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The tube method for the moment index in projection pursuit

Satoshi Kuriki∗ and Akimichi Takemura†

Abstract

The projection pursuit index defined by a sum of squares of the third and the fourth
sample cumulants is known as the moment index proposed by Jones and Sibson [14]. Lim-
iting distribution of the maximum of the moment index under the null hypothesis that the
population is multivariate normal is shown to be the maximum of a Gaussian random field
with a finite Karhunen-Loève expansion. An approximate formula for tail probability of the
maximum, which corresponds to the p-value, is given by virtue of the tube method through
determining Weyl’s invariants of all degrees and the critical radius of the index manifold of
the Gaussian random field.

Key words: critical radius, Euler characteristic heuristic, Hotelling-Weyl tube formula, max-
imum of a Gaussian random field, multiple testing, sample cumulant.

AMS 2000 subject classifications: Primary 60G15, 60G60, 62H15; secondary 53C65, 62H10.

1 Introduction

1.1 Assessing the significance in projection pursuit

Suppose that for each of n individuals, a q dimensional random vector xt ∈ Rq, t = 1, . . . , n, is
observed as an i.i.d. sample. In the analysis of such multidimensional data, the projection of the
q dimensional data onto a lower dimensional subspace is often used for the sake of interpreting
the data. In such cases it is important to select the subspace which clarifies features of the
data interesting to the analyst. In the principal components analysis or the canonical correla-
tion analysis, the subspaces are selected based on the variance of data ([5]). The exploratory
projection pursuit is the method for detecting the subspace based on the non-normality of data
([12]). As a similar method, the Fast ICA (independent component analysis) is known ([11]).

Let Sq−1 be a set of q dimensional unit vectors, or the set of directional vectors in Rq. In the
one dimensional projection pursuit, for each directional vector h ∈ Sq−1, the projection pursuit
index In(h) is defined as a measure for the non-normality of one dimensional projected data

zt = 〈xt, h〉 ∈ R, t = 1, . . . , n, (1.1)

and then the direction h∗ = argmax In(h) attaining the maximum of the index is searched.
However, the index In(h) is a random function of h depending on the samples xt’s. Even

when xt’s were distributed according to the multidimensional normal distribution, the function
In(h) is not constant, and the direction h∗ which achieves the maximum exists. Therefore, it is
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important to assess whether it is not a pseudo peak caused by stochastic fluctuations. For this
purpose, the framework of the multiple testing can be employed. Consider the null hypothesis
that the data are distributed according to the multidimensional normal distribution

H0 : xt ∼ Nq(µ,Σ) i.i.d., (1.2)

and let
F̄n(c) = P

(
max

h∈Sq−1
In(h) ≥ c | H0

)

be the upper probability of the maximum of In(h) under the null hypothesis. Then, F̄n(In(h∗))
is the p-value in the sense of multiple testing, and we can use the p-value as a measure of the
significance of the maximum (Sun [20]).

Sun [20] described the limiting null distribution of the maximum of Friedman [8]’s projection
pursuit index in terms of a Gaussian random field as sample size goes to infinity, and gave an
approximation formula for it by an integral-geometric method referred to as the tube method
([21]). In this paper we gives an approximation formula for the moment index proposed by Jones
and Sibson [14] by the tube method.

The moment index treated here is as follows: Let Kk,n(h) be the kth sample cumulant of the
projected data zt in (1.1), and let B1,n(h) = K3,n(h)/K2,n(h)3/2 and B2,n(h) = K4,n(h)/K2,n(h)2

be the sample skewness and the sample kurtosis, respectively. Then the moment index is defined
by

In(h) =
n

6
B1,n(h)2 +

n

24
B2,n(h)2. (1.3)

Differently from Sun [20]’s treatment for Friedman’s index, we can determine geometric invari-
ants of all degrees, and accordingly give an accurate formula for the p-values.

The structure of the paper is as follows: The main results are summarized in Section 2.
There, the limiting distribution of the maximum of the moment index is described in terms of
a Gaussian random field with a finite Karhunen-Loève expansion, and determine the geometric
invariants of the index manifold. An approximation formula for the upper probability of the
maximum can be obtained by incorporating these invariants. Some numerical experiments to
examine their accuracy are given there. The main results of Section 2 are proved in Section 4.
Prior to Section 4, we give a brief summary of the tube method in Section 3 as far as required.

1.2 The tube method

Here we give a very brief historical review of the tube method.
As explained in Section 3, the term tube means a spherically tubular neighborhood around

a set in the sphere. Hotelling [10] pointed out a relation between the p-value of a testing
problem in nonlinear regression and the volume of the tube, and demonstrated to calculate the
p-value by presenting a one dimensional formula for the volume of tube. Weyl [25] generalized
Hotelling [10]’s formula to the general dimensional case. More recently, Knowles and Siegmund
[15] and Sun [21] found out the relation between the formula for the volume of tube and the
tail probability formula for the maximum of a Gaussian random field. Since then, the tube
method was applied to statistical problems such as calculating null distributions of max-type
test statistics, or adjusting the multiplicity in multiple testing problems. For example, the
asymptotic distribution of the Anderson-Stephens statistic ([6]) for testing the uniformity of
direction can be evaluated ([18]). For the other examples, see [17] and [16]. Nowadays, the tube
method was proved by Takemura and Kuriki [22] to be a special case of the Euler characteristic
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heuristics, which is known as another approach for approximating the distribution of the maxima
of random fields developed by Adler ([2], [3]), Worsley ([26], [27]) and Taylor ([23]). For recent
developments of the tube method and the Euler characteristic heuristic, see Adler and Taylor
[4]. See also [19].

2 Main results

We begin with giving the limiting distribution of the moment index In(h) in (1.3) under the
null hypothesis of multivariate normality. Without loss of generality, we assume that xt’s are
distributed according to the q dimensional standard normal distribution Nq(0, Iq).

Theorem 2.1 Let ξ1 ∈ Rq3
, ξ2 ∈ Rq4

be random vectors consisting of independent standard
normal random variables. For a unit vector h ∈ Sq−1, let

Z1(h) = 〈h ⊗ h ⊗ h, ξ1〉, Z2(h) = 〈h ⊗ h ⊗ h ⊗ h, ξ2〉, (2.1)

where ⊗ denotes the Kronecker product. Under the null hypothesis H0 in (1.2), as n → ∞,
maxh∈Sq−1 In(h) converges in distribution to maxh∈Sq−1 I(h), where

I(h) = Z1(h)2 + Z2(h)2.

Proof Let C(Sq−1) be the Banach space of real valued continuous functions on Sq−1 endowed
with the supremum norm. Note that the sample cumulant Kk,n(·), the sample skewness B1,n(·),
the kurtosis B2,n(·), and the moment index In(·) are the elements of C(Sq−1). Theorem 2.1 of
Kuriki and Takemura [17] states that the (

√
nB1,n(·),

√
nB2,n(·)) converges to (

√
3!Z1(·),

√
4!Z2(·))

in distribution in the space C(Sq−1). The theorem follows from the continuous mapping theorem.

By means of Theorem 2.1 above, for large sample size n, the p-value F̄n(In(h∗)) can be
approximated by F̄ (In(h∗)) with

F̄ (c) = P
(

max
h∈Sq−1

I(h) ≥ c
)
.

Moreover, by letting

Z(h, θ) = cos θZ1(h) + sin θZ2(h), h ∈ Sq−1, θ ∈
(
−π

2
,
π

2

]

with Z1(h) and Z2(h) given in (2.1), we have

{
max

h∈Sq−1
I(h)

}1/2
= max

h∈Sq−1, θ∈(−π/2,π/2]
Z(h, θ). (2.2)

Therefore, from now on, we restrict our attention to the distribution of the maximum of Z(h, θ).
Let

p = q3 + q4

and

M =
{

(cos θ(h ⊗ h ⊗ h), sin θ(h ⊗ h ⊗ h ⊗ h)) ∈ Rp | h ∈ Sq−1, θ ∈
(
− π

2
,
π

2

]}
. (2.3)
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The maximum (2.2) can be rewritten as

max
x∈M

〈x, ξ〉, ξ = (ξ1, . . . , ξp) ∼ Np(0, Ip). (2.4)

Note that M and Sq−1 × (−π/2, π/2] are one-to-one. It is easy to see that M is a q dimensional
closed submanifold of Sp−1. As shall be explained in Section 3, (2.4) is of the canonical form of
the tube method in (3.1).

The upper probability function of the chi-square distribution with ν degrees of freedom is
denoted by

Ḡν(c) =
1

2ν/2Γ(ν/2)

∫ ∞

c
tν/2−1e−t/2dt. (2.5)

The volume of the m − 1 dimensional volume of the unit sphere Sm−1 is denoted by

Ωm =
2πm/2

Γ(m/2)
. (2.6)

The following is the main theorem of this paper. The proof is given in Sections 4.1 and 4.2.

Theorem 2.2 As c → ∞,

P
(

max
h∈Sq−1

I(h) ≥ c2
)

=
q∑

e=0, e:even

κe
Γ((q + 1 − e)/2)
21+e/2π(q+1)/2

Ḡq+1−e(c2) + O
(
cp−2e−ρcc2/2

)
,

where

κe = Ωq
(−3)e/2(q − 1)!

(q − e)!

e/2∑

j=0

(q − e − 2j)
(e/2 − j)! j!

(−2)jE(q−1−e)/2−j , (2.7)

Ek =
∫ π/2

−π/2
(3 cos2 θ + 4 sin2 θ)kdθ (2.8)

and
ρc =

25
16

. (2.9)

Remark 2.1 Ek in (2.8) with k an integer or a half-integer can be evaluated numerically by
recurrence formulas:

Ek =
7(2k − 1)

2k
Ek−1 −

12(k − 1)
k

Ek−2, for k = 1,
3
2
, 2, . . . , (2.10)

and
Ek =

7(2k + 3)
24(k + 1)

Ek+1 −
k + 2

12(k + 1)
Ek+2, for k = −3

2
,−2,−5

2
, . . . , (2.11)

with the boundary conditions

E1/2 = 4E(1/4) .= 4 × 1.46746, E0 = π, E−1/2 = K(1/4) .= 1.68575, E−1 =
π

2
√

3
,

where E(1/4) and K(1/4) are complete elliptic integrals of the first kind and the second kind
([1], p. 608–9). The proofs for (2.10) and (2.11) are given in Section 4.3.
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To conclude this section, we give numerical examples for the purpose of examining the
accuracy of the formula. The tail probability of the maximum for q = 2 is given by

P
(

max
h∈S2−1

I(h) ≥ c2
)

∼ w
{
Ḡ3(c2) − Ḡ1(c2)

}
= w

√
2
π

c e−c2/2, c → ∞, (2.12)

where w = 2E(1/4) .= 2 × 1.46746.
Figure 1 depicts the empirical upper probability of the limiting distribution P (maxh∈S2−1 I(h)

≥ x) estimated by Monte Carlo simulations based on 10,000 replications, and its approximation
by the tube method. One can see that the quantiles of the limiting distribution are fully
approximated by the tube method approximation (2.12).

Figure 2 depicts the empirical upper probability of the finite sample distributions P (maxh∈S2−1

In(h) ≥ x) when n = 300, 1000, 3000,∞. The number of replications is 10,000.
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Figure 1: Tail probability of limiting distribution (solid line) and its approximation by the tube
method (dotted line).

3 Summary of the tube method

3.1 Volume of the tubes and tail probabilities of the maxima

In this section we summarize the facts on the tube method required for proving Theorem 2.2.
We state Theorem 3.1 since its statement is not given in existing literature.

Let Sp−1 be the unit sphere in Rp, and let M be a closed subset of Sp−1. Assume that M is
a d dimensional C2 closed submanifold without boundaries embedded in Sp−1, and is endowed
with the metric induced by the standard inner product 〈·, ·〉 of Rp.

The set of points of Sp−1 whose great circle distance (angle) from M is less than or equal to
a constant θ is called the tube about M with the radius θ, and denoted by

Tube(M, θ) =
{

y ∈ Sp−1 | dist(y, M) ≤ θ
}

, dist(y,M) = min
x∈M

cos−1〈y, x〉.

In a similar manner, the Euclidean tube is defined in the Euclidean space by the usual distance.
But it does not play any role in this paper.
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Figure 2: Tail probabilities of finite sample distributions (n = 300, 1000, 3000,∞).

Let y be a point of Sp−1\M . The point x = pr(y) which attains the minimum minx∈M dist(y, x)
is called the projection of y onto M . If y is close to M , then pr(y) exists uniquely. Whereas, if
y is far from M , then there can exist two points x1, x2 ∈ M equidistant from y which attain the
minimum minx∈M dist(y, x) simultaneously. The supremum of the distances which assures the
uniqueness is called the critical radius.

Definition 3.1 When the pr(y) ∈ M is defined uniquely for every y ∈ Tube(M, θ) \ M , it is
said that the tube Tube(M, θ) does not have a self-overlap. The supremum

θc = sup{θ ≥ 0 | Tube(M, θ) does not have a self-overlap}

is called the critical radius of M .

The volume of a tube whose radius is less than or equal to the critical radius θc can be calculated
by taking a coordinate system based on the projection (the Fermi coordinates). The following
proposition for the dimension d = 1 is due to Hotelling [10], and due to Weyl [25] for the general
dimensional case. Here Ωp denotes the p − 1 dimensional volume of Sp−1 defined in (2.6), and

B̄a,b(c) =
Γ(a + b)
Γ(a)Γ(b)

∫ 1

c
ta−1(1 − t)b−1dt

is the upper probability function of the beta distribution with parameters (a, b).

Proposition 3.1 For 0 ≤ θ ≤ θc, p − 1 dimensional volume of the tube is given by

Vol(Tube(M, θ)) = Ωp

d∑

e=0, e: even

κeJe(θ),

where
Je(θ) =

Γ((d + 1 − e)/2)
21+e/2π(d+1)/2

B̄(d+1−e)/2,(p−d−1+e)/2(cos2 θ),

and the κe is the intrinsic invariant of the manifold M defined below in (3.6), referred to as
Weyl’s curvature invariant.
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Let ξ = (ξ1, . . . , ξp) be a random vector consisting of independent standard normal random
variables. That is, ξ ∼ Np(0, Ip). Define a Gaussian random field on a submanifold M of Sp−1

by
Z(x) = 〈x, ξ〉, x ∈ M (⊂ Sp−1). (3.1)

This is a canonical form of Gaussian random fields of mean 0 and variance 1 with a finite
Karhunen-Loève expansion.

By replacing ΩpB̄ by the upper probability function of the chi-square distribution Ḡ in (2.5),
we have an approximation formula for the tail probability of the maximum of Z(x) ([17], [22]).

Proposition 3.2 As c → ∞,

P
(
max
x∈M

Z(x) ≥ c
)

=
d∑

e=0, e:even

κeψe(c) + O
(
cp−2e−(1+tan2 θc)c2/2

)
,

where
ψe(c) =

Γ((d + 1 − e)/2)
21+e/2π(d+1)/2

Ḡd+1−e(c2).

Note that the larger the critical radius θc is, the smaller the order of the remainder term is.

3.2 Weyl’s curvature invariants

As we saw in Propositions 3.1 and 3.2, the Weyl’s curvature invariants κe and the critical radius
θc of the manifold M are needed in applying the tube method. We will explain the way to
determine them in this and subsequent subsections.

Write a local coordinate system of a d dimensional closed manifold M as (ti). The metric
tensor is denoted by gij , and write the (i, j)th elements of the inverse of the d × d matrix (gij)
as gij . Abbreviate ∂/∂ti to ∂i. The connection coefficients and the curvature tensor are given
by

Γk
ij =

d∑

h=1

gkhΓij,h with Γij,k =
1
2
(∂igjk + ∂jgik − ∂kgij), (3.2)

and

Rkl
ij =

∑

h

glhRk
hij with Rl

kij = ∂iΓl
jk − ∂jΓl

ik +
d∑

s=1

(Γl
isΓ

s
jk − Γl

jsΓ
s
ik), (3.3)

respectively. Let
Hkl

ij = Rkl
ij − (δk

i δl
j − δl

iδ
k
j ), (3.4)

where δj
i is Kronecker’s delta. For e = 0, 2, . . . , [d/2] × 2, let

He =
∑

i

∑

σ

sgn(σ) H
iσ(1)iσ(2)

i1i2
H

iσ(3)iσ(4)

i3i4
· · ·H iσ(e−1)iσ(e)

ie−1ie
. (3.5)

Here the summation
∑

i is taken over all sets of e/2 paring made of distinct elements of
{1, 2, . . . , d}, that is, all possible ways of {i1, i2, . . . , ie} ⊂ {1, 2, . . . , d} satisfying i1 < i2,
i3 < i4, . . . , ie−1 < ie and i1 < i3 < · · · < ie−1. The summation

∑
σ is taken over all per-

mutations σ of {1, 2, . . . , e} such that σ(1) < σ(2), σ(3) < σ(4), . . . , σ(e − 1) < σ(e). Then,
Weyl’s curvature invariants are defined by

κe =
∫

M
He det(gij)1/2dt1 · · · dtd, e = 0, 2, . . . , [d/2] × d (3.6)
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(Weyl [25]).
For instance, He for e = 0, 2, 4 are given as follows: H0 = 1, and hence κ0 is the d dimensional

volume of M .

H2 =
∑

1≤i<j≤d

H ij
ij =

1
2

d∑

i,j=1

H ij
ij =

1
2

{ d∑

i,j=1

Rij
ij − d(d − 1)

}
,

where
∑d

i,j=1 Rij
ij is the scalar curvature.

H4 =
∑

1≤i<j<k<l≤d

(H ij
ij Hkl

kl − H ik
ij Hjl

kl + H il
ijH

jk
kl + Hjk

ij H il
kl − Hjl

ij H
ik
kl + Hkl

ij H ij
kl

−H ij
ikHkl

jl + H ik
ik Hjl

jl − H il
ikH

jk
jl − Hjk

ik H il
jl + Hjl

ikH
ik
jl − Hkl

ikH ij
jl

+H ij
il Hkl

jk − H ik
il Hjl

jk + H il
ilH

jk
jk + Hjk

il H il
jk − Hjl

il H
ik
jk + Hkl

il H ij
jk)

=
1
8

d∑

i,j,k,l=1

(H ij
ij Hkl

kl − 4H il
ijH

kj
kl + Hkl

ij H ij
kl)

=
1
8

{( d∑

i,j=1

Rij
ij

)2
− 4

d∑

i,j,k,l=1

Ril
ijR

kj
kl +

d∑

i,j,k,l=1

Rkl
ijR

ij
kl

−2(d − 2)(d − 3)
d∑

i,j=1

Rij
ij + d(d − 1)(d − 2)(d − 3)

}
.

See Gray ([9], Lemma 4.2) for the invariants of a Euclidean tube.

3.3 Evaluation of critical radius

In this subsection we give theorems useful in calculating the critical radius of a closed subman-
ifold of the sphere.

Proposition 3.3 The critical radius θc of a closed submanifold M of Sp−1 satisfies

cot2 θc = sup
y,x∈M, y 6=x

h(x, y), h(x, y) =
1 − 〈y, Pxy〉
(1 − 〈x, y〉)2

, (3.7)

where Px is the orthogonal projection onto the linear subspace span{x}⊕TxM of Rp, and TxM

is the tangent space of M at x ([13], [17]).

A theorem corresponding to a Euclidean tube is given by Federer ([7], Theorem 4.18).
The radius θloc

c satisfying

cot2 θloc
c = lim sup

y,x∈M, ‖y−x‖→0
h(x, y) (3.8)

is called the local critical radius, which is characterized as the curvature radius of M at x ([13],
[17]). By definitions, θloc

c ≥ θc, and the equality holds if the supremum in (3.7) is attained when
‖y − x‖ → 0.

Define a real-valued function on M × M by r(x, y) = 〈x, y〉. This is the covariance function
of the Gaussian random field (3.1). Denote the local coordinate system about x and y by (si),
(ti), respectively.
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The set of the critical points of r(x, y) which are not contained in the diagonal set is denoted
by

C =
{

(x, y) ∈ M × M | x 6= y,
∂

∂si
r(x, y) = 0,

∂

∂ti
r(x, y) = 0

}
.

Then we have the following theorem.

Theorem 3.1 The critical radius θc satisfies

θc = min
{

θloc
c , inf

(x,y)∈C

1
2

cos−1〈x, y〉
}

.

Proof By Lemma 5.2 of [24], if the supremum of h(x, y) is attained at a point not contained
in the diagonal set, then it belongs to C. Furthermore, for the points (x, y) ∈ C, it holds that
Pxy = 〈x, y〉x,

h(x, y) =
1 − 〈x, y〉2

(1 − 〈x, y〉)2
=

1 + 〈x, y〉
1 − 〈x, y〉

= cot2
(1

2
cos−1〈x, y〉

)
,

and hence
sup

(x,y)∈C
h(x, y) = cot2

(
inf

(x,y)∈C

1
2

cos−1〈x, y〉
)
.

Since the supremum of h(x, y) over the diagonal set is cot2 θloc
c , the theorem follows from Propo-

sition 3.3.

A theorem corresponding to a Euclidean tube with the dimension d = 1 is given by Johansen
and Johnstone ([13], Proposition 4.2).

4 Proof of Theorem 2.2

4.1 Proof of (2.7)

In this section, we prove Theorem 2.2. By means of Proposition 3.2, the approximation formula
for the upper probability of the maximum can be given through determining Weyl’s curvature
invariants κe and the critical radius θc of the index manifold M in (2.3). The former is given
here, and the latter is given in the next subsection.

The metric tensor, the connection coefficients, and the curvature tensor for M are denoted
by g, Γ, and R, respectively, as in Section 3.2. Also, the same quantities for Sq−1 are denoted
by ḡ, Γ̄, and R̄, respectively.

Write an element h of Sq−1 by a local coordinate system as h = h(t), t = (ti). Let hi = ∂h/∂ti.
The metric of Sq−1 is ḡij = 〈hi, hj〉.

An element x of M can be written as

x = (cos θ(h ⊗ h ⊗ h), sin θ(h ⊗ h ⊗ h ⊗ h)) ∈ M

in terms of (t, θ). The bases of the tangent space of M are

∂x

∂ti
= (cos θ(hi ⊗ h ⊗ h + h ⊗ hi ⊗ h + h ⊗ h ⊗ hi),

sin θ(hi ⊗ h ⊗ h ⊗ h + h ⊗ hi ⊗ h ⊗ h + h ⊗ h ⊗ hi ⊗ h

+h ⊗ h ⊗ h ⊗ hi)), i = 1, . . . , q − 1,

∂x

∂θ
= (− sin θ(h ⊗ h ⊗ h), cos θ(h ⊗ h ⊗ h ⊗ h ⊗ h)).

9



In the following, θ is regarded as the 0th coordinate t0 of t. The metric tensor of M is

gij =





v(θ)ḡij(t) if i, j 6= 0,

1 if i = j = 0,

0 otherwise,

where
v(θ) = 3 cos2 θ + 4 sin2 θ = 3 + sin2 θ = 4 − cos2 θ. (4.1)

From this, the volume element of M is shown to be

det(ḡij(t))1/2dt1 · · · dtq−1 v(θ)(q−1)/2 dθ. (4.2)

Note that det(ḡij(t))1/2dt1 · · · dtq−1 is the volume element of Sq−1.
Let v̇ and v̈ be the first and second derivatives of v = v(θ). After some calculations along

the lines with (3.2), it is shown that the non-zero connection coefficients of M are

Γk
ij = Γ̄k

ij , Γk
i0 = Γk

0i =
1
2

v̇

v
δk
i , Γ0

ij = −1
2
v̇ḡij (i, j, k 6= 0),

and all of the other coefficients are 0.
Next we will derive the curvature tensor by (3.3). Put

Jkl
ij = δk

i δl
j − δl

iδ
k
j .

Noting that the curvature tensor of the unit sphere Sq−1 is R̄kl
ij = Jkl

ij , after cumbersome calcu-
lations we see that the non-zero elements are

Rkl
ij =

{1
v
−1

4

( v̇

v

)2}
Jkl

ij , Rk0
i0 = −R0k

i0 = −Rk0
0i = R0k

0i =
{
−1

2
v̈

v
+

1
4

( v̇

v

)2}
δk
i (i, j, k, l 6= 0).

Furthermore, noting that v̇ = 2 cos θ sin θ, (v̇)2 = 4 cos2 θ sin2 θ = 4(4−v)(v−3) = −4(v2−7v +
12), v̈ = 2 cos2 θ − 2 sin2 θ = 2(4− v)− 2(v − 3) = −2(2v − 7), we have the non-zero elements of
Hkl

ij in (3.4) as

Hkl
ij = αJkl

ij , Hk0
i0 = −H0k

i0 = −Hk0
0i = H0k

0i = βδk
i (i, j, k, l 6= 0),

where
α = α(θ) = −6

v
+

12
v2

, β = β(θ) = −12
v2

.

We substitute these quantities into (3.5) to obtain He, e = 0, 2, . . . , [q/2] × 2.
(i) The case where the set of the indices i1, i2, . . . , ie in the right-hand side of (3.5) does not

contain 0. Because the number of the ways to make e/2 pairs from q − 1 distinct objects is

(q − 1)!
(q − 1 − e)!2e/2(e/2)!

,

the summation of all terms corresponding to the case (i) becomes

αe/2 × (q − 1)!
(q − 1 − e)!2e/2(e/2)!

. (4.3)

(ii) The case where the set of the indices i1, i2, . . . , ie in the right-hand side of (3.5) contains
0. In this case, i1 = 0, and i2 6= 0, σ(1) = 1 (iσ(1) = 0). Noting that there are q − 1 ways for
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i2 (i2 = 1, . . . , q − 1), and that i3, i4, . . . , ie are indices resulting from making e/2− 1 pairs from
the set {1, 2, . . . , q − 1} \ {i2} having q − 2 elements, the summation of all terms corresponding
to the case (ii) becomes

(q − 1)βαe/2−1 × (q − 2)!
(q − e)!2e/2−1(e/2 − 1)!

. (4.4)

Summing up (4.3) and (4.4) along with

αe/2 =
(
−6

v

)e/2
e/2∑

j=0

(
e/2
j

)(
−2

v

)j

and

βαe/2−1 = −
(
−6

v

)e/2
e/2∑

j=1

(
e/2 − 1
j − 1

)(
−2

v

)j

yields

He =
e/2∑

j=0

Aj

ve/2+j
,

where

A0 =
(−3)e/2(q − 1)!

(q − e − 1)!(e/2)!
,

and for j 6= 0,

Aj = (−6)e/2(−2)j

{
(q − 1)!

(q − 1 − e)!2e/2(e/2)!

(
e/2
j

)
− (q − 1)(q − 2)!

(q − e)!2e/2−1(e/2 − 1)!

(
e/2 − 1
j − 1

)}

=
(−3)e/2(q − 1)!

(q − e)!
(q − e + 2j)(−2)j

(e/2 − j)!j!
.

Since the expression for Aj with j 6= 0 is consistent with that for A0, we have

He =
(−3)e/2(q − 1)!

(q − e)!

e/2∑

j=0

(q − e − 2j)(−2)j

(e/2 − j)!j!
1

ve/2+j
.

Finally we obtain κe in (2.7) by integrating He over M with respect to the volume element (4.2).

4.2 Proof of (2.9)

In this subsection, making use of Theorem 3.1, we show that the critical radius of the index
manifold M in (2.3) is θc = tan−1(3/4). This implies that ρc = 1+tan2 θc = 25/16. Throughout
this subsection, we assume that vectors are column vectors for notational convenience. For
instance, 〈x, y〉 = x′y, where ′ denotes the transpose.

We begin with obtaining the local critical radius θloc
c by (3.8). Let

x =
(

cos θ(h ⊗ h ⊗ h)
sin θ(h ⊗ h ⊗ h ⊗ h)

)
, x̃ =

(
cos θ̃(h̃ ⊗ h̃ ⊗ h̃)

sin θ̃(h̃ ⊗ h̃ ⊗ h̃ ⊗ h̃)

)

11



be two points of M . Write for simplicity hi = ∂h/∂ti, xi = ∂x/∂ti, x0 = ∂x/∂θ, and Ḡ = (ḡij),
v = v(θ) defined in (4.1). The orthogonal projection matrix onto span{x} ⊕ TxM is denoted by
Px. Since span{x} is orthogonal to TxM , we have

x̃′Pxx̃ = (x̃′x, x̃′x1, . . . , x̃
′xq−1, x̃

′x0)




1
vḠ

1




−1




x̃′x

x̃′x1
...

x̃′xq−1

x̃′x0




= (x̃′x)2 + (x̃′x1, . . . , x̃
′xq−1)(vḠ)−1




x̃′x1
...

x̃′xq−1


 + (x̃′x0)2.

The first term of the right-hand side is the square of

x̃′x = (h̃′h)3 cos θ̃ cos θ + (h̃′h)4 sin θ̃ sin θ.

Noting that
x̃′xi = wh̃′hi, w = 3(h̃′h)2 cos θ̃ cos θ + 4(h̃′h)3 sin θ̃ sin θ,

the second term becomes

w2

v
h̃′(h1, . . . , hq−1)Ḡ−1




h′
1
...

h′
q−1


 h̃′ =

w2

v
h̃′(Iq − hh′)h̃ =

w2

v
(1 − (h̃′h)2).

The third term is the square of

x̃′x0 = −(h̃′h)3 cos θ̃ sin θ + (h̃′h)4 sin θ̃ cos θ.

Summing up these three terms, the numerator of the right-hand side of (3.8) is

1 − x̃′Pxx̃ = 1 − ((h̃′h)3 cos θ̃ cos θ + (h̃′h)4 sin θ̃ sin θ)2 − w2

v
(1 − (h̃′h)2)

−(−(h̃′h)3 cos θ̃ sin θ + (h̃′h)4 sin θ̃ cos θ)2

= 1 − cos6 ψ cos2 θ̃ − cos8 ψ sin2 θ̃

−(3 cos2 ψ cos θ̃ cos θ + 4 cos3 ψ sin θ̃ sin θ)2

3 cos2 θ + 4 sin2 θ
sin2 ψ

= f (say),

where h̃′h = cos ψ. On the other hand, the denominator of the right-hand side of (3.8) is

(1 − x̃′x)2 = (1 − cos3 ψ cos θ̃ cos θ − cos4 ψ sin θ̃ sin θ)2

= g (say).

The local critical radius θloc
c can be obtained by cot2 θloc

c = lim sup f/g when θ̃ − θ → 0,
ψ → 0. Let θ̃ − θ = δ and u = sin2 θ. Ignoring ψ4, ψ2δ2, and δ4 as infinitesimals, we have with
aid of symbolic calculation that

f ∼ 3(1 + u)ψ4 +
12

3 + u
ψ2δ2 and g ∼ (3 + u)2

4
ψ4 +

3 + u

2
ψ2δ2 +

1
4
δ4.
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Letting δ2 ∼ kψ2 for a constant k (may be 0 or ∞), we have

f

g
∼ 12

(1 + u)(3 + u) + 4k

(3 + u)(k + 3 + u)2
.

As a function of k, the right-hand side of the above takes its maximum

48
(3 + u)2(3 − u)

at k = (3 + u)(1 − u)/2. Furthermore as a function of u, this takes its maximum 48/27 = 16/9
at u = 0 over 0 ≤ u ≤ 1. Note that when u = 0, k = 3/2 and θ = 0.

Summarizing the above arguments, one can see that lim sup f/g = 16/9 is attained when
θ̃, θ → 0, ψ → 0, |θ̃ − θ| ∼

√
3/2ψ, and accordingly

θloc
c = cot−1(

√
16/9) = tan−1(3/4) .= 0.205π.

As the second step, we confirm that the local critical radius is really the critical radius. The
covariance function of (2.4) is

x′x̃ = cos θ cos θ̃(h′h̃)3 + sin θ sin θ̃(h′h̃)4

= cos θ cos θ̃ cos3 ψ + sin θ sin θ̃ cos4 ψ

= r(ψ, θ, θ̃) (say).

The ranges of the variables are

ψ ∈ [0, π], θ, θ̃ ∈
(
−π

2
,
π

2

]
. (4.5)

The set of the critical points are the set of the solutions of

0 =
∂r

∂ψ
= − sinψ(3 cos θ cos θ̃ cos2 ψ + 4 sin θ sin θ̃ cos3 ψ), (4.6)

0 =
∂r

∂θ
= − sin θ cos θ̃ cos3 ψ + cos θ sin θ̃ cos4 ψ, (4.7)

0 =
∂r

∂θ̃
= − cos θ sin θ̃ cos3 ψ + sin θ cos θ̃ cos4 ψ. (4.8)

(i) The case sin ψ 6= 0. From (4.6), (3 cos θ̃ cos2 ψ, 4 sin θ̃ cos3 ψ) is orthogonal to (cos θ, sin θ).
From (4.7), (cos θ̃ cos3 ψ, sin θ̃ cos4 ψ) is orthogonal to (− sin θ, cos θ). Combining these,

0 = 3 cos2 θ̃ cos5 ψ + 4 sin2 θ̃ cos7 ψ = cos5 ψ(3 cos2 θ̃ + 4 sin2 θ̃ cos2 ψ),

from which cos ψ = 0. Because of (4.5), ψ = π/2. Conversely, when ψ = π/2, (4.6)–(4.8) are
satisfied. Thus,

r = 0,
1
2

cos−1 0 =
π

4
> θloc

c .

(ii) The case sin ψ = 0. Then cos ψ = ±1 (ψ = 0, π). In this case both (4.7) and (4.8) are
reduced to sin(θ ∓ θ̃) = 0. Because of (4.5), θ = ±θ̃. If ψ = 0 and θ = θ̃, then (h, θ) = (h̃, θ̃), or
x = x̃. Hence, it should be ψ = π, θ = −θ̃, and

r = −1,
1
2

cos−1(−1) =
π

2
> θloc

c .

We have proved that the critical radius is attained locally.
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4.3 Proof of the recurrences (2.10) and (2.11)

For v = v(θ) = 3 cos2 θ + 4 sin2 θ = 4 − cos2 θ = 3 + sin2 θ,

Ek =
∫ π/2

−π/2
v(θ)kdθ

=
∫ π/2

−π/2
(4 − cos2 θ)vk−1dθ = 4Ek−1 −

∫ π/2

−π/2
cos θ2vk−1dθ

= 4Ek−1 − sin θ cos θvk−1

∣∣∣∣
π/2

−π/2

+
∫ π/2

−π/2
sin θ{cos θvk−1}′dθ

= 4Ek−1 −
∫ π/2

−π/2
sin2 θvk−1dθ +

∫ π/2

−π/2
sin θ cos θ(k − 1)vk−22 sin θ cos θdθ

= 4Ek−1 −
∫ π/2

−π/2
(v − 3)vk−1dθ + 2(k − 1)

∫ π/2

−π/2
(v − 3)(4 − v)vk−2dθ

= 4Ek−1 − Ek + 3Ek−1 − 2(k − 1)Ek + 14(k − 1)Ek−1 − 24(k − 1)Ek−2

= (−2k + 1)Ek + (14k − 7)Ek−1 − 24(k − 1)Ek−2,

and hence
2kEk = 7(2k − 1)Ek−1 − 24(k − 1)Ek−2

or
−2(k + 2)Ek+2 + 7(2k + 3)Ek+1 = 24(k + 1)Ek.

References

[1] Abramowitz, M. and Stegun, I. A. (1992). Handbook of Mathematical Functions with For-
mulas, Graphs, and Mathematical Tables, Reprint of the 1972 ed., Dover.

[2] Adler, R. J. (1981). The Geometry of Random Fields, Wiley.

[3] Adler, R. J. (2000). On excursion sets, tube formulas and maxima of random fields, Ann.
Appl. Probab., 10, 1–74.

[4] Adler, R. J. and Taylor, J. E. (2007). Random Fields and their Geometry , Springer.

[5] Anderson, T.W. (2003). An Introduction to Multivariate Statistical Analysis, 3rd ed.,
Wiley-Interscience.

[6] Anderson, T. W. and Stephens, M. A. (1972). Tests for randomness of directions against
equatorial and bimodal alternatives, Biometrika, 59, 613–621.

[7] Federer, H. (1959). Curvature measures, Trans. Amer. Math. Soc., 93, 418–491.

[8] Friedman, J. H. (1987). Exploratory projection pursuit, J. Amer. Statist. Assoc., 82, 249–
266.

[9] Gray, A (2004). Tubes, 2nd ed, Birkhäuser.
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