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Abstract

This paper addresses a characterization of a complementary sen-
sitivity property in feedback control using an information theoretic
approach. We derive an integral-type constraint of the complementary
sensitivity function with respect to the unstable zeros of the open-loop
transfer function. It is an analogue of Bode’s integral formula for the
sensitivity gain. To show the constraint, we first show a conservation
law of the entropy and mutual information of signals in the feedback
system. Then, we clarify the relation between the mutual informa-
tion of control signals and the unstable zeros of the open-loop transfer
function.

1 Introduction

It has been known that control theory and information theory share a com-
mon background as both theories study signals and dynamical systems in
general. One way to describe their difference is that the focal point of infor-
mation theory is the signals involved in systems while control theory focuses
more on systems which represent the relation between the input and output
signals. Thus, in a certain sense, we may expect that they have a comple-
mentary relation. For this reason, studies on the interactions of the two
theories have recently attracted a lot of attention. We briefly describe three
research directions in the following.

In networked control systems, there certainly are issues related to both
control and communication since communication channels with data losses,
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time delays, and quantization errors are employed between the plants and
controllers (see, e.g., [1] and the references therein). To guarantee the overall
control performance in such systems, it is important to evaluate the amount
of information that the channels can transfer. Thus, for the analyses of
networked control systems, information theoretic approaches are especially
useful, and notions and results from this theory can be applied. For example,
to characterize the properties of the channels, their capacity and rate of
communication, which represent the number of bits that can be transfered
at each time step, can be used. The results in [8] and [15] show the limitation
in the communication rate for the existence of controllers, encoders, and
decoders to stabilize discrete-time linear feedback systems.

On the other hand, by considering the interaction of control and com-
munication, a certain problem in information theory can be dealt with as
a control problem. The work of [4] shows an equivalence between feedback
stabilization through an analog communication channel and a communica-
tion scheme based on feedback. As a consequence, the problem of finding
optimal encoder and decoder in the communication system is reduced to the
design of an optimal feedback controller.

While control theory, in many cases, considers systems that are linear
time invariant, information theory imposes assumptions on the systems that
are less stringent. This is because the focus there is more on the signals and
not on their input-output relation. Thus, based on information theoretic
approaches, we may expect to extend prior results in control theory. One
such result can be found in [7], where a sensitivity property is analyzed and
Bode’s integral formula [2] is extended to a more general class of systems.
A fundamental limitation of sensitivity functions is presented in relation to
the poles of the plants.

In this paper, we follow the approach of [7] and characterize a com-
plementary sensitivity property in a feedback system by measuring the en-
tropies of the signals. In particular, we derive a limitation of the complemen-
tary sensitivity function with respect to the unstable zeros of the open-loop
system. This limitation is shown in two steps as follows: We first show a
conservation law of the entropy and mutual information of the signals in the
feedback system. Then, we clarify the relation between the mutual infor-
mation of a control signal and the unstable zeros of the open-loop transfer
function. This result corresponds to the Bode’s integral formula for the
complementary sensitivity by [14]. Since this formula is derived from the
viewpoint of information theory, in future research, we expect to generalize
this result to the cases for nonlinear systems and networked control systems.

This paper is organized as follows: We first introduce Bode’s integral for-
mula and related works, and some notions and results in information theory
in Section 2. In Section 3, we present the problem setting and some proper-
ties of the entropy and mutual information of the signals in the system. In
Section 4, we show the main result of the paper. Finally, the conclusion is



in Section 5.

2 Preliminaries

In this section, first, we introduce prior works related to the fundamen-
tal limitations on the sensitivity and complementary sensitivity functions.
Then, we describe some notation and definitions used in the paper.

2.1 Bode’s integral formula and related works

It is well known that the sensitivity and complementary sensitivity functions
represent basic properties of feedback systems such as disturbance attenu-
ation, sensor-noise reduction, and robustness against uncertainties in the
plant model. One of the fundamental properties of the sensitivity functions
is the water-bed effect for linear feedback systems. This was first shown in
[2]. Although Bode’s work deals with continuous-time systems, we present
the corresponding result for discrete-time systems [13] as follows: Suppose
that the open-loop system L is single-input single-output, linear time in-
variant, and strictly proper in Figure 1. If the open-loop system L and the
feedback loop are stable, then the sensitivity function S(z) given by

1
S(z) = TL(Z)

must satisfy
1 (7 :
/ log |S () |dw = 0.
2 J_,

This integral constraint on the sensitivity function is known as Bode’s inte-
gral formula. Because of its importance, this formula has been generalized
in many ways (e.g., [5, 11, 12, 6]).

In particular, the work by [14] gives an integral-type constraint of com-
plementary sensitivity functions corresponding to Bode’s integral formula.
We briefly introduce this result next.

lX(O)
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Figure 1: Discrete-time feedback control system.




Consider the system depicted in Figure 1. Let the state-space represen-
tation of L be given by

[ =Le S ] @

where x(k) € R™ is the state, y(k) € R is the output, and e(k) € R is
the error signal. Suppose that the relative degree of the open-loop transfer
function L(z) is v > 1. This implies that

CA""'B +0, (2)
CA'B=0, j=1,---,v—1.

Here, let Dy := CAY~!B. This is the ratio of the leading coefficients of L(z).
Moreover, let UZ;, be the set of unstable zeros of L(z):

UZp = {z|L(z) =0, |2 = 1}, (3)

and let T'(z) be the complementary sensitivity function:

_ L)
T(z) := T L)

Then, the following proposition holds.

Proposition 1 [14] If the feedback system is stable, then the complemen-
tary sensitivity function T'(z) satisfies

1 g iy
L[ togT(e)ds = 3" log|8] + log|Dol. )
- BEUZ,

We write logy(-) simply as log(-). This notation is also adopted in the
following.

This relation has been shown by applying Jensen’s formula, which is a
well-known result in complex analysis. In this paper, we derive a limitation
similar to (5) by evaluating the entropy and mutual information of signals
in the feedback system.

2.2 Entropy and mutual information

In this section, we introduce some notation and basic results from informa-
tion theory that we use in the paper (see [3]).
We adopt the following notation.

e We represent random variables using boldface letters, such as x.



o Consider a discrete-time stochastic process {x(k)}72,. We represent
a sequence of random variables from k = 1 to k = m (m > 1) as
x;" = {x(k)}7~,. In particular, when [ = 0, we write x]"* simply as

x™.

e We use x instead of {x(k)}32, when it is clear from the context.
e The operation E[-] denotes the expectation of a random variable.

Entropy is a notion widely used as a measure of uncertainty of a random
variable. It is defined as follows.

Definition 1 (Entropy and conditional entropy) The (differential) entropy
h(x) of a continuous random variable x € R with the probability density px
is defined as

h(x) = — /IR P(€) log pr(€)de.

If x,y € R have a joint probability density function pyy, we can also define
the conditional entropy h(x|y) of x assuming y as

h(x]y) := —/RQ Px.y (& 1) log pxiy (&, m)dEdn.

Next, we introduce mutual information, which is a measure of the amount
of information that one random variable contains about another random
variable.

Definition 2 (Mutual information) The mutual information I1(x;y) be-
tween x € R and y € R with the joint probability density pxy is defined
as

) = Py (&)
Ixsy) = [ pey(emlog XD acay

Note that we assume the existence of the probability density and the
joint probability density functions in the above definitions.

The following is a list of basic properties of entropy and mutual infor-
mation which are required in the paper. Their proofs can be found in, e.g.,
[3, 9, 10].

o Symmetry and nonnegative property:

I(x;y) = I(y;x)
= h(x) — h(x]y) = h(y) — h(y[x) > 0 (6)



e Entropy and conditional entropy: From the above property, the fol-
lowing holds:

h(xly) < h(x). (7)
e Chain rule:
h(x,y) = h(x) + h(y|x) (8)

o Mazimum entropy: Consider a random vector x € R™ with variance
Vi € R™*™_ The following holds:

h(x) < =log ((2me)™ det Vx) . 9)

N =

We have equality if x is Gaussian.

e Data processing inequality: Suppose that f is a measurable function
on the appropriate space. Then the following holds:

h(xly) < h(x|f(y))- (10)
We have equality if f is invertible.

o Transformations of random variables and their entropy: Suppose that
f is a piecewise C'-class function and x and y = f(x) take continuous
values. Then the following holds:

h(y) = h(x) + E[log | Jx[] (11)
where Jx is the Jacobian of the transformation f.

e Suppose that f is any given function on the appropriate space. Then
the following holds:

h(x = f(y)ly) = h(x]y). (12)

Now we would like to introduce some notions for stochastic processes.
The entropy rate is a time average of the entropy of a process and plays an
important role in our analysis.

Definition 3 (Entropy rate) The entropy rate hoo(X) of a stochastic process
X is defined as

k—1
hoo(x) := liin sup h(Xk )



Definition 4 (Asymptotically stationary process) A zero mean stochastic
process X (x(k) € R) is asymptotically stationary if the following limit exists
for every v € Z:

R(y) = Jim Bx(k)x(k +7)].
For an asymptotically stationary process x, we can define the asymptotic
power spectral density Sy using Ry as

Sy (w) := Z Ry (y)e .

y=—00

The following lemma, which is shown in [7], gives the relation between
the entropy rate and the asymptotic power spectral density.

Lemma 1 [7] If x is an asymptotically stationary process, then the follow-
ing inequality holds:

oo (%) < ﬁ / " log(2me Sy (w))dw, (13)

—Tr

where the equality holds if, in addition, x is a Gaussian process.

3 Problem setting and some properties

In this section, we formulate our problem and present two key properties
which are required to drive our main result. The first one shows a conserva-
tion law of the entropy, and the second one shows the relation between the
mutual information and the zeros of the open-loop system.

3.1 Problem setting

Consider the system depicted in Figure 1. Suppose that the state-space
representation of L(z) is given by (1), and x(k) € R", d(k) € R, e(k) € R,
and y(k) € R are random variables. We characterize the complementary
sensitivity function T'(z) in (4) by evaluating the entropy of signals. Here,
it is assumed that the feedback system is stable in the mean-square sense,
ie.,

sup E[x(k) "x(k)] < 0. (14)
k
To deal with asymptotically stationary processes, we now define a com-

plementary sensitivity-like function 7' by using the asymptotic power spec-
tral densities of the input and output signals of T'.



Definition 5 (Complementary sensitivity-like function) If the stochastic
processes d and y are asymptotically stationary, then the complementary
sensitivity-like function is given by

Remark 1 If a stochastic process is stationary, its asymptotic power spec-
tral density is equal to the ordinary power spectral density. Thus, when d
and y are stationary, we have that

T(w) = |T ()]

This can be shown by the well-known relation between a linear time-invariant
system with a stable transfer function and the power spectral densities of its
input and output signals [9].

We consider the property of T instead of T, and derive a constraint
similar to (5). We note that because of the relation given by Lemma 1, the
ratio of the power spectral density in T can be expressed as the difference in
the entropy rates of the input d and output y of T'. Hence, in the following,
we first analyze in difference of the entropy rates of d and y in Section
3.2. Next, we show the relation between the difference of the entropy rates
and the unstable zeros of the open-loop transfer function L(z) in Section
3.3. Finally, we show an integral-type constraint on the complementary
sensitivity property with respect to the unstable zeros in Section 4.

We assume that d¥ and x(0) are independent for every k € Z,, and
|h(x(0))] < ool.

3.2 The difference of the entropy rates

Here, we analyze the difference of the entropy rates hoo(d) and heo(y).
The following proposition holds.

Proposition 2 Consider the system depicted in Figure 1. The following
inequality holds:

I k+v.
hoo(y) — hao(d) > Timinf 102 X(0)

k—o0 k

+ log | Dy|. (15)

This relation is due to a conservation law of entropy between d and y.
We describe this in the following as a lemma.

! Actually, this assumption can be replaced with |h(x.(0))| < co (see Section 3.3).



Lemma 2 Consider the system depicted in Figure 1. The following relation
holds:

h(ye™) = h(d") + I(y; 5 %(0) + (k + 1) log| Do. (16)

To derive this lemma, we have to consider how the entropy of d at time
k, h(d(k)), affects h(y(k)). However, since the open-loop transfer function
L(z) is strictly proper, there is time delay of v steps due to the relative
degree of L, that is, d(k) has an influence on the output y only after time
k+v.

To deal with this problem, we define the auxiliary system Ly and the
signal yT as

Lo(z) := 2" L(z), (17)
y (k) = y(k+v), (18)

where v is the relative degree of the open-loop transfer function L(z). The
state-space representation of Ly(z) is given by:

I x(k+1) | [ A B x(k)
Ol yrk) | T | cA¥ CAYIB || e(k)
_.| 4o Bo || x(k)
o C() D() e(k) ’
It is clear that Dy # 0 because of (2), and hence Ly is a biproper system.
The system in Figure 1 can be expressed as Figure 2 by using Lo and y ™.
We now consider a conservation law of the entropy between d and y™

instead of y. The proof of Lemma 2 is provided in the following.
Proof. It follows that

h(y " (DI(y ™))

= h(y " (D)l(y ) 5 x(0)) + Iy *(2); x(0)|(y )" ™)
= h(y™()]d™", x(0)) + I(y™ (2); x(0)|(y ")),

Figure 2: Equivalent system with the biproper system L.



where the first equality follows by (6), and the second one follows by (10).
Moreover, using the property (11), we have that

h(y T (0)|(y ")~ ") =h(d(i)|d"~ ", x(0)) + log | Do|
+ Iyt (0);x(0)[(y T)' ).

Since x(0) and d(7) are independent, x(0) vanishes in the first term of the
right-hand side of this equation. Thus, we have that

h(y* @)y ™)
= h(d(i)|d"™") +log |Do| + I(y™ (0);x(0)|(y")"™). (19)

Now, by summing both sides of (19) for i =0,1,--- , k, we obtain
h((yF)*) = (@) + (k + 1) log [ Dol + I((y™)"; x(0)). (20)

Here, we have used the chain rules:

k
h(a®) = h(a(i)a’"),
1=0
k
I(a";b) = > I(a(i);bla’"),
1=0

which follow directly from (8). Finally, by the definition of y™, the relation
(20) is equivalent to (16). O

Remark 2 Lemma 2 shows that a conservation law of entropy holds between
d and y. Intuitively, one can understand that log|Dy| reflects the scaling
caused by the system L (see (11)), and I(y5™7;x(0)) shows the effect of the
initial state x(0), which can be viewed as an external input between d and

y,ony.

In Proposition 2, the relation (15) can be shown by dividing (16) by &
and taking the limsup as k — oo on both sides.

3.3 Mutual information and unstable zeros

The relation between ho,(d) and heo(y) has been clarified by Proposition 2.
We next consider the relation between the mutual information term in (15)
and the unstable zeros of the open-loop transfer function L(z).

The mutual information is a quantity in the time domain. In general,
however, it is difficult to deal with the zeros of transfer functions in this
domain. Thus, we view the zeros of L as the poles of the inverse system

10



of L. The poles are more convenient for our analysis because they can be
expressed as the eigenvalues of the state matrix of the system. Moreover,
this enables us to apply results in [7], where, for an unstable system, the
mutual information between the initial state and the output of the system
is related to its unstable poles.

One problem of this approach is that since L is strictly proper, the inverse
system of L is improper. For this reason, we consider the inverse system of
the biproper system Lg defined by (17).

Let Ly denote the inverse system of Ly. The state-space representation
of Ly is given by

iy [x(k:—i—l)}

a4 2]
(4 811241

The system in Figure 2 can be equivalently expressed as Figure 3 by using
Lo.

Now, without loss of generality, A can be divided into the stable part
fls € R™s*"s and the unstable part As € R™X" guch as

i-[ A0
0 A, |’
where all eigenvalues of Ay lie inside the unit circle, and those of A, lie
outside or on the unit circle. Let x5(k) € R™ and x,(k) € R™ be the parts
of the state Varigble X(]i‘) corresponding to As and A,, respectively. We

similarly define Bs and B, as the parts of B.
We have the following proposition.

Proposition 3 Consider the system depicted in Figure 3. If the system is
stable in the mean-square sense (14), then the following inequality holds:

k+v.
liming 103X o Y loglgl, (22)

k—o0 k
BEUZ ],

d y y A e

‘:T_' - -

Figure 3: Equivalent system with the inverse system Lo of Ly.
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where UZ ], is the set of unstable zeros of L(z) given in (3).

Proof. From (21), we have that

k—1
xu(k) = Agxu(0) + Y Ay Buy ™ (i) (23)
=0
= Aﬁi(k)v
where X is given as
U
%(k) :=x,(0) + Y A7 By T (). (24)
i=0

Let Vix(k) denote the variance of x(k). From the above equation, we have
that

Vi, (k) = (Af;) Va(k) (Afj)T.
Thus, it follows that

logdet (Vx, (k)) = (det Vz(k)) .

From this and the property (9), we have that

h(x(k))
k
< log {(2me)™ det(Vx(K))}
- 2k
_ log(2me)™ n log det(Vx, (k))
2k 2k

We have supy, Vx, (k) < oo because of the stability of the feedback system.
Hence, we have

—log ‘det(/lu) .

lim sup (25)

k—o0

Here, note the left-hand side of (22). It follows that
I((y™)"%(0) > I((y")*; xu(0))
= h(x4(0)) = h(xu(0)|(y")").

The inequality is due to changing the variables from x(0) to x,(0). Since,
n (24), x(k) is denoted by x(0) and (y*)*~!, we have

h(i]ik)) < —log ‘det(z‘iu) :

h(x4(0)) = h(xu(0)|(y™)")
h(xu(0)) = h(x(K)|(y)")
h(xu(0)) — h(x(k))



by using (12). The inequality follows from (7). Then, we have
I((y")*:%(0) > h(x,(0)) — h(x(k)). (26)

Finally, from (25) and (26), we obtain
I((y")*s%(0))
k

lim inf
k—oo

> log ’det (/lu>

= Z log‘)“a

/\EUPLO

where UP; is the set of the unstable poles of Lo(z). We have (22) by
expressing this equation in terms of y, and using the fact that the set of the
unstable poles of Lg(z) is equal to the set of unstable zeros of L(z). O

Remark 3 In general, from the viewpoint of the open-loop system, when
the system is unstable, the system amplifies the initial state at a level de-
pending on the size of the unstable poles (see, e.g., (23)). Hence, we can say
that in systems having more unstable dynamics, the signals contain more
information about the initial state. Therefore, in Figure 3, we can expect
the mutual information between the input y and x(0) to be a function of the
unstable poles. Proposition 3 corresponds to this observation.

4 Main result

We are now in a position to present the main result of the paper. The fol-
lowing theorem provides an integral-type constraint on the complementary
sensitivity-like function 7T'. This is obtained by the result of Proposition 2
and 3.

Theorem 1 Consider the system depicted in Figure 1. If the system is
stable in the mean-square sense (14), then the following holds:

hoo(y) = hoo(d) > Y log|B] + log| Dol. (27)
BeUZ 1,

Additionally, if d is an asymptotically stationary Gaussian process, then

L
%/ﬂlog’T(J“)‘dwz > log|B] +log| Dol. (28)
Beuzy,

Proof. The relation (27) follows immediately by substituting (22) in Propo-
sition 3 into (15) in Proposition 2.

13



Under the assumption that the input d is asymptotically stationary, the
output process y is asymptotically stationary as well since the feedback
system is stable and linear time-invariant. Thus, we have

heo(d) = % /Tr log (27re§d(w)> dw,

—T

heo(y) < ﬁ /7r log (27Te§y(w)) dw,

—Tr

by using (13). Then, the following holds by (15):

1 [ S I -
/ log de = / log ‘T(jw)‘ dw
4m -7 Sd(w) 2m -7
k+v.

log | Dy].
min 2 + log [ Dy|

We obtain (28) from this and (22). O

Remark 4 The relation (28) is similar to (5) in Proposition 1, and has been
shown independently of the result in [14]. We consider a complementary sen-
sitivity property from the viewpoint of entropy and mutual information. We
note that the entropy rate of a signal is a notion in the time domain and thus
1s well defined even for systems which do not have transfer function forms.
This generalization is an important consequence of the information theoretic
approach here. Moreover, this result will be useful for further extensions to
networked control systems, nonlinear systems, and so on.

Note that (28) is an inequality constraint. From our analysis, it is un-
clear when the equality holds here and moreover whether we can show a con-
dition for the equality to hold by the information theoretic approach. How-
ever, as we described in Remark 1, when d and y are stationary stochastic
processes, we have T(w) = |T(e™)|. Thus, the equality in (28) holds from
Proposition 1.

5 Conclusion

This paper has addressed a characterization of a complementary sensitivity
property by evaluating the entropy of signals in the feedback system. In
particular, we have shown a constraint similar to Bode’s integral formula
(5). We would like to apply this result to networked control systems and
nonlinear systems in future research.

14
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