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Abstract

Many sensor networks carry quantized data these days and it is
interesting problem to know how much data rate is necessary and how
we can encode efficiently for estimating state of a linear system. Pre-
ceding study shows that if full information is available at the encoder,
we can estimate the state in arbitrary precision asymptotically with
finite data rate which is determined by instability of the plant. In this
paper, we propose a new quantization method that achieves bounded
data rate even if the encoder is memory-less and does not know inputs
to the plant. This result is related to so-called side information prob-
lem in information theory. We can consider inputs to the plant as side
information available only at the decoder.

1 Introduction

Motivated by recent development of digital technology and communication,
estimation and control in the presence of information constrains have re-
ceived considerable attention. This problem introduces an information the-
oretical view point and a question how to choose the bits of information that
would be most useful for estimation and control. In recent years, a number
of researches have analyzed various version of this problem ([1], [2], [3]).

In this paper, we focus on state estimation of deterministic, discrete
time, linear, time invariant system with a digital channel connecting a sen-
sor to an estimator. The system may have bounded process noise. Our
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problem formulation follows that of Tatikonda and Mitter[2]. We consider
the following linear time-invariant system:

xt+1 = Axt + ut,

yt = Cxt,

where xt is the state, ut is the input and yt is the output at time t ∈
{0, 1, . . . }. We assume that (C, A) is observable but the estimator get the
information of the output yt only through digital link with a finite data rate.

We denote a tuple (x0, x1, . . . , xt) by xt and so on. Encoders and de-
coders are maps defined as follows.

• Encoder: a encoder at time t is a map

Et : (xt, σt−1, ut−1) → σt,

where codeword σt takes its value in a finite set It. The encoding rate
R is defined by R = log |It|, where |It| denotes the cardinality of the
set It.

• Decoder: a decoder at time t is a map

Dt : (σt, ut−1) → x̃t,

where x̃t is the estimator of xt.

We can consider several configurations depending on which information is
available at the encoder. They are called the Information Pattern of the
encoder([2],[4]). Tatikonda and Mitter[2] discuss two classes of Information
Pattern.

• Encoder Class One:

Et : (xt, σt−1, ut−1) → σt.

This encoder has full access to the information.

• Encoder Class Two (Figure 1):

Et : xt → σt.

This encoder has no access to inputs, moreover, no access to past
outputs or past encoded symbols, that is, it is memory-less. Note that
we still allow memory for the decoder.

In both classes, we assume that the encoder and the decoder have knowledge
of the dynamics of the plant and knowledge of the encoder and the decoder
each other. Tatikonda and Mitter[2] show that the state can be estimated
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with zero-error asymptotically for class one encoders, but they state, in
Proposition 6.1, that it is impossible to estimate the state with bounded
error for class two encoders if the encoding rate is finite. In this paper, we
introduce a new quantization method and demonstrate that we can achieve
zero-error asymptotically even with class two encoders and a finite data rate.
Moreover, we show that we can bound estimation error even if the bounded
process noise is present.

Plant

Input ut Encoder

Decoder

Estimator x̃t

xt

σt

Figure 1: Information Pattern

2 Simple Example

We construct a simple one-dimensional plant and a encoder/decoder pair to
illustrate that we can determine the system state with bounded error even
if the encoder is memory-less. Let xt ∈ R and define a plant, a encoder
without memory and a decoder as the following.

• Plant:
xt+1 = 2xt, x0 ∈ [0, 2).

• Encoder:
σt = bxtc mod 2.

• Decoder:
x̃−1 = 0, x̃t = 2x̃t−1 + σt (t ≥ 0).

Here, bxc denotes the maximum integer that is less than or equal to x.
Apparently, {σt}

∞
0 represent the binary expansion of x0 and x̃t = bxtc. It

follows that
x̃ ≤ xt < x̃t + 1.

This shows that the error |x̃t−xt| is bounded even if the encoder is memory-
less. This is a counter-example of Proposition 6.1 by Tatikonda and Mitter[2].
The point here is that, with conventional quantization methods, an encoded
symbol corresponds to a region with finite volume in R, on the other hand,
the above encoder maps a region with infinite volume to an encoded symbol.
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3 Main Result

In this section, we state a stronger result than the counter-example in the
previous section. In the previous example, we assume that inputs to the
plant is always zero, but here, we consider variable inputs, that are known
only to the decoder, and bounded process disturbance. Moreover, we show
that the estimation error can vanish asymptotically with sufficiently large
encoding rate if disturbance is not present.

Consider the following n-dimensional linear system with inputs ut and
unknown bounded disturbance wt.

xt+1 = Axt + ut + wt, (1)

yt = Cxt, (2)

where t ≥ 0, xt, ut, wt ∈ R
n, yt ∈ R

m and |(wt)i| ≤ (d)i for a non-negative
vector d ∈ Rn and i ∈ {1, . . . , n}. We assume that (C, A) is observable and
the initial value x0 is also bounded:

(x0)i ∈ [(x̃0 − L0)i, (x̃0 + L0)i] i ∈ {1, . . . , n}, (3)

where x̃0, L0 ∈ R
n and (L0)i > 0. We denote a matrix with absolute values

of elements of a matrix A by A, that is,

(A)ij = |(A)ij |.

We introduce parameters Ki, Lt, δt ∈ R
n, M ∈ R

n×m, N ∈ R
n×n and F, S ∈

R
m×m to construct a encoder and a decoder as follows.

• Let Ki ≥ 2 be an integer for i ∈ {1, . . . , m} and

F =







(K1 − 1)−1 0
. . .

0 (Km − 1)−1






.

• Choose a matrix M ∈ R
n×m such that N ≡ A − MC is stable, and

an invertible matrix S ∈ R
m×m. Because (C, A) is observable, there

exists a such M .

• For t ≥ 0, let

δt = FS−1CLt. (4)

• For t ≥ 1, let

Lt+1 = (N + MSFS−1C)Lt + d. (5)

4



Note that these parameters does not depend on outputs yt and can be
computed without memory of past outputs and encoded symbols. Now we
construct a encoder, a decoder and an observer.

• Encoder: Et(yt) = σt, where σt is a n-dimensional integer vector and

(σt)i =

⌊

(S−1yt)i

2(δt)i

⌋

mod Ki. (6)

Because (σt)i ∈ {0, · · · , Ki − 1}, the encoding rate R is given by R =
∑n

i=1
log Ki.

• Observer: Ot(σ
t, ut−1) = x̃t, where

x̃t = Nx̃t−1 + ut−1 + MSrt−1, (7)

and rt−1 is defined as follows.

• Decoder: Dt(σ
t, ut−1) = rt, where

(rt)i =

[⌊

(r̃t)i

2(δt)i

⌋

+

{(

(σt)i −

⌊

(r̃t)i

2(δt)i

⌋)

mod Ki

}]

· 2(δt)i + (δt)i,

(8)

and
r̃t = S−1Cx̃t − S−1CLt. (9)

We should note that we do not allow memory for the encoder but allow
for the decoder and the observer. The following theorem states that the
estimation error of xt by x̃t is bounded by Lt. The proof is given in the next
section.

Theorem 3.1. For t ≥ 0 and i = {1, · · · , n},

|(xt − x̃t)i| ≤ (Lt)i. (10)

If we can show that Lt is bounded by a constant or asymptotically van-
ishes with a finite encoding rate, we can conclude that estimation error is
bounded even with class two encoders. For one-dimensional case, we can
obtain a sufficient encoding rate explicitly.

Proposition 3.1 ([5]). Suppose n = 1, A = a ∈ R and C = c ∈ R where

c 6= 0. If K1 − 1 > |a|, then

Lt = γtL0 +
1 − γt

1 − γ
d, (11)

where γ = |a|/(K1 − 1) < 1. It follows that

lim
t→∞

Lt =
d

K1 − 1 − |a|
. (12)

Therefore, if d = 0, the estimation error vanishes asymptotically.
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Proof. Let M = ac−1 and S = c, then N = 0 and S−1C = 1. It follows
from (5) that

Lt+1 =
|a|

K1 − 1
Lt + d = γLt + d.

Therefore, (11) and (12) follows.

Tatikonda and Mitter[2] show that even if the encode has memory and
knows inputs(class one encoders), the encoding rate R must be greater than
log |a| so that the error is bounded. For the above memory-less encoder(class
tow encoders), the sufficient condition is give by

R > log(d|a|e + 1), (13)

from the above proposition. For large |a|, the difference of these two rates
is relatively small.

For multidimensional case(n ≥ 2), we have to choose a coordinate sys-
tem, matrices M, S and coding rate carefully so that (N + MSFS−1C) in
the equation (5) is stable. If (N +MSFS−1C) is stable, Lt is bounded, and
asymptotically vanishes when d = 0. Generally, N may not be stable even
if N is stable, however, if we choose appropriate coordinate system based
on real Jordan canonical form of N as used by Tatikonda and Mitter[2], N
is also stable. In that case, with sufficiently large Ki, (N + MSFS−1C) is
also stable.

To obtain explicit sufficient encoding rate, the observable canonical form([6])
is more useful. If we choose appropriate coordinate system of xn and an
lower-triangular matrix S, we can have N and S−1C be matrices with 0,1
elements and MS be a matrices with coefficient of the canonical form. In
this case,

N + MSFS−1C = N + MSFS−1C,

and the stability of above matrix is determined by MSF easily. Especially,
if m = 1, (−MS) is the vector of coefficients of the characteristic polynomial
of A, and S−1C is (0, . . . , 0, 1). We have the following proposition.

Proposition 3.2. Suppose m = 1, and (A, C) is observable. Let αi be the

coefficient of degree (i − 1) of the characteristic polynomial of A. If

K1 − 1 >
n

∑

i=1

|αi|γ
−n+i−1 (14)

for some 0 < γ < 1, then Lt is bounded.

To prove this proposition, we introduce some definitions and a lemma.
Let fA(λ) be a characteristic polynomial of n×n matrix A and denote it as

fA(λ) = λn +
n

∑

i=1

αiλ
i−1,
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and define a polynomial f̄A(λ) as

f̄A(λ) = λn −
n

∑

i=1

|αi|λ
i−1,

We denote the spectrum radius of A by ρ(A), that is,

ρ(A) = max
i

|λi|,

where λi denotes i-th eigen value of the matrix A.

Lemma 3.1. If f̄A(γ) > 0 for some γ > 0, then ρ(A) < γ.

Proof. It is sufficient to show that |fA(λ)| > 0 for all λ ∈ C which satisfies
|λ| ≥ γ. Since |a + b| ≥ |a| − |b| for any complex numbers a and b, we have

|fA(λ)| ≥ |λ|n −

∣

∣

∣

∣

∣

n
∑

i=1

αiλ
i−1

∣

∣

∣

∣

∣

≥ |λ|n −
n

∑

i=1

|αi||λ|
i−1

= |λ|n(1 −
n

∑

i=1

|αi||λ|
i−1−n).

Suppose |λ| ≥ γ. Since i − 1 − n < 0,

|fA(λ)| ≥ |λ|n(1 −

n
∑

i=1

|αi|γ
i−1−n)

= |λ|nγ−nf̄A(γ).

Therefore, f̄A(γ) > 0 implies |fA(λ)| > 0.

Now, we give the proof of Proposition 3.2.

Proof. Because m = 1 and (A, C) is observable, there is a coordinate trans-
formation matrix T so that TAT−1 and CT−1 take the following observable
canonical form:

A∗ ≡ TAT−1 =















0 0 . . . 0 −α1

1 0 . . . 0 −α2

0 1 . . . 0 −α3

...
...

...
...

...
0 0 . . . 1 −αn















,

C∗ ≡ CT−1 = (0, . . . , 0, 1),
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where αi is the coefficient of degree (i − 1) of the characteristic polyno-
mial of A. It is suffice to show that the state estimation error is bounded
for new coordinate x∗ = Tx because T−1 is bounded. We choose M =
t(−α1,−α2, . . . ,−αn) and S = 1, then N = A∗ − MC∗ is stable and have
the following form:

N =















0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
...

0 0 . . . 1 0















.

Now, we investigate the stability of the matrix H ≡ N + MSFS−1C.

H = N + MFC =















0 0 . . . 0 |α1|/(K1 − 1)
1 0 . . . 0 |α2|/(K1 − 1)
0 1 . . . 0 |α3|/(K1 − 1)
...

...
...

...
...

0 0 . . . 1 |αn|/(K1 − 1)















.

Apparently, the characteristic polynomial of the matrix H is given by:

fH(λ) = λn −
1

K1 − 1

n
∑

i=1

|αi|λ
i−1.

and (14) implies fH(γ) > 0. By lemma 3.1 and (5), we conclude that H is
a stable matrix and Lt is bounded.

We can also derive a weaker but intuitive sufficient condition.

Corollary 3.1. Suppose m = 1, and (A, C) is observable. Let λi be the i-th
eigen value of the matrix A. If

log K1 >
n

∑

i=1

log(|λi|γ
−1 + 1) (15)

for some 0 < γ < 1, then Lt is bounded.

Proof. Let λ1, . . . , λn be eigenvalues of the matrix A. For γ > 0, by Vieta’s
formulas, we have

n
∑

i=1

|αi|γ
i−1 =

∣

∣

∣

∣

∣

∑

i

λi

∣

∣

∣

∣

∣

γn−1 +

∣

∣

∣

∣

∣

∣

∑

i6=j

λiλj

∣

∣

∣

∣

∣

∣

γn−2 + · · · + |λ1λ2 . . . λn|

≤
∑

i

|λi|γn−1 +
∑

i6=j

|λiλj |γ
n−2 + · · · + |λ1λ2 . . . λn|

=

n
∏

i=1

(γ + |λi|) − γn
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Divided by γn, we have

n
∑

i=1

|αi|γ
−n+i−1 ≤

n
∏

i=1

(|λi|γ
−1 + 1) − 1. (16)

By (15) and (16), we have

K1 > 1 +
n

∑

i=1

|αi|γ
−n+i−1.

By Proposition 3.2, Lt is bounded.

The constant γ appeared in Proposition 3.2 and Corollary 3.1 determines
how fast the estimator approach to the true state. Smaller γ means better
estimator but needs more information rate. If γ goes to 1, we obtain infi-
mum rate for each sufficient condition. By continuity, we obtain sufficient
conditions

log K1 > log(1 +

n
∑

i=1

|αi|) (17)

and

log K1 >
n

∑

i=1

log(1 + |λi|) (18)

from Proposition 3.2 and Corollary 3.1 respectively.

4 Proof of the Theorem

To prove the theorem, we prove the following key lemma first.

Lemma 4.1. Let x, x̃ and L > 0 are real variables and K ≥ 2 is a integer.

If

|x − x̃| ≤ L,

then
(

⌊ x

2δ

⌋

−

⌊

x̃ − L

2δ

⌋)

mod K =
⌊ x

2δ

⌋

−

⌊

x̃ − L

2δ

⌋

, (19)

where δ = L
K−1

> 0.

Proof. Because x̃ − L ≤ x, we have

0 ≤
⌊ x

2δ

⌋

−

⌊

x̃ − L

2δ

⌋

. (20)
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Since x ≤ x̃ + L = (x̃ − L) + 2L, it follows that

⌊ x

2δ

⌋

≤

⌊

x̃ − L

2δ
+

L

δ

⌋

=

⌊

x̃ − L

2δ
+ K − 1

⌋

=

⌊

x̃ − L

2δ

⌋

+ K − 1. (21)

It follows from (20) and (21) that

0 ≤
⌊ x

2δ

⌋

−

⌊

x̃ − L

2δ

⌋

≤ K − 1,

and
(

⌊ x

2δ

⌋

−

⌊

x̃ − L

2δ

⌋)

mod K =
⌊ x

2δ

⌋

−

⌊

x̃ − L

2δ

⌋

.

Now, we prove the Theorem 3.1.

Proof. By the definition (3) of x̃0 and L0, it is obvious that (10) is established
for t = 0. We will show that (10) is established for time t + 1 under the
assumption that (10) is established for some time t. Substituting (8) by (6),

(rt)i

2(δt)i
=

⌊

(r̃t)i

2(δt)i

⌋

+

[{(⌊

(S−1yt)i

(2δt)i

⌋

mod Ki

)

−

⌊

(r̃t)i

2(δt)i

⌋}

mod Ki

]

+
1

2

=

⌊

(r̃t)i

2(δt)i

⌋

+

{(⌊

(S−1Cxt)i

2(δt)i

⌋

−

⌊

(r̃t)i

2(δt)i

⌋)

mod Ki

}

+
1

2
.

By the assumption,

|(S−1Cxt − S−1Cx̃t)i| = |(S−1C(xt − x̃t))i|

≤
(

S−1C · (xt − x̃t)
)

i

≤ (S−1CLt)i.

Substituting (19) with x = (S−1Cxt)i, x̃ = (S−1Cx̃t)i, L = (S−1CLt)i and
δ = (δt)i = (Ki − 1)−1(S−1CLt)i, it follows from lemma 4.1 and (9) that

(⌊

(S−1Cxt)i

2(δt)i

⌋

−

⌊

(r̃t)i

2(δt)i

⌋)

mod Ki =

⌊

(S−1Cxt)i

2(δt)i

⌋

−

⌊

(r̃t)i

2(δt)i

⌋

.

Therefore,

(rt)i

2(δt)i
=

⌊

(r̃t)i

2(δt)i

⌋

+

⌊

(S−1Cxt)i

2(δt)i

⌋

−

⌊

(r̃t)i

2(δt)i

⌋

+
1

2

=

⌊

(S−1Cxt)i

2(δt)i

⌋

+
1

2
.
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Define εt ∈ R
n as

(εt)i = (S−1Cxt)i − (rt)i

= (S−1Cxt)i −

⌊

(S−1Cxt)i

2(δt)i

⌋

· 2(δt)i − (δt)i

=

{

(S−1Cxt)i

2(δ)i
−

⌊

(S−1Cxt)i

2(δt)i

⌋}

· 2(δt)i − (δt)i

< (δt)i,

then we have |(εt)i| < (FS−1CLt)i by (4). It follows from (1) and (7) that

|(xt+1 − x̃t+1)i| = |(N(xt − x̃t) + MCxt − MSrt + wt)i|

= |(N(xt − x̃t) + MSεt + wt)i|

≤ |(N(xt − x̃t))i| + |(MSεt)i| + |(wt)i|

≤ (NLt)i + (MSFS−1CLt)i + di

=
(

(N + MSFS−1C)Lt

)

i
+ di

= (Lt+1)i.

Therefore, (10) is also established for time t + 1.

5 Summary

In this paper, we show that we can construct a encoder and a decoder that
can estimate the state with bounded error even if the encoder is memory-less
and does not have access to inputs of the plant. This complements the result
by Tatikonda and Mitter[2] for encoders in class two. As far as we know,
this type of quantization is new in this field and we believe that this method
gives us new insight to understand which information bits are important for
estimation and control.

Finally, we point out some relation between our result and studies in in-
formation theory. Encoders in class two has two limitations. One is memory-
less and the other is unavailability of inputs. Our result suggests that we
can construct a memory-less encoder at the expense of optimality of the
encoding rate, that is, we need a slightly higher rate (13) than log |a| bits.
This is the same situation in source coding that we can achieve optimum
compression rate with the long block length that requires long memory. The
latter limitation has a strong connection with problem of side information.
We can consider inputs to the plant as side information available only at the
decoder. In loss-less source coding, it is shown that the optimum encoding
rate does not change whether side information is available at the encoder
or not ([7],[8],[9]). Our result is consistent with this because we can achieve
optimum rate asymptotically if the encoder is allowed to have memory. The
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quantizer we proposed here is inspired by bin-coding([10]). Though bin-
coding is a random coding and ours is deterministic, it is the same idea
that the source symbols should be spread over the codewords uniformly. We
should emphasize that our result is not direct consequence of source coding
with side information. It should be noted that for lossy source coding([11]),
the optimum coding rate can be different depending on whether inputs is
available at the encoder or not. Actually, our method can not be applied to
the case when unbounded disturbance is present([3]).
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