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1 Introduction

This paper is motivated by recent studies on group symmetries in semidef-
inite programs (SDPs) and sum of squares (SOS) and SDP relaxations
[1, 4, 5, 6, 7]. A common and essential problem in these studies can be stated
as follows: Given a finite set of n×n real symmetric matrices A1, A2, . . . , Am,
find an n× n orthogonal matrix P that provides them with a simultaneous
block-diagonal decomposition, i.e., such that P>A1P, P>A2P, . . . , P>AmP
become block-diagonal matrices with a common block-diagonal structure.
Here A1, A2, . . . , Am correspond to data matrices associated with an SDP.
We say that the set of given matrices A1, A2, . . . , Am is decomposed into a
set of block-diagonal matrices or that the SDP is decomposed into an SDP
with the block-diagonal data matrices. Such a block-diagonal decomposition
is not unique in general; for example, any symmetric matrix may trivially
be regarded as a one-block matrix. As diagonal-blocks of the decomposed
matrices get smaller, so does the amount of input data of the transformed
SDP with the decomposed matrices, and the transformed SDP could be
solved more efficiently by existing software packages developed for SDPs
[2, 13, 14, 17]. Naturally we are interested in a finest decomposition. A
more specific account of the decomposition of SDPs will be given in Section
2.1.

There are two different but closely related theoretical frameworks with
which we can address our problem of finding a block-diagonal decomposition
for a finite set of given n × n real symmetric matrices. The one is group
representation theory [10, 12] and the other matrix ∗-algebra [15]. They
are not only necessary to answer the fundamental theoretical question of
the existence of such a finest block-diagonal decomposition but also useful
in its computation. Both frameworks have been utilized in the literature
[1, 4, 5, 6, 7] cited above.

Kanno et al. [7] introduced a class of group symmetric SDPs, which arise
from topology optimization problems of trusses, and derived symmetry of
central paths which play a fundamental role in the primal-dual interior-point
method [16] for solving them. Gatermann and Parrilo [5] investigated the
problem of minimizing a group symmetric polynomial. They proposed to
reduce the size of SOS and SDP relaxations for the problem by exploiting
the group symmetry and decomposing the SDP. On the other hand, de
Klerk et al. [3] applied the theory of matrix ∗-algebra to reduce the size
of a class of group symmetric SDPs. Instead of decomposing a given SDP
by using its group symmetry, their method transforms the problem to an
equivalent SDP through a ∗-algebra isomorphism. We also refer to Kojima
et al. [8] as a paper where matrix ∗-algebra was studied in connection with
SDPs. Jansson et al. [6] brought group symmetries into equality-inequality
constrained polynomial optimization problems and their SDP relaxation.
More recently, de Klerk and Sotirov [4] dealt with quadratic assignment
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problems, and showed how to exploit their group symmetries to reduce the
size of their SDP relaxations (see Remark 4.3 for more account).

All existing studies [1, 4, 5, 6] on group symmetric SDPs mentioned
above assume that the algebraic structure such as group symmetry and ma-
trix ∗-algebra behind a given SDP is known in advance before computing a
decomposition of the SDP. Such an algebraic structure arises naturally from
the physical or geometrical structure underlying the SDP, so the assumption
is certainly practical and reasonable. When we assume symmetry of an SDP
(or the data matrices A1, A2, . . . , Am) with reference to a group G, to be
specific, we are in fact considering the class of SDPs that enjoy the same
group symmetry. As a consequence, the resulting transformation matrix P
is universal in the sense that it is valid for the decomposition of all SDPs
belonging to the class. Whereas this universality may often be desirable in
practice, we should be aware of the obvious fact that the given SDP is just a
specific instance in the class. This means that the given problem may pos-
sibly satisfy an additional algebraic structure which is not captured by the
assumed group symmetry but which can be exploited for a further decompo-
sition. Such an additional algebraic structure is often induced from sparsity
of the data matrices of the SDP, as we see in the topology optimization
problem of trusses in Section 5. The possibility of a further decomposition
due to sparsity will be illustrated in Sections 2.2 and 5.2.

In this paper we propose a numerical method for finding a finest simul-
taneous block-diagonal decomposition of a finite number of n× n real sym-
metric matrices A1, A2, . . . , Am. The method does not require any algebraic
structure to be known in advance, and is based on purely linear algebraic
computations such as eigenvalue computation. It is free from group represen-
tation theory or matrix ∗-algebra during its execution, although its validity
relies on matrix ∗-algebra theory. This main feature of our method makes
it possible to compute a finest block-diagonal decomposition by taking into
account the underlying physical or geometrical symmetry, the sparsity of
the given matrices, and some other implicit or overlooked symmetry.

Our method is based on the following ideas. We consider the matrix ∗-
algebra T generated by A1, A2, . . . , Am with the identity matrix, and make
use of a well-known fundamental fact (see Theorem 3.1) about the decom-
position of T into simple components and irreducible components. The
key observation is that the decomposition into simple components can be
computed from the eigenvalue (or spectral) decomposition of a random sym-
metric matrix in T . Once the simple components are identified, the decom-
position into irreducible components can be obtained by “local” coordinate
changes within each eigenspace, to be explained in Section 3.

This paper is organized as follows. Section 2 illustrates our motivation
of simultaneous block-diagonalization and the notion of the finest block-
diagonal decomposition. Section 3 describes the theoretical background of
our algorithm based on matrix ∗-algebra. In Section 4, we present an algo-
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rithm for computing the finest simultaneous block-diagonalization, as well
as a suggested practical variant thereof. Numerical results are shown in
Section 5; SDP problems arising from topology optimization of symmetric
trusses in Section 5.1 and illustrative small examples in Section 5.2.

2 Illustration of Motivations

This section is devoted to illustration of the motivations mentioned in In-
troduction.

2.1 Decomposition of semidefinite programs

It is explained how simultaneous block diagonalization can be utilized in
semidefinite programming.

Let Ap ∈ Sn (p = 0, 1, . . . , m) and b = (bp)m
p=1 ∈ Rm be constant matrices

and a constant vector, where Sn denotes the set of n×n symmetric real ma-
trices. The standard form of primal-dual pair of semidefinite programming
(SDP) problems is formulated as

min A0 •X
s.t. Ap •X = bp, p = 1, . . . ,m,

Sn 3 X º O;



 (2.1)

max b>y

s.t. Z +
m∑

p=1

Apyp = A0,

Sn 3 Z º O.





(2.2)

It should be clear that A •X = tr(AX) for symmetric matrices A and X,
X º O means that X is positive semidefinite, and > denotes the transpose
of a vector or a matrix.

Suppose that A0, A1, . . . , Am are transformed into block-diagonal matri-
ces by an n× n orthogonal matrix P as

P>ApP =

(
A

(1)
p O

O A
(2)
p

)
, p = 0, 1, . . . , m,

where A
(1)
p ∈ Sn1 , A

(2)
p ∈ Sn2 , and n1 + n2 = n. The problems (2.1) and
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(2.2) can be reduced to

min A
(1)
0 •X1 + A

(2)
0 •X2

s.t. A(1)
p •X1 + A(2)

p •X2 = bp, p = 1, . . . ,m,

Sn1 3 X1 º O, Sn2 3 X2 º O;





(2.3)

max b>y

s.t. Z1 +
m∑

p=1

A(1)
p yp = A

(1)
0 ,

Z2 +
m∑

p=1

A(2)
p yp = A

(2)
0 ,

Sn1 3 Z1 º O, Sn2 3 Z2 º O.





(2.4)

Note that the number of variables of (2.3) is smaller than that of (2.1).
The constraint on the n × n symmetric matrix in (2.2) is reduced to the
constraints on the two matrices in (2.4) with smaller sizes.

It is expected that the computational time required by the primal-dual
interior-point method is reduced drastically if the problems (2.1) and (2.2)
can be reformulated as (2.3) and (2.4). This motivates us to investigate a
numerical technique for computing a simultaneous block diagonalization in
the form of

Ap =
t⊕

j=1

A(j)
p , A(j)

p ∈ Snj , (2.5)

where Ap ∈ Sn (p = 0, 1, . . . , m) are given symmetric matrices. Here
⊕

designates a direct sum of the summand matrices, which contains the sum-
mands as diagonal blocks.

2.2 Group symmetry and additional structure due to spar-
sity

With reference to a concrete example, we illustrate the use of group symme-
try and also the possibility of a finer decomposition based on an additional
algebraic structure due to sparsity.

Consider an n× n matrix of the form

A =




B E E C
E B E C
E E B C
C> C> C> D


 (2.6)

with B ∈ SnB and D ∈ SnD . Such a matrix with E = O is sometimes
referred to as a bordered block-diagonal matrix . Obviously we have A =
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A1 + A2 + A3 + A4 with

A1 =




B O O O
O B O O
O O B O
O O O O


 , A2 =




O O O C
O O O C
O O O C
C> C> C> O


 , (2.7)

A3 =




O O O O
O O O O
O O O O
O O O D


 , A4 =




O E E O
E O E O
E E O O
O O O O


 . (2.8)

Let P be an n× n orthogonal matrix defined by

P =




InB/
√

3 O InB/
√

2 InB/
√

6
InB/

√
3 O −InB/

√
2 InB/

√
6

InB/
√

3 O O −2InB/
√

6
O InD O O


 , (2.9)

where for any n′, In′ denotes the n′ × n′ identity matrix. With this P the
matrices Ap are transformed to block-diagonal matrices as

P>A1P =




B O O O
O O O O

O O B O
O O O B


 =

[
B O
O O

]
⊕B ⊕B, (2.10)

P>A2P =




O
√

3C O O√
3C> O O O

O O O O
O O O O


 =

[
O

√
3C√

3C> O

]
⊕O ⊕O,

(2.11)

P>A3P =




O O O O
O D O O

O O O O
O O O O


 =

[
O O
O D

]
⊕O ⊕O, (2.12)

P>A4P =




2E O O O
O O O O

O O −E O
O O O −E


 =

[
2E O
O O

]
⊕ (−E)⊕ (−E). (2.13)

Note that the partition of P is not symmetric for rows and columns; we have
(nB, nB, nB, nD) for row-block sizes and (nB, nD, nB, nB) for column-block
sizes. As is shown in (2.10)–(2.13), A1, A2, A3 and A4 are decomposed
simultaneously in the form of (2.5) with t = 3, n1 = nB + nD, and n2 =
n3 = nB. Moreover, the second and third blocks coincide, i.e., A

(2)
p = A

(3)
p ,

for each p.
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The decomposition described above conforms with the standard decom-
position technique [10, 12] for systems with group symmetry. The matrices
Ap above are symmetric with respect to S3, the symmetric group of degree 3,
in that

T (g)>ApT (g) = Ap, ∀g ∈ G, p = 1, . . . ,m (2.14)

holds for G = S3 and m = 4. Here the family of matrices T (g), indexed by
elements of G, is an orthogonal matrix representation of G in general. In
the present example, the S3-symmetry formulated in (2.14) is equivalent to

T>i ApTi = Ap, i = 1, 2, p = 1, 2, 3, 4

with

T1 =




O InB O O
InB O O O
O O InB O
O O O InD


 , T2 =




O InB O O
O O InB O

InB O O O
O O O InD


 .

According to group representation theory, a simultaneous block-diagonal
decomposition of Ap is obtained through the decomposition of the repre-
sentation T (g) into irreducible representations. In the present example, we
have

P>T1P =




InB O O O
O InD O O

O O −InB O
O O O InB


 , (2.15)

P>T2P =




InB O O O
O InD O O

O O −InB/2
√

3InB/2
O O −√3InB/2 −InB/2


 , (2.16)

where that the first two blocks correspond to the unit representation (with
multiplicity nB + nD) and the last two blocks to the two-dimensional irre-
ducible representation (with multiplicity nB).

The transformation matrix P in (2.9) is universal in the sense that it
brings any matrix A satisfying T>i ATi = A for i = 1, 2 into the same block-
diagonal form. Put otherwise, the decomposition given in (2.10)–(2.13) is the
finest possible decomposition that is valid for the class of matrices enjoying
the S3-symmetry. It is noted in this connection that the underlying group
G, as well as its representation T (g), is often evident in practice, reflecting
the geometrical or physical symmetry of the problem in question.

The universality of the decomposition explained above is certainly a nice
feature of the group-theoretic method, but what we are really interested in
is the decomposition of a single specific instance of a set of matrices. As a
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simplest example, suppose that the given matrix (2.6) is a bordered block-
diagonal matrix, with E = O. Then the decomposition in (2.10)–(2.13)
is not the finest possible, but the last two identical blocks, i.e., A

(2)
p and

A
(3)
p , can be decomposed further into diagonal matrices by the eigenvalue

(or spectral) decomposition of B. Although this argument is too simple to
be convincing, it is sufficient to suggest the possibility that a finer decompo-
sition may possibly be obtained from an additional algebraic structure that
is not ascribed to the assumed group symmetry. Such an additional alge-
braic structure often stems from sparsity, as is the case with the topology
optimization problem of trusses treated in Section 5.1.

Mathematically, such an additional algebraic structure could also be de-
scribed as a group symmetry by introducing a larger group. But this larger
group would be difficult to identify in practice, since it is determined as a
result of the interaction between the underlying geometrical or physical sym-
metry and other factors, such as sparsity and parameter dependence. The
method of block-diagonalization proposed in this paper will automatically
exploit such algebraic structure in the course of numerical computation. Nu-
merical examples in Section 5.2 will demonstrate that the proposed method
can cope with different kinds of additional algebraic structures for the matrix
(2.6).

3 Mathematical Basis

We introduce some mathematical facts that will serve as a basis for our
algorithm to be described in Section 4.

3.1 Matrix ∗-algebras

Let Mn denote the set of n× n real matrices. A subset T of Mn is said to
be a ∗-subalgebra (or a matrix ∗-algebra) over R if In ∈ T and

A,B ∈ T ;α, β ∈ R =⇒ αA + βB, AB, A> ∈ T .

We say that T is simple if T has no ideal other than {O} and T itself, where
an ideal of T means a subset I of T such that

A ∈ T , B ∈ I =⇒ AB ∈ I.

A linear subspace W of Rn is said to be invariant with respect to T , or
T -invariant , if AW ⊆ W for every A ∈ T . We say that T is irreducible if
no T -invariant subspace other than {0} and Rn exists. If T is irreducible,
it is simple.

In this paper we are particularly interested in a ∗-subalgebra generated
by symmetric matrices. From a standard result of the theory of matrix ∗-
algebra (e.g., [15, Chapter X], [8, Theorem 5.4]) we can see the following
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structure theorem for such a ∗-subalgebra. Note that, for an orthogonal
matrix P , the set of transformed matrices

P>T P = {P>AP | A ∈ T }

forms another ∗-subalgebra.

Theorem 3.1. Let T be a ∗-subalgebra of Mn generated by symmetric
matrices.

(A) There exists an orthogonal matrix Q̂ ∈Mn and simple ∗-subalgebras
Tj of Mn̂j for some n̂j (j = 1, 2, . . . , `) such that

Q̂>T Q̂ = {diag (S1, S2, . . . , S`) : Sj ∈ Tj (j = 1, 2, . . . , `)}.

(B) If T is simple, there exists an orthogonal matrix P ∈ Mn and an
irreducible ∗-subalgebra T ′ of Mn̄ for some n̄ such that

P>T P = {diag (B, B, . . . , B) : B ∈ T ′}.

(C) If T is irreducible, then T = Mn.

It follows from the above theorem that, with a single orthogonal matrix
P , all the matrices in T can be transformed simultaneously to a block-
diagonal form as

P>AP =
⊕̀

j=1

m̄j⊕

i=1

Bj =
⊕̀

j=1

(Im̄j ⊗Bj) (3.1)

with Bj ∈ Mn̄j , where the structural indices ` and n̄j , m̄j for j = 1, . . . , `
are determined by T . It may be noted that n̂j in Theorem 3.1 (A) is equal
to m̄jn̄j in the present notation. Conversely, for any choice of Bj ∈ Mn̄j

for j = 1, . . . , `, the matrix of (3.1) belongs to P>T P . We denote by

Rn =
⊕̀

j=1

Uj (3.2)

the decomposition of Rn that corresponds to the simple components. In
other words, Uj = Im(Q̂j) for the n×n̂j submatrix Q̂j of Q̂ that corresponds
to Tj in Theorem 3.1 (A). Although the matrix Q̂ is not unique, the subspace
Uj is determined uniquely and dimUj = n̂j = m̄jn̄j for j = 1, . . . , `.

3.2 Simple components from eigenspaces

Let A1, . . . , Am ∈ Sn be n × n symmetric real matrices, and T be the ∗-
subalgebra over R generated by {In, A1, . . . , Am}. Note that (3.1) holds for
every A ∈ T if and only if (3.1) holds for A = Ap for p = 1, . . . , m.
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A key observation for our algorithm is that the decomposition (3.2) into
simple components can be computed from the eigenvalue (or spectral) de-
composition of a single matrix A in T ∩ Sn if it is free from degeneracy in
eigenvalues.

Let A be a symmetric matrix in T , and α1, . . . , αk be the distinct eigen-
values of A with multiplicities denoted as m1, . . . , mk, and Q = [Q1, . . . , Qk]
be an orthogonal matrix consisting of the eigenvectors, where Qi is an n×mi

matrix for i = 1, . . . , k. Then we have

Q>AQ = diag (α1Im1 , . . . , αkImk
) =

α1Im1 O O O

O α2Im2 O O

O O
. . . O

O O O αkImk

. (3.3)

Put K = {1, . . . , k} and for i ∈ K define Vi = Im(Qi), which is the
eigenspace corresponding to αi.

Let us say that A ∈ T ∩Sn is generic in eigenvalue structure (or simply
generic) if all the matrices B1, . . . , B` appearing in the decomposition (3.1)
of A are free from multiple eigenvalues and no two of them share a common
eigenvalue. For a generic matrix A the number k of distinct eigenvalues is
equal to

∑`
j=1 n̄j and the list (multiset) of their multiplicities {m1, . . . , mk}

is the union of n̄j copies of m̄j over j = 1, . . . , `.
The eigenvalue decomposition of a generic A is consistent with the de-

composition (3.2) into simple components of T , as follows.

Proposition 3.2. Let A ∈ T ∩ Sn be generic in eigenvalue structure. For
any i ∈ {1, . . . , k} there exists j ∈ {1, . . . , `} such that Vi ⊆ Uj . Hence there
exists a partition of K = {1, . . . , k} into ` disjoint subsets:

K = K1 ∪ · · · ∪K` (3.4)

such that
Uj =

⊕

i∈Kj

Vi, j = 1, . . . , `. (3.5)

Note that mi = m̄j for i ∈ Kj and |Kj | = n̄j for j = 1, . . . , `.
The partition (3.4) of K can be determined as follows. Define a binary

relation ∼ on K by:

i ∼ i′ ⇐⇒ ∃p (1 ≤ p ≤ m) : Q>
i ApQi′ 6= O, (3.6)

where i, i′ ∈ K. By convention we define i ∼ i for any i ∈ K.

Proposition 3.3. The partition (3.4) coincides with the partition of K into
equivalence classes of the transitive closure of the binary relation ∼.
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Proof. This is not difficult to see from the general theory of matrix ∗-algebra,
but a proof is given here for completeness. Denote by {L1, . . . , L`′} the
equivalence classes with respect to ∼.

If i ∼ i′, then Q>
i ApQi′ 6= O for some p. This means that for any I ⊆ K

with i ∈ I and i′ ∈ K \ I, the subspace
⊕

i′′∈I Vi′′ is not invariant under Ap.
Hence Vi′ must be contained in the same simple component as Vi. Therefore
each Lj must be contained in some Kj′ .

To show the converse, define a matrix Q̃j = (Qi | i ∈ Lj), which is
of size n × ∑

i∈Lj
mi, and an n × n matrix Ej = Q̃jQ̃

>
j for j = 1, . . . , `′.

Each matrix Ej belongs to T , as shown below, and it is idempotent (i.e.,
Ej

2 = Ej) and E1 + · · · + E`′ = In. On the other hand, for distinct j and
j′ we have Q̃>

j ApQ̃j′ = O for all p, and hence Q̃>
j MQ̃j′ = O for all M ∈ T .

This implies that EjM = MEj for all M ∈ T . Therefore Im(Ej) is a union
of simple components, and hence Lj is a union of some Kj′ ’s.

It remains to show that Ej ∈ T . Since αi’s are distinct, for any real
numbers u1, . . . , uk there exists a polynomial f such that f(αi) = ui for
i = 1, . . . , k. Let fj be such f for (u1, . . . , uk) defined as ui = 1 for i ∈ Lj and
ui = 0 for i ∈ K \ Lj . Then Ej = Q̃jQ̃

>
j = Q · fj(diag (α1Im1 , . . . , αkImk

)) ·
Q> = Q · fj(Q>AQ) ·Q> = fj(A). This shows Ej ∈ T .

A generic matrix A can be obtained as a random linear combination of
generators, as follows. For a real vector r = (r1, . . . , rm) put

A(r) = r1A1 + · · ·+ rmAm.

We denote by span{· · · } the set of linear combinations of the matrices in
the braces.

Proposition 3.4. If span{In, A1, . . . , Am} = T ∩ Sn, there exists an open
dense subset R of Rm such that A(r) is generic in eigenvalue structure for
every r ∈ R.

Proof. Let Bpj denote the matrix Bj in the decomposition (3.1) of A = Ap

for p = 1, . . . ,m. For j = 1, . . . , ` define fj(λ) = fj(λ; r) = det(λI −
(r1B1j + · · · + rmBmj)), which is a polynomial in λ, r1, . . . , rm. By the
assumption on the linear span of generators, fj(λ) is free from multiple
roots for at least one r ∈ Rm, and it has a multiple root only if r lies on
the algebraic set, say, Σj defined by the resultant of fj(λ) and f ′j(λ). For
distinct j and j′, fj(λ) and fj′(λ) do not share a common root for at least
one r ∈ Rm, and they have a common root only if r lies on the algebraic
set, say, Σjj′ defined by the resultant of fj(λ) and fj′(λ). Then we can take
R = Rm \ [

(∪jΣj) ∪
(∪j,j′Σjj′

)]
.

We may assume that the coefficient vector r is normalized, for example,
to ‖r‖2 = 1, where ‖r‖2 =

√∑m
p=1 rp

2. Then the above proposition implies
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that A(r) is generic for almost all values of r, or with probability one if
r is chosen at random. It should be clear that we can adopt any natural
normalization scheme for this statement.

3.3 Transformation for irreducible components

Once the transformation matrix Q for the eigenvalue decomposition of a
generic matrix A is known, the transformation P for T can be obtained
through “local” transformations within eigenspaces corresponding to dis-
tinct eigenvalues, followed by a “global” permutation of rows and columns.

Proposition 3.5. Let A ∈ T ∩ Sn be generic in eigenvalue structure, and
Q>AQ = diag (α1Im1 , . . . , αkImk

) be the eigenvalue decomposition as in
(3.3). Then the transformation matrix P in (3.1) can be chosen in the form
of

P = Q · diag (P1, . . . , Pk) ·Π (3.7)

with orthogonal matrices Pi ∈ Mmi for i = 1, . . . , k, and a permutation
matrix Π ∈Mn.

Proof. For simplicity of presentation we focus on a simple component, which
is tantamount to assuming P>AP = Im̄ ⊗ B, where m̄ = m1 = · · · = mk.
Since αi’s are the eigenvalues of B, there exists an orthogonal matrix S such
that S>BS = D, where D = diag (α1, . . . , αk). Hence we have

(Im̄ ⊗ S)>(P>AP )(Im̄ ⊗ S) = Im̄ ⊗D.

With the notation Π for the permutation matrix such that Π(Im̄⊗M)Π> =
M ⊗ Im̄ for every k × k matrix M we can rewrite this as

(
P (Im̄ ⊗ S)Π>

)>
A

(
P (Im̄ ⊗ S)Π>

)
= D ⊗ Im̄.

Comparing this with Q>AQ = D⊗ Im̄ and noting that αi’s are distinct, we
see that

P (Im̄ ⊗ S)Π> = Q · diag (P̃1, . . . , P̃k)

for some m̄ × m̄ orthogonal matrices P̃i. Since the left-hand side above is
equal to PΠ>diag (S, . . . , S), this implies (3.7) with Pi = P̃iS

>.

4 Algorithm for Simultaneous Block-Diagonalization

On the basis of the theoretical considerations in Section 3, we propose in
this section an algorithm for simultaneous block-diagonalization of given
symmetric matrices A1, . . . , Am ∈ Sn by an orthogonal matrix P :

P>ApP =
⊕̀

j=1

m̄j⊕

i=1

Bpj =
⊕̀

j=1

(Im̄j ⊗Bpj), p = 1, . . . , m, (4.1)
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where Bpj ∈ Mn̄j for j = 1, . . . , ` and p = 1, . . . , m. Our algorithm con-
sists of two parts corresponding to (A) and (B) of Theorem 3.1 for the
∗-subalgebra T generated by {In, A1, . . . , Am}. The former (Section 4.1)
corresponds to the decomposition of T into simple components and the
latter (Section 4.2) to the decomposition into irreducible components. A
practical variant of the algorithm is described in Section 4.3.

4.1 Decomposition into simple components

We present here an algorithm for the decomposition into simple components.
Algorithm 4.1 below does not presume span{In, A1, . . . , Am} = T ∩ Sn,
although its correctness relies on this condition.

Algorithm 4.1.

Step 1: Generate random numbers r1, . . . , rm (with ‖r‖2 = 1), and put

A =
m∑

p=1

rpAp.

Step 2: Compute the eigenvalues and eigenvectors of A. Let α1, . . . , αk

be the distinct eigenvalues of A with their multiplicities denoted
by m1, . . . , mk. Let Qi ∈ Rn×mi be the matrix consisting of or-
thonormal eigenvectors corresponding to αi, and define the ma-
trix Q ∈ Rn×n by Q = (Qi | i = 1, . . . , k). This means that

Q>AQ = diag (α1Im1 , . . . , αkImk
).

Step 3: Put K = {1, . . . , k}, and let ∼ be a binary relation on K defined
by

i ∼ i′ ⇐⇒ ∃p (1 ≤ p ≤ m) : Q>
i ApQi′ 6= O, (4.2)

where i, i′ ∈ K. Let

K = K1 ∪ · · · ∪K` (4.3)

be the partition of K consisting of the equivalence classes of the
transitive closure of the binary relation ∼. Define matrices Q[Kj ]
by

Q[Kj ] = (Qi | i ∈ Kj), j = 1, . . . , `,

and set
Q̂ = (Q[K1], . . . , Q[K`]) .

Compute Q̂>ApQ̂ (p = 1, . . . , m), which results in a simultaneous
block-diagonalization with respect to the partition (3.4).

13



Example 4.1. Suppose that the number of the distinct eigenvalues of A
is five, i.e., K = {1, 2, 3, 4, 5}, and that the partition of K is obtained as
K1 = {1, 2, 3}, K2 = {4}, and K3 = {5}, where ` = 3. Then A1, . . . , Am are
decomposed simultaneously as

Q̂>ApQ̂ =

m1 m2 m3 m4 m5

∗ ∗ ∗ O O
∗ ∗ ∗ O O
∗ ∗ ∗ O O

O O O ∗ O

O O O O ∗

(4.4)

for p = 1, . . . , m.

For the correctness of the above algorithm we have the following.

Proposition 4.2. If the matrix A generated in Step 1 is generic in eigen-
value structure, the orthogonal matrix Q̂ constructed by Algorithm 4.1 gives
the transformation matrix Q̂ in Theorem 3.1 (A) for the decomposition of
T into simple components.

Proof. This follows from Propositions 3.2 and 3.3.

Proposition 3.4 implies that the matrix A in Step 1 is generic with prob-
ability one if span{In, A1, . . . , Am} = T ∩ Sn. This condition, however, is
not always satisfied by the given matrices A1, . . . , Am. In such a case we
can generate a basis of T ∩ Sn as follows. First choose a linearly indepen-
dent subset, say, B1 of {In, A1, . . . , Am}. For k = 1, 2, · · · let Bk+1 (⊇ Bk)
be a linearly independent subset of {(AB + BA)/2 | A ∈ B1, B ∈ Bk}. If
Bk+1 = Bk for some k, we can conclude that Bk is a basis of T ∩ Sn. Note
that the dimension of T ∩Sn is equal to

∑`
j=1 n̄j(n̄j +1)/2, which is bounded

by n(n + 1)/2. It is mentioned here that Sn is a linear space equipped with
an inner product A •B = tr(AB) and the Gram–Schmidt orthogonalization
procedure works.

Proposition 4.3. If a basis of T ∩Sn is computed in advance, Algorithm 4.1
gives, with probability one, the decomposition of T into simple components.

4.2 Decomposition into irreducible components

According to Theorem 3.1 (B), the block-diagonal matrices Q̂>ApQ̂ obtained
by Algorithm 4.1 can further be decomposed. By construction we have
Q̂ = QΠ̂ for some permutation matrix Π̂. In the following we assume Q̂ = Q
to simplify presentation.

By Proposition 3.5 this finer decomposition can be obtained through a
transformation of the form (3.7), which consists of “local coordinate changes”
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by a family of orthogonal matrices {P1, . . . , Pk}, followed by a permutation
by Π.

The orthogonal matrices {P1, . . . , Pk} should be chosen in such a way
that if i, i′ ∈ Kj , then

P>
i Q>

i ApQi′Pi′ = b
(pj)
ii′ Im̄j (4.5)

for some b
(pj)
ii′ ∈ R for p = 1, . . . ,m. Note that the solvability of this system

of equations in Pi and b
(pj)
ii′ (i, i′ = 1, . . . , k; j = 1, . . . , `; p = 1, . . . , m) is

guaranteed by (4.1) and Proposition 3.5. Then with P̃ = Q·diag (P1, . . . , Pk)
and Bpj = (b(pj)

ii′ | i, i′ ∈ Kj) we have

P̃>ApP̃ =
⊕̀

j=1

(Bpj ⊗ Im̄j ) (4.6)

for p = 1, . . . , m. Finally we apply a permutation of rows and columns to
obtain (4.1).

Example 4.2. Recall Example 4.1. We consider the block-diagonalization
of the first block Âp = Q[K1]>ApQ[K1] of (4.4), where m1 = m2 = m3 = 2
and K1 = {1, 2, 3}. We first compute orthogonal matrices P1, P2 and P3

satisfying

diag (P1, P2, P3)> · Âp · diag (P1, P2, P3) =
b
(p1)
11 I2 b

(p1)
12 I2 b

(p1)
13 I2

b
(p1)
21 I2 b

(p1)
22 I2 b

(p1)
23 I2

b
(p1)
31 I2 b

(p1)
32 I2 b

(p1)
33 I2

.

Then a permutation of rows and columns yields a block-diagonal form

diag (Bp1, Bp1) with Bp1 =




b
(p1)
11 b

(p1)
12 b

(p1)
13

b
(p1)
21 b

(p1)
22 b

(p1)
23

b
(p1)
31 b

(p1)
32 b

(p1)
33


.

The family of orthogonal matrices {P1, . . . , Pk} satisfying (4.5) can be
computed as follows. Recall from (4.2) that for i, i′ ∈ K we have i ∼ i′ if and
only if Q>

i ApQi′ 6= O for some p. It follows from (4.5) that Q>
i ApQi′ 6= O

means that it is nonsingular.
Fix j with 1 ≤ j ≤ `. We consider a graph Gj = (Kj , Ej) with vertex

set Kj and edge set Ej = {(i, i′) | i ∼ i′}. This graph is connected by the
definition of Kj . Let Tj be a spanning tree, which means that Tj is a subset
of Ej such that |Tj | = |Kj | − 1 and any two vertices of Kj are connected by
edges in Tj . With each (i, i′) ∈ Tj we can associate some p = p(i, i′) such
that Q>

i ApQi′ 6= O.
To compute {Pi | i ∈ Kj}, take any i1 ∈ Kj and put Pi1 = Im̄j . If

(i, i′) ∈ Tj and Pi has been determined, then let P̂i′ = (Q>
i ApQi′)−1Pi with
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p = p(i, i′), and normalize it to Pi′ = P̂i′/‖q‖, where q is the first-row vector
of P̂i′ . Then Pi′ is an orthogonal matrix that satisfies (4.5). By applying
the above procedure in an appropriate order of (i, i′) ∈ Tj we can obtain
{Pi | i ∈ Kj}.
Remark 4.1. A variant of the above algorithm for computing {P1, . . . , Pk}
is suggested here. Take a second random vector r′ = (r′1, . . . , r

′
m), inde-

pendently of r, to form A(r′) = r′1A1 + · · · + r′mAm. For i, i′ ∈ Kj we
have, with probability one, that (i, i′) ∈ Ej if and only if Q>

i A(r′)Qi′ 6= O.
If Pi has been determined, we can determine Pi′ by normalizing P̂i′ =
(Q>

i A(r′)Qi′)−1Pi to Pi′ = P̂i′/‖q‖, where q is the first-row vector of P̂i′ .

Remark 4.2. The proposed method relies on numerical computations to de-
termine block-diagonal structures. As such the method is inevitably faced
with numerical noises due to rounding errors. A scaling technique to remedy
this difficulty is suggested in Remark 5.1 for truss optimization problems.

Remark 4.3. The idea of using a random linear combination in constructing
simultaneous block-diagonalization can also be found in a recent paper of de
Klerk and Sotirov [4]. Their method, called “block diagonalization heuristic”
in Section 5.2 of [4], is different from ours in two major points.

First, the method of [4] assumes explicit knowledge about the underly-
ing group G, and works with the representation matrices, denoted T (g) in
(2.14). Through the eigenvalue (spectral) decomposition of a random linear
combination of T (g) over g ∈ G, the method finds an orthogonal matrix P
such that P>T (g)P for g ∈ G are simultaneously block-diagonalized, just
as in (2.15) and (2.16). Then G-symmetric matrices Ap, satisfying (2.14),
will also be block-diagonalized.

Second, the method of [4] is not designed to produce the finest possible
decomposition of the matrices Ap, as is recognized by the authors them-
selves. The constructed block-diagonalization of T (g) is not necessarily the
irreducible decomposition, and this is why the resulting decomposition of
Ap is not guaranteed to be finest possible. We could, however, apply the
algorithm of Section 4.2 of the present paper to obtain the irreducible de-
composition of the representation T (g). Then the resulting decomposition
of Ap will be the finest decomposition that can be obtained by exploiting
the G-symmetry (and nothing else).

4.3 A practical variant of the algorithm

In Propositions 3.4 we have considered two technical conditions:

1. span{In, A1, . . . , Am} = T ∩ Sn,

2. r ∈ R, where R is an open dense set,
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to ensure genericity of A =
∑m

p=1 rpAp in eigenvalue structure. The generic-
ity of A guarantees, in turn, that our algorithm yields the finest simultaneous
block-diagonalization (see Proposition 4.2). The condition r ∈ R above can
be met with probability one through a random choice of r.

To meet the first condition we could generate a basis of T ∩Sn in advance,
as is mentioned in Proposition 4.3. However, an explicit computation of a
basis seems too heavy to be efficient. It should be understood that the above
two conditions are introduced as sufficient conditions to avoid degeneracy in
eigenvalues. By no means are they necessary for the success of the algorithm.
With this observation we propose the following procedure as a practical
variant of our algorithm.

We apply Algorithm 4.1 to the given family {A1, . . . , Am} to find an
orthogonal matrix Q and a partition K = K1 ∪ · · · ∪K`. In general there is
no guarantee that this corresponds to the decomposition into simple compo-
nents, but in any case Algorithm 4.1 terminates without getting stuck. The
algorithm does not hang up either, when a particular choice of r does not
meet the condition r ∈ R. Thus we can always go on to the second stage of
the algorithm for the irreducible decomposition.

Next, we are to determine a family of orthogonal matrices {P1, . . . , Pk}
that satisfies (4.5). This system of equations is guaranteed to be solvable if
A is generic (see Proposition 3.5). In general we may possibly encounter a
difficulty of the following kinds:

1. For some (i, i′) ∈ Tj the matrix Q>
i ApQi′ woth p = p(i, i′) is not

nonsingular and hence Pi′ cannot be computed. This includes the
case of a rectangular matrix, which is demonstrated in Example 4.3
below.

2. For some p and (i, i′) ∈ Ej the matrix P>
i Q>

i ApQi′Pi′ is not a scalar
multiple of an identity matrix.

Such inconsistency is an indication that the decomposition into simple com-
ponents has not been computed correctly. Accordingly, if either of the above
inconsistency is detected, we restart our algorithm by adding some linearly
independent matrices of T ∩ Sn to the current set {A1, . . . , Am}. It is men-
tioned that the possibility exists, though with probability zero, that r is cho-
sen badly to yield a nongeneric A even when span{In, A1, . . . , Am} = T ∩Sn

is true.
It is expected that we can eventually arrive at the correct decomposition

after a finite number of iterations. With probability one, the number of
restarts is bounded by the dimension of T ∩ Sn, which is O(n2). When it
terminates, the modified algorithm always gives a legitimate simultaneous
block-diagonal decomposition of the form (4.1).

There is some subtlety concerning the optimality of the obtained decom-
position. If a basis of T ∩Sn is generated, the decomposition coincides, with
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probability one, with the canonical finest decomposition of the ∗-algebra
T . However, when the algorithm terminates before it generates a basis of
T ∩ Sn, there is no theoretical guarantee that the obtained decomposition
is the finest possible. Nevertheless, it is very likely in practice that the
obtained decomposition coincides with the finest decomposition.

Example 4.3. Here is an example that requires an additional generator to
be added. Suppose that we are given

A1 =




1 0 0 0
0 1 0 1
0 0 1 −1
0 1 −1 0


 , A2 =




1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 0




and let T be the matrix ∗-algebra generated by {I4, A1, A2}. It turns out
that the structural indices in (4.1) are: ` = 2, m̄1 = m̄2 = 1, n̄1 = 1
and n̄2 = 3. This means that the list of eigenvalue multiplicities of T is
{1, 1, 1, 1}. Note also that dim(T ∩ S4) = n̄1(n̄1 + 1)/2 + n̄2(n̄2 + 1)/2 = 7.

For A(r) = r1A1 + r2A2 we have

A(r)




1 0
0 (r1 − r2)/c
0 r1/c
0 0


 = (r1 + r2)




1 0
0 (r1 − r2)/c
0 r1/c
0 0


 (4.7)

with c =
√

(r1 − r2)2 + r1
2. This shows that A(r) has a multiple eigenvalue

r1 + r2 of multiplicity two, as well as two other simple eigenvalues. Thus for
any r the list of eigenvalue multiplicities of A(r) is equal to {2, 1, 1}, which
differs from {1, 1, 1, 1} for T .

The discrepancy in the eigenvalue multiplicities cannot be detected dur-
ing the first stage of our algorithm, in which we will obtain the following.
In Step 2 we have k = 3, m1 = 2, m2 = m3 = 1. The orthogonal matrix Q
is partitioned into three submatrices Q1, Q2 and Q3, where Q1 (nonunique)
may possibly be the 4× 2 matrix shown in (4.7), and Q2 and Q3 consist of
a single column. Since Q>ApQ is of the form

Q>ApQ =




1 0 0 0
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗




for p = 1, 2, we have ` = 1 and K1 = {1, 2, 3} in Step 3. At this moment an
inconsistency is detected, since m1 6= m2 inspite of the fact that i = 1 and
i′ = 2 belong to the same block K1.
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We restart the algorithm, say, with an additional generator

A3 =
1
2
(A1A2 + A2A1) =

1
2




2 0 0 0
0 2 1 1
0 1 0 0
0 1 0 −2




to consider Ã(r) = r1A1 +r2A2 +r3A3 instead of A(r) = r1A1 +r2A2. Then
Ã(r) has four simple eigenvalues for generic values of r = (r1, r2, r3), and
accordingly we have {1, 1, 1, 1} as the list of eigenvalue multiplicities of Ã(r),
which agrees with that of T .

In Step 2 of Algorithm 4.1 we now have k = 4, m1 = m2 = m3 = m4 = 1.
The orthogonal matrix Q is partitioned into four 4 × 1 submatrices, and
Q>ApQ is of the form

Q>ApQ =




1 0 0 0
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗




for p = 1, 2, 3, from which we obtain K1 = {1}, K2 = {2, 3, 4} with ` = 2
in Step 3. Thus we have arrived at the correct decomposition consisting of
a 1 × 1 block and a 3 × 3 block. Note that the correct decomposition is
obtained in spite of the fact that {I4, A1, A2, A3} does not span T ∩ S4.

5 Numerical Examples

5.1 Optimization of symmetric trusses

Use and significance of our method are illustrated here in the context of
semidefinite programming for truss design treated in [11]. Group-symmetry
and sparsity arise naturally in truss optimization problems, as is easily imag-
ined from the cubic truss shown in Fig.1. It will be confirmed that the pro-
posed method yields the same decomposition as the group representation
theory anticipates (Case 1 below), and moreover, it gives a finer decomposi-
tion if the truss structure is endowed with an additional algebraic structure
due to sparsity (Case 2 below).

The optimization problem we consider here is as follow. An initial truss
configuration is given with fixed locations of nodes and members. Optimal
cross-sectional areas, minimizing total volume of the structure, are to be
found subject to the constraint that the eigenvalues of vibration are not
smaller than a specified value.

To be more specific, let nd and nm denote the number of degrees of
freedom of displacements and the number of members of a truss, respec-
tively. The stiffness matrix is denoted by K ∈ Snd . Let MS ∈ Snd and
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(1)

(2)

(3)

(4)

Figure 1: A cubic (or Td-symmetric) space truss.

M0 ∈ Snd denote the mass matrices for the structural and nonstructural
masses, respectively. The ith eigenvalue Ωi of vibration and the correspond-
ing eigenvector φi ∈ Rnd

are defined by

Kφi = Ωi(MS + M0)φi, i = 1, 2, . . . , nd. (5.1)

Note that, for a truss, K and MS can be written as

K =
nm∑

j=1

Kjηj , MS =
nm∑

j=1

Mjηj ,

with constant symmetric matrices Kj and Mj , where ηj denotes the cross-
sectional area of the jth member. With the notation l = (lj) ∈ Rnm

for
the vector of member lengths and Ω̄ for the specified lower bound of the
fundamental eigenvalue, our optimization problem is formulated as

min
nm∑

j=1

ljηj

s.t. Ωi ≥ Ω̄, i = 1, . . . , nd,
ηj ≥ 0, j = 1, . . . , nm.





(5.2)

It is pointed out in [11] that this problem (5.2) can be reduced to the fol-

20



lowing dual SDP (cf. (2.2)):

max −
nm∑

j=1

ljηj

s.t.
nm∑

j=1

(Kj − Ω̄Mj)ηj − Ω̄M0 º O,

ηj ≥ 0, j = 1, . . . , nm.





(5.3)

We now consider this SDP for the cubic truss shown in Fig.1. The cubic
truss contains 8 free nodes, and hence nd = 24. As for the members we
consider two cases:

Case 1: nm = 34 members including the dotted ones;
Case 2: nm = 30 members excluding the dotted ones.

A regular tetrahedron is constructed inside the cube. The lengths of mem-
bers forming the edges of the cube are 200.0 cm. The lengths of the members
outside the cube are 100.0 cm. The same nonstructural mass of 2.1×105 kg
is located at each node indicated by a filled circle in Fig.1. The lower bound
of the eigenvalues is specified as Ω̄ = 10.0. All the remaining nodes are
pin-supported.

Thus, the geometry, the stiffness distribution, and the mass distribution
of this truss are all symmetric with respect to the geometric transformations
by elements of tetrahedral group Td. The Td-symmetry can be exploited as
follows.

First, we divide the index set of members {1, . . . , nm} into a family of
orbits, say Jp with p = 1, . . . , m, where m denotes the number of orbits.
We have m = 4 in Case 1 and m = 3 in Case 2, where representative
members belonging to four different orbits are shown as (1)–(4) in Fig.1. It is
mentioned in passing that the classification of members into orbits is an easy
task for engineers, who may or may not be versed in group representation
theory. Indeed, this is nothing but the so-called variable-linking technique,
which has often been employed in the literature of structural optimization
in obtaining symmetric structural designs [9].

Next, with reference to the orbits we aggregate the data matrices as
well as the components of vector b in (5.3) to Ap (p = 0, 1, . . . , m) and bp

(p = 1, . . . , m), respectively, as

A0 = −Ω̄M0,

Ap =
∑

j∈Jp

(−Kj + Ω̄Mj), p = 1, . . . , m,

bp =
∑

j∈Jp

lj , p = 1, . . . , m.
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Then (5.3) can be reduced to

max −
m∑

p=1

bpyp

s.t. A0 −
m∑

p=1

Apyp º O,

yp ≥ 0, p = 1, . . . ,m





(5.4)

as long as we are interested in a symmetric optimal solution [1]. Note that
the matrices Ap (p = 0, 1, . . . , m) are symmetric in the sense of (2.14) for
G = Td. Numerical values of Ap (p = 1, . . . , 4) are given in Section A. Note
that the two cases share the same matrices A1, A2, A3, and A0 is proportional
to the identity matrix.

The proposed method is applied to Ap (p = 0, 1, . . . , m) for their simul-
taneous block-diagonalization. The practical variant described in Section
4.3 is employed. In either case it has turned out that additional generators
are not necessary, but the random linear combinations of the given matrices
Ap (p = 0, 1, . . . , m) are sufficient to find the block-diagonalization.

In Case 1 we obtain the decomposition into 1 + 2 + 3 + 3 = 9 blocks,
one block of size 2, two identical blocks of size 2, three identical blocks of
size 3, and three identical blocks of size 4, as summarized in the left of
Table 1. This result conforms with the group-theoretic analysis. The tetra-
hedral group Td has two one-dimensional irreducible representations, one
two-dimensional irreducible representation, and two three-dimensional irre-
ducible representations. The block indexed by j = 1 corresponds to the unit
representation, one of the one-dimensional irreducible representations, while
the block for the other one-dimensional irreducible representation is miss-
ing. The block with j = 2 corresponds to the two-dimensional irreducible
representation, hence m̄2 = 2. Similarly, the blocks with j = 3, 4 correspond
to the three-dimensional irreducible representation, hence m̄3 = m̄4 = 3.

In Case 2 sparsity plays a role to split the last block into two, as shown
in the right of Table 1. We now have 12 blocks in contrast to 9 blocks in
Case 1. Recall that the sparsity is due to the lack of the dotted members. It
is emphasized that the proposed method successfully captures the additional
algebraic structure introduced by sparsity.

Remark 5.1. Typically, actual trusses are constructed by using steel mem-
bers, where the elastic modulus and the mass density of members are E =
200.0 GPa and ρ = 7.86 × 10−3 kg/cm2, respectively. Note that the ma-
trices Kj and Mj defining the SDP problem (5.4) are proportional to E
and ρ, respectively. In order to avoid numerical instability in our block-
diagonalization algorithm, E and ρ are scaled as E = 1.0 × 10−2 GPa and
ρ = 100.0 kg/cm2, so that the largest eigenvalue in (5.1) becomes sufficiently
small. Note that the transformation matrix obtained by our algorithm for
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Table 1: Block-diagonalization of cubic truss optimization problem.

Case 1: m = 4 Case 2: m = 3
block size multiplicity block size multiplicity

n̄j m̄j n̄j m̄j

j = 1 2 1 2 1
j = 2 2 2 2 2
j = 3 2 3 2 3
j = 4 4 3 2 3
j = 5 — — 2 3

block-diagonalization of A0, A1, . . . , Am is independent of the values of E and
ρ. Hence, it is recommended for numerical stability to compute transforma-
tion matrices for the scaled matrices Ã0, Ã1, . . . , Ãm by choosing appropriate
fictitious values of E and ρ. Then the obtained transformation matrices can
be used to decompose the original matrices A0, A1, . . . , Am defined with the
actual material parameters.

5.2 Effects of additional algebraic structures

It is demonstrated here that our method automatically reveals inherent alge-
braic structures due to parameter dependence as well as to group symmetry.
The S3-symmetric matrices A1, . . . , A4 in (2.7) and (2.8) are considered in
three representative cases.
Case 1:

B =
[

1 2
2 1

]
, C =

[
1
2

]
, D =

[
1

]
, E =

[
3 1
1 2

]
,

Case 2:

B =
[

1 2
2 1

]
, C =

[
1
2

]
, D =

[
1

]
, E =

[
3 1
1 3

]
,

Case 3:

B =
[

1 2
2 1

]
, C =

[
1
1

]
, D =

[
1

]
, E =

[
3 1
1 3

]
.

We have nB = 2 and nD = 1 in the notation of Section 2.2.
Case 1 is a generic case under S3-symmetry. The simultaneous block-

diagonalization is of the form

P>ApP = Bp1 ⊕ (I2 ⊗Bp2), p = 1, . . . , 4, (5.5)
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with Bp1 ∈ M3, Bp2 ∈ M2; i.e., ` = 2, m̄1 = 1, m̄2 = 2, n̄1 = 3, n̄2 = 2 in
(4.1). Our implementation of the proposed method yields

B11 =



−0.99648 −0.07327 −0.06501
−0.07327 0.54451 1.15740
−0.06501 1.15740 2.45197


 ,

B21 =



−0.10068 1.23826 −0.43048

1.23826 −2.73454 −2.34910
−0.43048 −2.34910 2.83521


 ,

B31 =




0.00148 −0.03481 0.01647
−0.03481 0.81586 −0.38603

0.01647 −0.38603 0.18266


 ,

B41 =




2.95256 0.49133 0.77219
0.49133 1.31903 2.74340
0.77219 2.74340 5.72841


 ,

and B22 = B32 = O,

B12 =
[ −0.99954 −0.04297
−0.04297 2.99954

]
, B42 =

[ −1.51097 0.52137
0.52137 −3.48903

]
.

Those matrices are of the same form as (2.10)–(2.13), but have different
numerical values, which is not surprising. It can be verified, for example,
that
[

B12 O
O B12

]
= P̃>

[
B O
O B

]
P̃ ,

[
B42 O
O B42

]
= P̃>

[ −E O
O −E

]
P̃

for an orthogonal matrix P̃ expressed as P̃ =
»

P̃11 P̃12

P̃21 P̃22

–
with

P̃11 = −P̃22 =
[

0.12554 −0.12288
−0.12288 −0.12554

]
, P̃12 = P̃21 =

[
0.70355 −0.68859

−0.68859 −0.70355

]
.

In Case 2 we have a commutativity relation BE = EB. This means that
B and E can be simultaneously put into a diagonal form, which leads to a
further decomposition of the second factor in (5.5). Thus, instead of (5.5)
we have

P>ApP = Bp1 ⊕ (I2 ⊗Bp2)⊕ (I2 ⊗Bp3), p = 1, . . . , 4,

with Bp1 ∈ M3, Bp2 ∈ M1 and Bp3 ∈ M1; i.e., ` = 3, m̄1 = 1, m̄2 = m̄3 =
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2, n̄1 = 3, n̄2 = n̄3 = 1 in (4.1). We have obtained

B11 =



−0.99856 −0.03968 0.00243
−0.03968 0.48487 1.10589

0.00243 1.10589 2.51369


 ,

B21 =



−0.09232 1.18464 −0.37146

1.18464 −2.62615 −2.51217
−0.37146 −2.51217 2.71847


 ,

B31 =




0.00139 −0.03415 0.01502
−0.03415 0.83669 −0.36807

0.01502 −0.36807 0.16192


 ,

B41 =




3.99447 0.13106 −0.07267
0.13106 1.30143 2.94623

−0.07267 2.94623 6.70410


 ,

B12 = [ 3.00000 ], B42 = [−4.00000 ], B13 = [−1.00000 ], B43 = [−2.00000 ],
and Bpj = O for p = 2, 3; j = 2, 3. Thus the proposed method succeeds in
finding the additional algebraic structure caused by BE = EB.

Case 3 contains a further degeneracy that the column vector of C is an
eigenvector of B and E. This splits the 3× 3 block into two, and we have

P>ApP = Bp1 ⊕Bp4 ⊕ (I2 ⊗Bp2)⊕ (I2 ⊗Bp3), p = 1, . . . , 4,

with Bp1 ∈ M2, Bpj ∈ M1 for j = 2, 3, 4; i.e., ` = 4, m̄1 = m̄4 = 1,
m̄2 = m̄3 = 2, n̄1 = 2, n̄2 = n̄3 = n̄4 = 1 in (4.1). We have obtained

B11 =
[

0.48288 1.10248
1.10248 2.51712

]
, B21 =

[ −1.80034 −1.66096
−1.66096 1.80034

]
,

B31 =
[

0.83904 −0.36749
−0.36749 0.16096

]
, B41 =

[
1.28767 2.93994
2.93994 6.71233

]
,

B12 = [ 3.00000 ], B42 = [−4.00000 ], B13 = [−1.00000 ], B43 = [−2.00000 ],
B14 = [ −1.00000 ], B44 = [ 4.00000 ], and Bpj = O for p = 2, 3, 4; j = 2, 3.
Also in this case the proposed method works, identifying the additional
algebraic structure through numerical computation.

The three cases are compared in Table 2.
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A Matrices of the example in Section 5.1

For the example of the Td-symmetric truss in Section 5.1, we show the nu-
merical values of matrices Ap ∈ S24 (p = 1, . . . , 4). For ease of presentation
we suppose that Ap consists of 6× 6 matrices A

(p)
ij (i, j = 1, . . . , 4) as

Ap =




A
(p)
11 A

(p)
12 A

(p)
13 A

(p)
14

A
(p)
22 A

(p)
23 A

(p)
24

A
(p)
33 A

(p)
34

A
(p)
44


 ,

where the lower-left blocks are omitted by symmetry. The matricesA(p)
ij

(p = 1, . . . , 4; i, j = 1, . . . , 4) are given as

A
(1)
11 = A

(1)
22 = A

(1)
33 = A

(1)
44 =




199.5 0 0 33.833 0 0
199.5 0 0 33.333 0

199.5 0 0 33.333
199.5 0 0

199.5 0
199.5




,

A
(1)
12 = A

(1)
34 =




0 0 0 33.333 0 0
0 0 0 0 33.708 0.21651
0 0 0 0 0.21651 33.458

33.333 0 0 0 0 0
0 33.708 0.21651 0 0 0
0 0.21651 33.458 0 0 0




,

A
(1)
13 = A

(1)
24 =




33.333 0 0 0 0 0
0 33.458 −0.21651 0 0 0
0 −0.21651 33.708 0 0 0
0 0 0 33.333 0 0
0 0 0 0 33.458 −0.21651
0 0 0 0 −0.21651 33.708




,

A
(1)
14 = A

(1)
23 = O,

A
(2)
11 =




282.49 −0.064705 −0.24148 0 0 0
282.64 −0.088388 0 0 0

282.34 0 0 0
0 0 0

0 0
0




,

A
(2)
12 =




47.317 0.15309 0.088388 0 0 0
0.15309 47.273 0.076547 0 0 0
0.088388 0.076547 47.185 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




,
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A
(2)
13




0 0 0 47.317 −0.088388 0.15309
0 0 0 −0.088388 47.185 −0.076547
0 0 0 0.15309 −0.076547 47.273
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




,

A
(2)
14 =




0 0 0 47.14 0 0
0 0 0 0 47.164 0.088388
0 0 0 0 0.088388 47.47
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




,

A
(2)
22 =




282.49 −0.24148 0.064705 0 0 0
282.34 0.088388 0 0 0

282.64 0 0 0
0 0 0

0 0
0




,

A
(2)
23 =




0 0 0 47.14 0 0
0 0 0 0 47.47 −0.088388
0 0 0 0 −0.088388 47.164
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




,

A
(2)
24 =




0 0 0 47.317 0.088388 −0.15309
0 0 0 0.088388 47.185 −0.076547
0 0 0 −0.15309 −0.076547 47.273
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




,

A
(2)
33 =




0 0 0 0 0 0
0 0 0 0 0

0 0 0 0
282.49 0.24148 −0.064705

282.34 0.088388
282.64




,

A
(2)
34 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 47.317 −0.15309 −0.088388
0 0 0 −0.15309 47.273 0.076547
0 0 0 −0.088388 0.076547 47.185




,
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A
(2)
44 =




0 0 0 0 0 0
0 0 0 0 0

0 0 0 0
282.49 0.064705 0.24148

282.64 −0.088388
282.34




,

A
(3)
11 = A

(3)
22 =




0 0 0 0 0 0
0 0 0 0 0

0 0 0 0
99.0 0 0

99.0 0
99.0




,

A
(3)
12 = A

(3)
13 = A

(3)
14 = A

(3)
23 = A

(3)
24 = A

(3)
34 = O,

A
(3)
33 = A

(3)
44 =




99.0 0 0 0 0 0
99.0 0 0 0 0

99.0 0 0 0
0 0 0

0 0
0




,

A
(4)
11 = A

(4)
44 =




115.37 −0.035221 −0.13145 0 0 0
115.46 −0.048113 0 0 0

115.29 0 0 0
115.37 0.035221 0.13145

115.46 −0.048113
115.29




,

A
(4)
12 = A

(4)
13 = A

(4)
24 = A

(4)
34 = O,

A
(4)
14 =




57.831 0.035221 0.13145 0 0 0
0.035221 57.748 0.048113 0 0 0
0.13145 0.048113 57.915 0 0 0

0 0 0 57.831 −0.035221 −0.13145
0 0 0 −0.035221 57.748 0.048113
0 0 0 −0.13145 0.048113 57.915




,

A
(4)
22 = A

(4)
33 =




115.37 −0.13145 0.035221 0 0 0
115.29 0.048113 0 0 0

115.46 0 0 0
115.37 0.13145 −0.035221

115.29 0.048113
115.46




,

A
(4)
23 =




57.831 0.13145 −0.035221 0 0 0
0.13145 57.915 −0.048113 0 0 0
−0.035221 −0.048113 57.748 0 0 0

0 0 0 57.831 −0.13145 0.035221
0 0 0 −0.13145 57.915 −0.048113
0 0 0 0.035221 −0.048113 57.748




.
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