̂P . (25)

So expressions of σ̂M and σ̂P in terms of the characteristics of P are sought.
Let the degree of P be n. Write P , PN , and PD as in (13), (14), and (15),

respectively. Since P has an integrator, the constant term of PD is zero, i.e., cd
0 = 0.

Also, PN and PD are coprime, and therefore the constant term of PN is non-zero,
i.e., cn

0 6= 0. Then, P̂ can be written as

P̂ (s) = RT
(

P (s)
)

=
PD(1

s
)

PN (1
s
)

=
P̂N (s)

P̂D(s)
,
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where

P̂N (s) =
1

cn
0

(

cd
1s

n−1 + cd
2s

n−2 + · · · + cd
n−1s + 1

)

,

P̂D(s) =
1

cn
0

(

cn
0s

n + cn
1s

n−1 + · · · + cn
n−2s

2 + cn
n−1s

)

.

If the degree of PN is nz, i.e., the first non-zero coefficient of PN is cn
nz

, there are
nz (finite) zeros in P . Since

P̂D(s) =
sn

cn
0

PN

(1

s

)

,

nz zeros of P are transformed into nz poles of P̂ and, if ζ is a root of PN (s), then
1
ζ

is a root of P̂D(s). The remaining (n − nz) poles of P̂ are located at s = 0.
Therefore,

σ̂P =
∑

`

(

− 1

z`

)

, (26)

where z`’s are the zeros of P .
Now consider σ̂M. Observe that

P̂N (s)P̂N (−s) + P̂D(s)P̂D(−s)

=
(−1)ns2n

(

cn
0

)2

{

PN

(1

s

)

PN

(

−1

s

)

+ PD

(1

s

)

PD

(

−1

s

)}

. (27)

Again, if ζ is a root of PN (s)PN (−s) + PD(s)PD(−s), then 1
ζ

is a root of (27).
Moreover a root ζ in the left (resp., right) half plane is transformed into a root 1

ζ
in

the left (resp., right) half plane. Due to the coprimeness of PN and PD, there is no
imaginary axis root in PN (s)PN (−s) + PD(s)PD(−s), which suggests that (27)
has neither imaginary axis roots nor roots at infinity. It can thus be concluded that

σ̂M =
∑

i

(

− 1

αi

)

, (28)

where αi’s are the (open) left half plane roots of PN (s)PN (−s) + PD(s)PD(−s).
Equations (25), (26) and (28) together lead to (18).
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