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Abstract We investigate the best-fit heuristic algorithm by Burke et al. [Operations Research
52 (2004) 655–671] for the rectangular strip packing problem. For its simplicity and good
performance, the best-fit heuristic has become one of the most significant algorithms for the
rectangular strip packing. In this paper, we propose an efficient implementation of the best-fit
heuristic that requires linear space and O(n log n) time, where n is the number of rectangles. We
prove that this time complexity is optimal, and show practical usefulness of our implementation
via computational experiments. We also give a lower bound on the worst-case approximation
ratio of the best-fit heuristic.

Keywords Cutting and packing, Rectangular strip packing, Best-fit heuristic, Time complexity,
Approximation ratio

1 Introduction

Cutting and packing problems are representative combinatorial optimization problems with
many applications in various areas such as steel and garment industry and VLSI design. For
several decades, the field of cutting and packing has been attracting many researchers and prac-
titioners. Depending on applications, different types of cutting and packing problems need to be
solved, and hence many variants of cutting and packing problems have been studied in the lit-
erature. Dyckhoff (1990) presented a typology of cutting and packing problems and categorized
existing studies in this field. Wäscher et al. (2007) recently presented an improved typology of
cutting and packing problems. This paper addresses the problem of placing rectangles in a larger
rectangular object with a fixed width in order to minimise its height. This problem is widely
called the rectangular strip packing problem. According to the improved typology of Wäscher et
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al. (2007), the rectangular strip packing problem is categorized into the two-dimensional regular
open dimension problem (2D regular ODP) with a single variable dimension. We allow non-
guillotine placements; i.e., placements are not restricted to those obtainable by guillotine cuts
only, where a guillotine cut is a full horizontal or vertical cut from one sheet edge to another. As
for the rotation of rectangles, the following two cases are considered: (1) Each rectangle has a
fixed orientation, and (2) rotations of 90 degrees are allowed. A formal definition of the problem
is as follows: We are given a set of n rectangles I = {1, 2, . . . , n}. Each rectangle i ∈ I has its
width wi and height hi, and the size of this rectangle is denoted by (wi, hi). When rectangles
can be rotated by 90 degrees, the size of each rectangle i is (wi, hi) or (hi, wi). We are also given
a rectangular object (called strip), which has a fixed width W and a variable height H. The
objective is to place all the rectangles in I into the strip without overlap so as to minimize the
height of the strip.

Almost all cutting and packing problems (including the rectangular strip packing) are known
to be NP-hard, and hence it is impossible to solve them exactly in polynomial time unless
P = NP. Therefore heuristics and metaheuristics are important in designing practical algo-
rithms for cutting and packing problems. In early stages, Coffman Jr. et al. (1980) presented
some level-oriented algorithms and Baker et al. (1980) proposed the bottom-left-fill algorithm
for the rectangular strip packing problem. Many papers related to these heuristic algorithms
have appeared; e.g., Chazelle (1983) gave an efficient implementation of the bottom-left-fill algo-
rithm, Jakobs (1996) and Liu and Teng (1999) presented variants of the bottom-left-fill algorithm
(Jakobs’ algorithm is called the bottom-left algorithm), and Lodi et al. (1999) proposed new
level-oriented heuristics. These algorithms have a common characteristic: Each algorithm first
decides a sequence of rectangles to place, and then it places rectangles one by one in this order at
an appropriate position in the strip. Such heuristic algorithms are often incorporated in meta-
heuristics in order to improve the quality of solutions (Hopper and Turton 2001, Jakobs 1996,
Liu and Teng 1999, Lodi et al. 1999), where metaheuristics are usually utilized to find good
sequences (i.e., packing orders) of rectangles.

Burke et al. (2004) proposed a different type heuristic algorithm (called the best-fit heuristic1)
that does not specify a sequence of rectangles to place. Instead of using a sequence of rectangles,
the best-fit heuristic dynamically selects the next rectangle to place during the packing stage.
Because of its simplicity and good performance, the best-fit heuristic has become one of the most
significant algorithms for the rectangular strip packing problem. In this paper, we propose an
efficient implementation of the best-fit heuristic that requires linear space and O(n log n) time,
and we show that this time complexity is optimal. In addition to such theoretical advantage,
our implementation has also practical merits; it is easy to implement and it runs very fast even
for relatively small values of n. We conduct computational experiments to confirm the efficiency
in practical sense.

We also analyse theoretical guarantees on the approximation ratio of the best-fit heuristic.
It is known that some simple heuristics attain good approximation guarantees; e.g., the next-
fit heuristic with decreasing height attains three (Coffman Jr. et al. 1980), the bottom-left-fill
heuristic with decreasing width also attains three (Baker et al. 1980). In this paper, we show a
negative aspect of the best-fit heuristic: It cannot guarantee a constant approximation ratio in
the worst case.

The remaining part of this paper is organized as follows: Section 2 describes the best-fit
heuristic proposed by Burke et al. (2004). Section 3 presents an efficient implementation of the

1A level-oriented algorithm based on the best-fit heuristic for the (one-dimensional) bin packing problem is
sometimes referred to by the same name. However, in this paper, we use this name to denote the algorithm by
Burke et al. as in their original paper.
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best-fit heuristic and gives a proof for the optimality of our implementation. Section 4 shows
computational results on various instances of the rectangular strip packing problem. Section 5
discusses the approximation ratio of the best-fit heuristic. In Section 6, this paper will be
concluded.

2 Description of the best-fit heuristic

In this section, we describe the best-fit heuristic for the rectangular strip packing problem. This
heuristic algorithm was proposed by Burke et al. (2004), and has been widely known with its
simplicity and good performance. The best-fit heuristic is a greedy algorithm that attempts to
produce a good-quality placement by examining an available space as low as possible in the strip
and then placing the rectangle that best fits the space. Unlike most heuristic algorithms (e.g.,
the bottom-left and bottom-left-fill methods) that have a sequence of rectangles to place, the
best-fit heuristic dynamically selects the next rectangle to place during the packing stage. This
enables the algorithm to make informed decisions about which rectangle should be placed next.

During the computation, the algorithm keeps a skyline, which consists of a sequence of line
segments satisfying the following properties: (1) Each line segment is parallel to the x-axis,
(2) two adjacent line segments have different y-coordinates and have exactly one common x-
coordinate (i.e., the x-coordinate of the right end point of a line segment is the same as that of
the left end point of its right neighbour), (3) viewed from an infinitely high position, no point
in the line segments is hidden by already placed rectangles, and (4) each line segment touches
the top edge of an already placed rectangle or the bottom edge of the strip. See examples of
skylines shown in thick lines in Figure 1(a)–(c). Among all the line segments in a skyline, the
lowest available segment is the one that has the smallest y-coordinate.

The best-fit algorithm repeats the following two operations until all the rectangles are placed:
(1) Find the lowest available segment of the current skyline, and (2) place a rectangle on the
segment. At the beginning of the packing process, no rectangles are placed in the strip, and
the skyline consists of the bottom edge of the strip (see Figure 1(a)). Whenever a rectangle
is placed, a part of the lowest available segment moves upward in such a way that the part of
the segment hidden by the bottom edge of the placed rectangle is replaced by the top edge of
the rectangle (see Figure 1(d) and (e)). If there are several segments on the lowest level (i.e.,
they have the same y-coordinate) as in Figure 1(c), the algorithm selects the leftmost one as the
lowest available segment. For the lowest available segment, the best fit rectangle, which is to be
placed on the segment, is defined to be the widest rectangle (resolving equal widths by the largest
height) that has not been placed yet and can be placed on the segment without overlap (i.e., its
width is not larger than that of the segment). If the width of the segment is larger than that of
the best fit rectangle, the algorithm needs to decide where to place the rectangle among those
positions on the segment. For this purpose the following three strategies are used: (1) Place
the rectangle at the left-most position on the segment (called the left strategy), (2) place the
rectangle next to the higher segment adjacent to the current segment (called the high strategy)
as shown in Figure 1(d), and (3) place the rectangle next to the lower segment adjacent to
the current segment (called the low strategy) as shown in Figure 1(e). Note that, if the lowest
available segment is adjacent to the left (resp., right) edge of the strip, the high strategy places
the rectangle in touch with the left (resp., right) edge of the strip and the low strategy places
the rectangle as far as possible from the strip edge (i.e., next to the adjacent line segment).
When the best-fit algorithm is executed, it uses one of these strategies throughout its execution.
If there are no rectangles that can be placed on the lowest available segment, the segment is
raised to the level of the lower segment adjacent to it, and the two segments are merged (see
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Figure 1: Description of the best-fit heuristic: (a) Initial state of the skyline, (b) line segments in
the skyline, (c) two segments on the lowest level, (d) placing a rectangle with the high strategy,
(e) placing a rectangle with the low strategy, and (f) raising the lowest available segment without
putting a rectangle (discarding the shaded area).

Figure 1(f)). In this case, the space below the raised segment becomes waste. When all the
rectangles are placed in the strip, the main packing stage of the best-fit heuristic algorithm ends.

As mentioned in the original paper by Burke et al. (2004), a drawback of using the above
greedy algorithm is that it may create a poor quality placement due to towers, where towers
are produced when long thin rectangles are placed in portrait orientation near to the top of the
strip. In solving an instance in which each rectangle can be rotated by 90 degrees, the following
operations are applied to improve the placement after all the rectangles have been placed in
the strip. The algorithm finds a rectangle which touches the top edge of the strip (i.e., the
y-coordinate of the top edge of the rectangle is H). If the rectangle is oriented in such a way
that its height is greater than its width, the algorithm removes it from the strip and updates
the information of the skyline related to this rectangle. The removed rectangle is then rotated
by 90 degrees and placed on the lowest available segment. If the quality is improved by this
operation, the algorithm looks for the next rectangle which touches the top of the strip and
performs the same operation again. This operation is repeated until there is no improvement in
solution quality. This additional postprocessing stage is invoked only if rotations of rectangles
are allowed.

3 Efficient implementation

As described in the previous section, the best-fit heuristic repeatedly searches for the lowest
available segment and the best fit rectangle until all the rectangles are placed in the strip. In
order to implement this algorithm, Burke et al. (2004) used an array of size W to store the
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Figure 2: An example of the binary search tree to find the best fit rectangle.

skyline and a sorted list of rectangles by decreasing width to find the best fit rectangle. Their
implementation requires O(n+W ) space and O(n2 +nW ) computation time. In this section, we
give an efficient implementation of the best-fit heuristic algorithm. Our implementation stores
the skyline (i.e., line segments) using a heap and a doubly linked list connected by bi-directional
pointers, and it uses a binary search tree to find the best fit rectangle. Below we describe how
we maintain these data structures in the following three stages: Preprocessing, packing and
postprocessing stages. In the preprocessing stage, these data structures are initialized. The
packing stage is the main part of the best-fit heuristic algorithm; i.e., all the rectangles are
placed in the strip one by one. The postprocessing stage is the phase in which the algorithm
tries to improve the placement by applying the operations of removing towers.

Preprocessing stage Our implementation constructs a binary search tree that stores the
given rectangles. We first explain the case where each rectangle can be rotated by 90 degrees.
For each rectangle i with its width wi and height hi, the proposed implementation creates two
rectangles with size (wi, hi) and (hi, wi), respectively, corresponding to the two orientations.
Hence, 2n rectangles are created in total. These rectangles are sorted by decreasing width
(resolving equal widths by decreasing height), and then they are stored in the leaves of a complete
binary search tree with height ⌈log 2n⌉ from left to right. Each internal node of the tree keeps
the value of the minimum width among its descendants. If an internal node has no rectangles
as its descendants, this node keeps +∞. Let us see an example with five rectangles with
sizes (3, 5), (5, 2), (1, 1), (7, 3) and (1, 2). The proposed implementation creates 10 rectangles
of sizes (3, 5), (5, 3), (5, 2), (2, 5), (1, 1), (1, 1), (7, 3), (3, 7), (1, 2) and (2, 1), and it sorts them by
decreasing width as follows: (7, 3), (5, 3), (5, 2), (3, 7), (3, 5), (2, 5), (2, 1), (1, 2), (1, 1), (1, 1). It
then constructs a binary search tree as in Figure 2. This binary search tree requires linear
space and its construction takes O(n log n) time. If each rectangle has its fixed orientation, the
proposed implementation constructs a binary search tree in a similar manner just with the given
n rectangles.

In order to store the skyline (i.e., a set of line segments), our implementation uses a heap
and a doubly linked list connected by bi-directional pointers. The heap stores the line segments
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Figure 3: A skyline of the strip: (a) A skyline consisting of six line segments, (b) a heap storing
the segments using their y-coordinates as keys, and (c) a doubly linked list storing the segments
sorted by their x-coordinates.

using their y-coordinates as keys, where a segment with smaller y-coordinate has more priority
(resolving equal y-coordinates by smaller x-coordinate). As a result, the lowest available segment
can be found at the root node of the heap. The doubly linked list also stores the segments sorted
by their x-coordinates. Figure 3 shows examples of the heap and the doubly linked list. Cells
with labels L and R in Figure 3(c) correspond to the left and right boundaries, respectively. Each
segment appears in both of the heap and the linked list; they are connected by a bi-directional
pointer. At the beginning of the execution of the algorithm, no rectangles are placed in the
strip and the skyline consists of only one line segment. Hence, the heap and the doubly linked
list contain only one element in the preprocessing stage; that is, their construction is done in
constant time.

Packing stage The algorithm repeats two operations until all the rectangles are placed:
(1) Find the lowest available segment, and (2) place the best fit rectangle on the segment.
The lowest available segment can be found in constant time by looking at the root node of the
heap. Our implementation searches the best fit rectangle to this segment using the binary search
tree. Starting from the root node, it goes down the tree according to the following rule until
a leaf node is reached: (1) Go to the left child if the value stored in the left child is at most
the width of the lowest available segment, (2) go to the right child otherwise. This search takes
time proportional to the height of the binary search tree; i.e., O(log n) time.

If the best fit rectangle is found, the x-coordinate of this rectangle should be determined.
(The y-coordinate is automatically decided to that of the lowest available segment.) For this
purpose, the line segments adjacent to the current segment are checked using the doubly linked
list, and the x-coordinate of the best fit rectangle is determined along the chosen placement
strategy (i.e., the left, high or low strategy). This is done in O(1) time. The placed rectangle
is then removed from the binary search tree. The leaf nodes corresponding to the rectangle
(i.e., two leaves for the case with rotation or one leaf for the case without rotation) are removed
(actually, the values of the leaves are changed to +∞) and the values stored in internal nodes
are updated. These updating operations on the binary search tree take O(log n) time in total,
because only the internal nodes on the paths from the leaves to the root are candidates, and it
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takes constant time to update the value stored in an internal node if the updating operations
are done from the leaves to the root. According to the changes in the skyline, the heap and
the doubly linked list are also updated. The top edge of the best fit rectangle is inserted as a
new line segment of the skyline, and the width of the lowest available segment is shrunk, where
the lowest available segment is deleted when its width becomes 0 (this happens if the original
width of the lowest available segment is the same as that of the best fit rectangle), and the
new segment is merged with its adjacent segment(s) if their y-coordinates are the same. As
such changes are necessary only to a constant number of segments around the lowest available
segment, updating the doubly linked list takes constant time, and updating the heap takes time
proportional to the height of the heap; that is, O(log n) time.

If the best fit rectangle is not found (in other words, the lowest available segment is too
narrow to place a remaining rectangle), then the segment is raised to the level of the lower
segment adjacent to it, and the two segments are merged (if the two adjacent segments have
the same height, then the three segments are merged). We call this a segment-raising operation.
According to such changes in the skyline, the doubly linked list is updated in constant time, and
the heap is updated in O(log n) time. We note that a pointer from the linked list to the heap
is needed in the case where the two adjacent segments to the current segment have the same
y-coordinate and three segments are merged to one. The segment-raising operation is applied
at most n− 1 times throughout an execution of the algorithm for the following reason. There is
one line segment at the beginning of the execution. The number of line segments in the skyline
is increased by at most one when a new rectangle is placed in the strip, while number of line
segments is decreased by at least one when a segment-raising operation is applied.

Postprocessing stage In solving an instance where each rectangle can be rotated by 90
degrees, the operations to remove towers from the placement constructed in the packing stage
are also considered. For this purpose, the following operations are repeated until there is no
improvement in solution quality: (1) Find a rectangle that touches the top of the strip and check
its orientation, and (2) rotate it by 90 degrees and place it on the lowest available segment. At
the beginning of the postprocessing stage, the rectangles are sorted by decreasing order of
y-coordinates of those top edges; this is done in O(n log n) time. By using this sorted list,
a rectangle that touches the top of the strip can be found in constant time throughout the
postprocessing stage. In order to place a removed rectangle on the lowest available segment, the
heap and the linked list are also utilized. Hence, we require O(n log n) time for the postprocessing
stage. We note that the postprocessing stage is an optional part of the algorithm, and its
execution time is negligible for most of practical instances.

Complexity of our implementation We analyze the space and time complexities of our
implementation. It uses a binary search tree of size O(n) to find the best fit rectangle, a
combination of heap and doubly linked list of size O(n) to store all the line segments and to find
the lowest available segment, and some information of each rectangle (size, coordinates, pointers
to two leaves in the binary search tree). Therefore, our implementation requires linear space
to the input size in total. As for the time complexity, our implementation requires O(n log n)
time in the preprocessing stage to construct a binary search tree of rectangles, and O(1) time
to initialize the heap and doubly linked list. In the packing stage, the number of iterations
is O(n) and each iteration requires O(log n) time; i.e., O(n log n) time is spent in total. The
postprocessing stage also requires O(n log n) time. In total, our implementation of the best-fit
heuristic requires O(n log n) time.
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Optimality of our implementation At the end of this section, we show the optimality of
our implementation. As we have seen in this section, our implementation of the best-fit heuristic
algorithm requires linear space and O(n log n) computation time.

Lemma 1. The worst-case computation time of the best-fit heuristic is Ω(n log n).

Proof: We show that the best-fit heuristic can sort given numbers in the decreasing order. Let
X = {x1, x2, . . . , xn} be an input of the sorting problem, where X is a set of unsorted positive
numbers. Let us define xmax = max{x1, x2, . . . , xn} and set the width W of the strip to 2xmax. A
set of n rectangles is generated as follows: For each xi, a rectangle i has its width wi = xi +xmax

and height yi = W + 1. It takes O(n) time to construct this instance of the strip packing
problem.

In the resulting strip packing instance, any rectangle cannot be rotated by 90 degrees, and
any two rectangles cannot be placed at the same height. When the best-fit heuristic is applied
to this instance, it places rectangles in the strip from the bottom to the top with decreasing
width of the rectangles. It is known that any sorting algorithm without particular assumptions
requires Ω(n log n) time in the worst case, and the result follows. ¤

Putting together Lemma 1 and our implementation of the best-fit heuristic, we have the
following result. We note that any implementation of the best-fit heuristic requires at least
linear space.

Theorem 1. The optimal implementation of the best-fit heuristic needs linear space and runs
in Θ(n log n) time.

4 Computational results

We evaluate the proposed implementation of the best-fit heuristic via computational experi-
ments. The algorithm was coded in C language and run on a PC with a 3.2 GHz CPU and 1 GB
RAM. In Section 4.1, new test instances are introduced. In Sections 4.2 and 4.3, computational
results (execution time and solution quality) on those test instances are reported.

4.1 Benchmark instances

In the literature, many benchmark instances of the rectangular strip packing problem have been
introduced (e.g., Burke et al. 2004, Hopper and Turton 2001, Valenzuela and Wang 2001), and
it may seem natural to use these existing instances for computational experiments. However,
in this paper, new benchmark instances are generated and computational experiments are con-
ducted on them for the following reasons: (1) The sizes of the existing test instances are not
large enough to evaluate the efficiency of the proposed implementation since it can place thou-
sands of rectangles within 0.1 seconds, and (2) the solution quality of the best-fit heuristic on
representative benchmark instances were already reported by Burke et al. (2004).

We generated random test instances of the rectangular strip packing problem by two different
methods: (1) A large rectangle is given and it is cut to a specified number of rectangles by
a series of randomly generated guillotine cuts, and (2) a specified number of rectangles are
independently and randomly generated. For every test instance generated by the first method,
an optimal solution is known and it satisfies the guillotine cut constraint. Optimal solutions to
the second type instances are unknown, and a simple lower bound on the height of the strip
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Figure 4: Computation time (in seconds) for instances with various sizes.

(i.e.,
∑

i wihi/W ) is used in evaluating solution quality for instances of this type. In preliminary
experiments, we observed that the difference of instance generators did not affect the execution
time nor solution quality of our implementation of the best-fit heuristic. Thus, we only report
the computational results on test instances generated by the first method.

The detailed settings of our test instances are as follows: (1) Each instance is generated
from a large square whose size is (5050

√
n, 5050

√
n), (2) the aspect ratio of each rectangle is

at most 5; i.e., 1/5 ≤ wi/hi ≤ 5 holds for every rectangle i, and (3) the width and height
of each rectangle is at least 100. As for the number of rectangles, there are 17 classes of
instances: The smallest instance has 24 = 16, the next one has 25 = 32, and the largest one has
220 = 1, 048, 576 rectangles. For each number of rectangles, ten instances are generated with
different seeds for random numbers. All the test instances are electronically available from our
web site (http://www.simplex.t.u-tokyo.ac.jp/~imahori/packing/).

4.2 Execution time

We evaluate the execution time of the proposed implementation via computational experiments.
In our computational experiments, three different placements with the left, high and low strate-
gies are computed and the algorithm outputs the best one for each instance. That is, computa-
tion time on a test instance consists of one input operation, three executions of the placement
algorithm and one output operation. As for the rotations of rectangles, each rectangle can be
rotated by 90 degrees. Computation time strongly depends on the number of rectangles, and
the results for various sizes are shown in Figure 4.

In this figure, horizontal axis shows the number of rectangles and vertical axis shows the
computation time (average of ten different instances) in seconds. We note that this is a double
logarithmic chart. From Figure 4, we can observe that our implementation runs very fast for
every instance. It can place thousands of rectangles within 0.1 seconds, it spends less than one
second for test instances with up to 100,000 rectangles, and it takes less than 20 seconds for
instances with about one million rectangles.
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Figure 5: Solution quality (% over optimal) for instances with various sizes.

4.3 Solution quality

As denoted in the paper by Burke et al. (2004), the best-fit heuristic works very effectively for
many benchmark instances. In this paper, we investigate the relationship between the number of
rectangles and solution quality of the best-fit heuristic. We utilize test instances whose numbers
of rectangles are from n = 16 to 1, 048, 576. The computational results are shown in Figure 5.

In this figure, horizontal axis shows the number of rectangles and vertical axis shows the
solution quality (average of ten instances), where the quality is measured by the deviation in %
from the optimal height H∗, i.e., 100(H −H∗)/H∗, and hence the smaller value means a better
solution. From Figure 5, we can observe that the number of rectangles has a substantial influence
on the solution quality of the best-fit heuristic. When the number of rectangles becomes larger,
solution quality becomes better.

5 Worst-case approximation ratio

In the previous section, the solution quality of the best-fit heuristic via computational experi-
ments was reported. This section gives a worst-case approximation ratio of the best-fit heuristic.
It is known that some simple heuristic algorithms for the rectangular strip packing problem at-
tain good approximation guarantees; e.g., the next-fit heuristic with decreasing height attains
three (Coffman Jr. et al. 1980), the bottom-left-fill heuristic with decreasing width also attains
three (Baker et al. 1980). To our knowledge, the best-known approximation algorithms (with
respect to the worst-case approximation ratio) for the rectangular strip packing problem with-
out rotations are (1) an approximation algorithm by Steinberg (1997) whose absolute bound on
approximation ratio is two, and (2) an asymptotic FPTAS by Kenyon and Remila (2000).

We show a negative aspect of the best-fit heuristic: It cannot guarantee a constant approx-
imation ratio in the worst case. We first consider the case with rotations by 90 degrees of
rectangles. We then show another result for the case without rotations, where the left strategy
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Figure 6: An adverse instance to the best-fit heuristic with rotations by 90 degrees: (a) A
placement by the best-fit heuristic with the left or high strategies, (b) a placement by the
best-fit heuristic with the low strategy, and (c) an optimal placement.

is used to place rectangles. Let hOPT be the optimal height of the strip for a given instance and
hBF be the height computed by the best-fit heuristic.

Theorem 2. For any constant M > 0, there exist instances such that hBF/hOPT > M , where
each rectangle can be rotated by 90 degrees.

Proof: We consider the following instance with 4 rectangles: The sizes of rectangles are
(1− 2ε, 2ε), (1− 2ε, 2ε), (1− 5ε, 3ε) and (1− 5ε, 3ε) (0 < ε ≪ 1), and the strip width is W = 1.
If the best-fit heuristic with the left or high strategies is applied to this instance, the resulting
placement has height 1−2ε as shown in Figure 6(a). If the best-fit heuristic with the low strategy
is applied, the resulting placement also has height 1− 2ε as shown in Figure 6(b). The optimal
height of this instance is 10ε as shown in Figure 6(c). By setting ε to 0 < ε < 1/(10M + 2), the
result follows. ¤
Theorem 3. For any constant M > 0, there exist instances such that hBF/hOPT > M , where
each rectangle has a fixed orientation and the left strategy is used to place rectangles.

Proof: We design instances of the rectangular strip packing problem for which the best-fit
heuristic cannot work effectively. Let k (≥ 4) be an even number and ε be a small positive
(more precise definition of ε is given later). A strip with width W = kk and a set of rectangles
I = I1∪I2∪· · ·∪Ik/2 are given, where each subset of rectangles Ij for j = 1, 2, . . . , k/2 is defined
as follows: Let pj = kk−j − kk−j−1. For each i = 1, 2, . . . , pj − 1, there are 2kj−1 + 2 rectangles
with four different sizes (kk−j+1 − ik + 1, ε), (kj − kj−1, (2pj − 2i − 1)ε), (kk−j+1 − ik, ε) and
(kj−1, 1 − (2i − 1)ε), where there are kj−1 congruent rectangles with the first and third sizes,
respectively. There are also kj−1 congruent rectangles whose size is (kk−j + 1, 1 − 2(pj − 1)ε).
In total, the set Ij consists of 2kk−1 − 2kk−2 + 2kk−j − 2kk−j−1 − kj−1 − 2 rectangles. Each
rectangle in Ij has width w that satisfies kj−1 ≤ w < kj or kk−j < w < kk−j+1.

Let us estimate hBF on this instance. When the best-fit heuristic is applied to this instance,
the widths of the lowest available segments in the first 4kk−1 − 4kk−2 − 3 steps are sufficient for
all the remaining rectangles (i.e., the widest rectangle is selected to place) or less than k (i.e.,
too narrow to place rectangles belonging to I2 ∪ I3 ∪ · · · ∪ Ik/2). Hence, rectangles belonging to
the set I1 are placed in the strip first. After 4kk−1−4kk−2−3 steps, all the rectangles in I1 have
already been placed and no other rectangles have been placed yet. In the skyline at this moment,
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Figure 7: An adverse instance (k = 4) to the best-fit heuristic without rotations: (a) First four
rectangles are placed in the strip, (b) 4kk−1 − 4kk−2 − 3 rectangles that belong to I1 are placed
in the strip, and (c) next 2k + 2 rectangles are placed in the strip.

line segments whose y-coordinates are 1 and those whose y-coordinates are less than 1 appear
alternately, and any line segment whose y-coordinate is less than 1 cannot accommodate any
remaining rectangle. Thus, all these segments are merged with their adjacent segments, and the
resulting skyline consists of a line segment whose width is W and y-coordinate is 1. Rectangles
belonging to I2 are placed in the strip next, and a similar situation happens. The segments
whose y-coordinates are less than 2 are narrower than the width of any remaining rectangle,
and the skyline becomes a line segment with width W at y = 2. The remaining rectangles are
placed similarly for j = 3, 4, . . . , k/2. Finally, the height of the strip hBF becomes k/2. See
Figure 7 as an example of the placement by the best-fit heuristic.

We then consider a feasible placement for this instance, which is obtained by modifying the
above placement. All the rectangles whose heights are more than kkε are removed from the
placement generated by the best-fit heuristic, and the rectangles left in the strip are moved as
downward as possible. The height of the strip becomes (2kk−1 − 2kk/2−1 − k)ε at this moment.
The removed rectangles (i.e., rectangles whose heights are more than kkε) are then placed in
the strip; since the total width of such rectangles is less than the width of the strip, all of
them can be placed on a horizontal line (in other words, on the same level). The maximum
height of the rectangles is 1 − ε. We now have a feasible placement whose strip height is
1 + (2kk−1 − 2kk/2−1 − k − 1)ε, and this implies that hOPT < 1 + 2kk−1ε holds.

Based on these, hBF/hOPT > k/2(1+2kk−1ε) holds for this instance. By setting k to k > 2M
and ε to 0 < ε < (k − 2M)/4kk−1M , the result follows. ¤

6 Conclusions

In this paper we have proposed an efficient implementation of the best-fit heuristic for the
rectangular strip packing problem. The proposed implementation requires linear space and
O(n log n) time, which is optimal for the best-fit heuristic. The proposed implementation is
simple, and hence it is easy to implement. We confirmed through computational experiments
that our implementation required very small execution time: It spent less than one second for
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test instances with up to 100,000 rectangles. We also showed that the best-fit heuristic cannot
guarantee a constant approximation ratio in the worst case.
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