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Abstract
We consider the problem of minimizing a nonlinear discrete function

with L\-/M\-convexity proposed in the theory of discrete convex analy-
sis. For this problem, steepest descent algorithms and steepest descent
scaling algorithms are known. In this paper, we use continuous relax-
ation approach which minimizes the continuous variable version first in
order to find a good initial solution of a steepest descent algorithm. For
discrete L\-/M\-convex functions, we give proximity theorems showing
that a discrete global minimizer exists in the neighborhood of a con-
tinuous global minimizer. These proximity theorems afford theoretical
guarantees for the efficiency of the proposed algorithms.

1 Introduction

In recent research towards a unified framework of discrete convex analysis
[11], the concept of M\-convex functions was proposed as an extension of that
of valuations on matroids invented by Dress and Wenzel [2]. The concept of
L\-convex functions, which generalize the Lovász extension of submodular
set functions [8], was also proposed in the theory of discrete convex analy-
sis. These two concepts of discrete convexity are conjugate to each other,
and a Fenchel-type duality theorem holds for L\- and M\-convex/concave
functions [11]. Applications of L\-/M\-convexity can be found in mathemat-
ical economics with indivisible commodities [1, 12, 13], system analysis by
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mixed polynomial matrices [10], etc. These two discrete convexities play
central roles in the theory of discrete convex analysis [11] and provide a
nice framework of nonlinear combinatorial optimization; global optimality
is guaranteed by local optimality and descent algorithms work for minimiza-
tion. Steepest descent algorithms, which terminate in pseudo-polynomial
time, and steepest descent scaling algorithms, which terminate in polyno-
mial time with the aid of a scaling technique, are also known. The proximity
theorems on a scaled local optimum for L\-convexity and M\-convexity guar-
antee the efficiency of scaling algorithms.

The objective of this paper is to show that we can minimize an L\-/M\-
convex function more efficiently by using continuous relaxation approach
which minimizes the continuous variable version first in order to find a good
initial solution of a steepest descent algorithm. In general, for discrete func-
tion minimization, we can say that the rounded continuous relaxation solu-
tion is almost certainly nonoptimal and may be very far away from the opti-
mal integer solution. For separable convex optimization problems, proximity
results between the continuous and integral optimal solutions were obtained
[4, 5]. In this paper, for the discrete L\-/M\-convex function minimization
problems, which are nonseparable optimization problems, we give proximity
theorems showing that a discrete global minimizer exists in the neighbor-
hood of a continuous global minimizer. Based on our new proximity, we
can minimize a discrete L\-/M\-convex function efficiently by using continu-
ous relaxation. In order to compare the performance of our new continuous
relaxation approach with those of the previously proposed algorithms, we
make numerical experiments with randomly generated test problems. It is
observed from numerical results that our new approach is much faster than
the previously proposed algorithms.

2 Preliminaries

Let f : Rn → R ∪ {+∞} be a function. The effective domain and the
epigraph of f are given by

dom f = {x ∈ Rn | f(x) < +∞}, epif = {(x, α) ∈ Rn × R | α ≥ f(x)}.

For a function f : Zn → Z ∪ {+∞}, we use the notation domZ f = {x ∈
Zn | f(x) < +∞} for the effective domain of f .

A convex function f : Rn → R∪{+∞} is said to be proper if dom f 6= ∅,
and closed if epif is a closed set. For a closed proper convex function
f : Rn → R ∪ {+∞}, arg min f 6= ∅ if dom f is bounded.

2.1 L-Convex Functions

For vectors p, q ∈ Zn, we write p ∨ q and p ∧ q for their componentwise
maximum and minimum. We write 1 = (1, 1, . . . , 1) ∈ Zn. A function
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g : Zn → R ∪ {+∞} is called L-convex [11] if it satisfies

(SBF[Z]) g(p) + g(q) ≥ g(p ∨ q) + g(p ∧ q) (p, q ∈ Zn),
(TRF[Z]) ∃r∈R such that g(p+1) = g(p)+r (p∈Zn),

where it is understood that the inequality (SBF) is satisfied if g(p) or g(q)
is equal to +∞.

A function g : Zn → R∪{+∞} is called L\-convex [3, 11] if it is obtained
from an L-convex function g̃(p0, p1, . . . , pn) by restriction, i.e.,

g(p1, . . . , pn) = g̃(0, p1, . . . , pn). (1)

It turns out that L\-convexity can be characterized by a kind of generalized
submodularity:

(SBF\[Z]) g(p) + g(q) ≥ g((p − α1) ∨ q) + g(p ∧ (q + α1))
(0 ≤ α ∈ Z, p, q ∈ Zn),

which is called translation submodularity.
The concepts of L-/L\-convexity can also be defined for functions in real

variables through an appropriate adaptation of the conditions (SBF[Z]) and
(TRF[Z]). Namely, we call a function ḡ : Rn → R ∪ {+∞} L-convex [11] if
ḡ is convex and satisfies

(SBF[R]) ḡ(p) + ḡ(q) ≥ ḡ(p ∨ q) + ḡ(p ∧ q) (p, q ∈ Rn),
(TRF[R]) ∃r∈R such that ḡ(p+1) = ḡ(p)+r (p∈Rn).

L\-convex functions are defined as the restriction of L-convex functions, as
in (1), and are characterized by

(SBF\[R]) ḡ(p) + ḡ(q) ≥ ḡ((p − α1) ∨ q) + ḡ(p ∧ (q + α1))
(0 ≤ α ∈ R, p, q ∈ Rn).

Throughout the paper, we assume that a continuous L\-convex function is
a closed proper convex function.

Minimization of a continuous L\-convex function is tractable with a firm
theoretical basis provided by convex analysis. For minimization of a discrete
L\-convex function, we have the following optimality criterion, which shows
that global minimality is characterized by local minimality. The character-
istic vector of X ⊆ {1, 2, . . . , n} is denoted by χX ∈ {0, 1}n.

Theorem 2.1 (Theorem 7.14 in [11]). Let g : Zn → R∪{+∞} be a discrete
L\-convex function. For p ∈ domZ g, g(p) ≤ g(q) (q ∈ Zn) if and only if

g(p) ≤ g(p ± χX) (X ⊆ {1, 2, . . . , n}). (2)
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2.2 M-Convex Functions

Let χi ∈ {0, 1}n denote the characteristic vector of i ∈ {1, 2, . . . , n}. For a
vector x ∈ Zn and an element i ∈ {1, 2, . . . , n}, x(i) means the component
of x with index i. For a vector x ∈ Zn and a set X ⊆ {1, 2, . . . , n}, we write
x(X) =

∑
i∈X x(i). We write the positive and negative supports of a vector

x by
supp+(x) = {i ∈ {1, 2, . . . , n} | x(i) > 0},
supp−(x) = {i ∈ {1, 2, . . . , n} | x(i) < 0}.

A function f : Zn → R ∪ {+∞} is said to be M-convex if it satisfies
(M-EXC[Z]):

(M-EXC[Z]) ∀x, y ∈ domZ f , ∀i ∈ supp+(x−y), ∃j ∈ supp−(x−
y) such that

f(x) + f(y) ≥ f(x − χi + χj) + f(y + χi − χj).

We call a function f̄ : Rn → R ∪ {+∞} M-convex if it is convex and
satisfies (M-EXC[R]):

(M-EXC[R]) ∀x, y ∈ dom f̄ , ∀i ∈ supp+(x−y), ∃j ∈ supp−(x−
y), ∃α0 > 0 satisfying

f̄(x)+ f̄(y) ≥ f̄(x−α(χi−χj))+ f̄(y+α(χi−χj)) (α ∈ [0, α0]).
(3)

A continuous M-convex function is said to be closed proper M-convex if it is
closed proper convex, in addition. The effective domain of a closed proper
M-convex function is contained in a hyperplane {x ∈ Rn |

∑n
i=1 x(i) = r}

for some r ∈ R. In view of this, we say that a function f̄ : Rn → R∪{+∞}
is M\-convex if the function f̃ : Rn+1 → R ∪ {+∞} defined by

f̃(x0, x) :=
{

f̄(x) ((x0, x) ∈ Rn+1, x0 = r −
∑n

i=1 x(i)),
+∞ (otherwise)

is M-convex. We say that f̄ is closed proper M\-convex if it is closed proper
convex, in addition. M\-convexity of f̄ is characterized by the following
exchange property (M\-EXC[R]):

(M\-EXC[R]) ∀x, y ∈ dom f̄ , ∀i ∈ supp+(x−y), ∃j ∈ supp−(x−
y) ∪ {0}, ∃α0 > 0 satisfying (3),

where χ0 = 0.
Throughout the paper, we assume that a continuous M\-convex function

f̄ is a closed proper convex function.
Minimization of a continuous M\-convex function is tractable with a firm

theoretical basis provided by convex analysis. For minimization of a discrete
M\-convex function, we have the following optimality criterion which shows
that global minimality is characterized by local minimality.
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Theorem 2.2 (Theorem 6.26 in [11]). Let f : Zn → R∪{+∞} be a discrete
M\-convex function. For x ∈ domZ f , f(x) ≤ f(y) (y ∈ Zn) if and only if

f(x) ≤ f(x − χi + χj) (i, j ∈ {1, 2, . . . , n} ∪ {0}). (4)

3 Proposed Algorithms

For discrete L\-convex and M\-convex function minimization, our continuous
relaxation approach and proximity theorems between the discrete minimizer
and the relaxation solution are given in Sections 3.1 and 3.2, respectively.
Section 3.3 is devoted to the proofs of proximity theorems.

3.1 Algorithm for L-Convex Functions

The local characterization of global minimality for L\-convex functions (The-
orem 2.1) naturally leads to the following steepest descent algorithm [11, Sec.
10.3.1].

Steepest descent algorithm for an L\-convex function g
S0: Find a vector p ∈ dom g.
S1: Find ε ∈ {1,−1} and X ⊆ {1, 2, . . . , n} that minimizes g(p + εχX).
S2: If g(p) ≤ g(p + εχX), then stop (p is a minimizer of g).
S3: Set p := p + εχX and go to S1.

Step S1, i.e., the verification of (2), amounts to minimizing a pair of
submodular set functions which can be done in polynomial time [6, 14, 15].
Furthermore, the steepest descent algorithm, which is a pseudo-polynomial
time algorithm, can be made more efficient with the aid of a scaling tech-
nique. The resulting steepest descent scaling algorithm [11, Sec. 10.3.2]
terminates in polynomial time. This is guaranteed by the proximity theo-
rem (Theorem 7.18 in [11]) on a scaled local optimum for L-convexity.

The following is another “proximity theorem,” showing that a continuous
relaxation solution of a discrete L\-convex function minimization problem
exists in a neighborhood of the integer minimizer.

Theorem 3.1. Let g : Zn → R∪{+∞} be a discrete L\-convex function and
ḡ : Rn → R∪{+∞} be a continuous L\-convex function with arg min ḡ 6= ∅.
We assume that

g(p) = ḡ(p) (p ∈ Zn).

Then, for any p∗ ∈ arg min g, there exists some p̄ ∈ arg min ḡ such that

p∗ − n1 < p̄ < p∗ + n1.
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The proof of Theorem 3.1 is given later in Section 3.3.
In the reverse direction, we obtain the following proximity theorem, a

main theorem of this paper, which shows that a minimizer of a discrete
L\-convex function g exists in a neighborhood of the continuous relaxation
solution. We assume now the boundedness of the effective domain.

Theorem 3.2. Let g : Zn → R∪{+∞} be a discrete L\-convex function and
ḡ : Rn → R∪{+∞} be a continuous L\-convex function with arg min ḡ 6= ∅.
We assume that

g(p) = ḡ(p) (p ∈ Zn).

For any p̄ ∈ arg min ḡ, there exists some p∗ ∈ arg min g such that

p̄ − n1 < p∗ < p̄ + n1.

The proof of Theorem 3.2 is also given later in Section 3.3.
Based on Theorem 3.2, to minimize a discrete L\-convex function g, we

propose a continuous relaxation approach which is the steepest descent algo-
rithm starting with a continuous relaxation solution as the initial solution.
Theorem 3.2 guarantees that our continuous relaxation approach is efficient
if the relaxation solution can be found fast. In order to find the relaxation
solution, we can utilize continuous convex minimization algorithms for ḡ
since a continuous L\-convex function is convex by the definition.

3.2 Algorithm for M-Convex Functions

The local characterization of global minimality for M\-convex functions
(Theorem 2.2) naturally leads to the following steepest descent algorithm
[11, Sec. 10.1.1].

Steepest descent algorithm for an M\-convex function f
S0: Find a vector x ∈ dom f .
S1: Find i, j ∈ {1, 2, . . . , n} ∪ {0} (i 6= j) that minimizes f(x − χi + χj).
S2: If f(x) ≤ f(x − χi + χj), then stop (x is a minimizer of f).
S3: Set x := x − χi + χj and go to S1.

The steepest descent algorithm terminates in pseudo-polynomial time.
Furthermore, this can be made more efficient with the aid of a scaling tech-
nique. The resulting steepest descent scaling algorithm [9], see also [11, Sec.
10.1.2], terminates in polynomial time. This is guaranteed by the proximity
theorem (Theorem 6.37 in [11]) on a scaled local optimum for M-convexity.

The following is another “proximity theorem,” showing that a continuous
relaxation solution of a discrete M\-convex function minimization problem
exists in a neighborhood of the integer minimizer.

6



Theorem 3.3. Let f : Zn → R ∪ {+∞} be a discrete M\-convex func-
tion and f̄ : Rn → R ∪ {+∞} be a continuous M\-convex function with
arg min f̄ 6= ∅. We assume that

f(x) = f̄(x) (x ∈ Zn).

Then, for any x∗ ∈ arg min f , there exists some x̄ ∈ arg min f̄ such that

x∗ − n1 < x̄ < x∗ + n1.

The proof of Theorem 3.3 is given later in Section 3.3.
In the reverse direction, we obtain the following proximity theorem, an-

other main theorem of this paper, which shows that a minimizer of a discrete
M\-convex function g exists in a neighborhood of the continuous relaxation
solution. We assume now the boundedness of the effective domain.

Theorem 3.4. Let f : Zn → R ∪ {+∞} be a discrete M\-convex func-
tion and f̄ : Rn → R ∪ {+∞} be a continuous M\-convex function with
arg min f̄ 6= ∅. We assume that

f(x) = f̄(x) (x ∈ Zn).

For any x̄ ∈ arg min f̄ , there exists some x∗ ∈ arg min f such that

x̄ − n1 < x∗ < x̄ + n1.

The proof of Theorem 3.4 is also given later in Section 3.3.
Based on Theorem 3.4, to minimize a discrete M\-convex function f , we

propose a continuous relaxation approach which is the steepest descent algo-
rithm starting with a continuous relaxation solution as the initial solution.
Theorem 3.4 guarantees that our continuous relaxation approach is efficient
if the relaxation solution can be found fast. In order to find the relaxation
solution, we can utilize continuous convex minimization algorithms for f̄
since a continuous M\-convex function is convex by the definition.

3.3 Proofs

We give proofs of Theorems 3.1, 3.2, 3.3 and 3.4.

Proof for Theorem 3.1. For an integer s ≥ 2, we define gs : Zn → R ∪
{+∞} as

gs(p) := ḡ
(p

s

)
(p ∈ Zn).

We have
g(p) = gs(sp) (p ∈ Zn). (5)
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For all p, q ∈ Zn and 0 ≤ α ∈ Z, we have

gs(p) + gs(q) = ḡ(
p

s
) + ḡ(

q

s
)

≥ ḡ((
p

s
− α

s
1) ∨ q

s
) + ḡ(

p

s
∧ (

q

s
+

α

s
1))

= ḡ(
(p − α1) ∨ q

s
) + ḡ(

p ∧ (q + α1)
s

)

= gs((p − α1) ∨ q) + gs(p ∧ (q + α1)),

where the inequality is by translation submodularity (SBF\[R]). This means
discrete L\-convexity of gs.

Optimality criterion for g, i.e., (2), yields

gs(sp∗) ≤ gs(sp∗ ± sχX) (X ⊆ {1, 2, . . . , n})

from (5). By applying L-proximity theorem on a scaled local optimum
(Theorem 7.18 (2) in [11]) to gs and sp∗, there exists ps ∈ arg min gs with

sp∗ − (s − 1)n1 ≤ ps ≤ sp∗ + (s − 1)n1. (6)

Dividing all parts of (6) by s shows

p∗ − n1 < p∗ − s − 1
s

n1 ≤ ps

s
≤ p∗ +

s − 1
s

n1 < p∗ + n1.

Put K := {p ∈ Rn | p∗ − n1 ≤ p ≤ p∗ + n1}. Since K is compact,
every sequence in K has a convergent subsequence, the limit point of which
belongs to K. For k ∈ N, we suppose sk = 2k, psk

∈ arg min gsk
and

psk
sk

∈ K. From a sequence {psk
sk

}, we take a convergent subsequence {
pski
ski

}.

We put limi→∞
pski
ski

= p′ ∈ K. Continuity of ḡ implies limi→∞ ḡ(
pski
ski

) =

ḡ(limi→∞
pski
ski

) = ḡ(p′). Note that {ḡ(
pski
ski

)} is monotonically decreasing se-

quence (ḡ(
psk1
sk1

) ≥ ḡ(
psk2
sk2

) ≥ · · · ≥ ḡ(
pski
ski

) ≥ · · · ) and

ḡ(p′) ≤ ḡ(
p2ki

2ki
) = min g2ki (i ∈ N). (7)

Now, we prove ḡ(p′) = min ḡ, i.e., p′ ∈ arg min ḡ by contradiction. As-
sume ḡ(p′) > min ḡ and put ε0 := ḡ(p′) − min ḡ > 0. We fix an arbitrary
p̄ ∈ arg min ḡ. For any number ε > 0, there exist N ∈ {ski

| i = 1, 2, . . .} and
q :=

∑N
k=0

bk

2k with b0 := bp̄c and bk ∈ {0, 1}n such that 2Nq ∈ Z, |p̄−q| < ε.
Continuity of ḡ gives

∀ε′ > 0,∃δε′ > 0, : |x − y| < δε′ ,⇒ |ḡ(x) − ḡ(y)| < ε′

for x = p̄ and y = q. Now, considering the number ε′ = ε0
2 , we have

min g2N ≤ ḡ(q) < min ḡ +
ε0

2
< min ḡ + ε0 = ḡ(p′),

contradicting (7). This proves ḡ(p′) = min ḡ.
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Proof for Theorem 3.2. To use Theorem 3.1 in the reverse direction, we
consider the case where ḡ : Rn → R ∪ {+∞} has a unique minimizer p̄.
Then, the fact that the condition

p∗ − n1 < p̄ < p∗ + n1

holds for all p∗ ∈ arg min g is immediate from Theorem 3.1. In particular,
there exists p∗ ∈ arg min g satisfying this condition.

We consider a perturbation of ḡ so that we can use this fact. We ar-
bitrarily fix a minimizer p̄ ∈ arg min ḡ. For any number ε > 0, we define
functions ḡε : Rn → R ∪ {+∞} and gε : Zn → R ∪ {+∞} as

ḡε(p) := ḡ(p) +
n∑

i=1

ε(p(i) − p̄(i))2 (p ∈ Rn)

and
gε(p) := ḡε(p) (p ∈ Zn).

The functions ḡε and gε are L\-convex by Theorem 7.11(1) in [11] and ḡε

has a unique minimizer p̄. Recall that we assume now the boundedness of
the effective domain. We fix sufficiently small ε such that p∗ε ∈ arg min gε

is also a minimizer of g. Then we apply the fact in the case of a unique
continuous minimizer to show that there exists p∗ε ∈ arg min g such that
p∗ε − n1 < p̄ < p∗ε + n1.

Proof for Theorem 3.3. For an integer s ≥ 2, we define fs : Zn → R ∪
{+∞} as

fs(x) := f̄
(x

s

)
(x ∈ Zn).

We have
f(x) = fs(sx) (x ∈ Zn). (8)

Since f̄ is continuous M\-convex, for all x, y ∈ Zn and i ∈ supp+(x− y),
there exist j ∈ supp−(x − y) ∪ {0} and α0 > 0, satisfying

fs(x) + fs(y) = f̄(
x

s
) + f̄(

y

s
)

≥ f̄(
x

s
− α(χi − χj)) + f̄(

y

s
+ α(χi − χj))

= f̄(
x − sα(χi − χj)

s
) + f̄(

y + sα(χi − χj)
s

)

for all α ∈ [0, α0]. Here, when s ≥ d 1
α0
e, we have sα0 ≥ 1 and we can choose

α so that sα = 1. This means

fs(x) + fs(y) ≥ fs(x − χi + χj) + fs(y + χi − χj),

that is to say, fs is discrete M\-convex.
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Optimality criterion for f , i.e., (4), yields

fs(sx∗) ≤ fs(sx∗ − s(χi − χj)) (i, j ∈ {1, 2, . . . , n} ∪ {0})

from (8). By applying M-proximity theorem on a scaled local optimum
(Theorem 6.37 (2) in [11]) to fs and sx∗, there exists xs ∈ arg min fs with

sx∗ − (s − 1)n1 ≤ xs ≤ sx∗ + (s − 1)n1. (9)

Dividing all parts of (9) by s shows

x∗ − n1 < x∗ − s − 1
s

n1 ≤ xs

s
≤ x∗ +

s − 1
s

n1 < x∗ + n1.

We can prove, for k ∈ N, sk = 2k and xsk
∈ arg min fsk

, in the same
way to the proof of Theorem 3.1, that there exists a convergent subsequence

{
xski

ski

}, the limit point of which is x′ ∈ {x ∈ Rn | x∗ − n1 < x < x∗ + n1}

and x′ ∈ arg min f̄ .

Proof for Theorem 3.4. For any number ε > 0, we define functions f̄ε :
Rn → R ∪ {+∞} and fε : Zn → R ∪ {+∞} as

f̄ε(x) := f̄(x) +
n∑

i=1

ε(x(i) − x̄(i))2 (x ∈ Rn)

and
fε(x) := f̄ε(x) (x ∈ Zn).

Since the functions f̄ε and fε are M\-convex by Theorem 6.15(1) in [11], we
can complete the proof in the similar way to the proof of Theorem 3.2.

4 Numerical Experiments

We here mainly compare the performance of our new continuous relaxation
approach with those of the previously proposed algorithms. We observe from
numerical experiments that our approach is much faster than the previous
algorithms.

We implemented three algorithms for minimization of a discrete L\-
convex function shown in Table 1 and four algorithms for minimization of a
discrete M\-convex function shown in Table 2 in the C language to compare
the performance of these algorithms.

We use the following libraries:

• ‘L-BFGS’ by J. Nocedal1 with its C++ wrapper by T. Kudo2, which
is an implementation of quasi-Newton method for continuous function

1http://www.ece.northwestern.edu/∼nocedal/lbfgs.html
2http://chasen.org/∼taku/software/misc/lbfgs/
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Table 1: Algorithms we implemented for L\-convex function minimization.

symbol algorithm
SD steepest descent algorithm [11, Sec. 10.3.1]
SCALING steepest descent scaling algorithm [11, Sec. 10.3.2]
RELAX our new continuous relaxation approach

Table 2: Algorithms we implemented for M\-convex function minimization.

symbol algorithm
SD steepest descent algorithm [11, Sec. 10.1.1]
SD2 modified steepest descent algorithm [9]
SCALING steepest descent scaling algorithm [9], [11, Sec. 10.1.2]
RELAX our new continuous relaxation approach

optimization [7]. As the routine requires the gradient of the objective
function, we calculate a finite-difference approximation by calling the
function evaluation oracle n + 1 times. We use this only in RELAX
(our new continuous relaxation approach).

• ‘SFM8’ by S. Iwata, which is an implementation of Iwata–Fleischer–
Fujishige [6]. This minimizes a submodular function with O(n5 log2 M)
function evaluations, where M is the maximum absolute value of the
submodular function. We use this for the L\-convex case.

• ‘SIMD-oriented Fast Mersenne Twister’ developed by M. Saito and M.
Matsumoto3, which generates pseudorandom numbers. We make use
of this to generate test problems.

As test problems for discrete L\-convex function minimization, we con-
sider the following function:

g(p) =
n∑

i=1

hi(p(i)) +
∑

1≤i<j≤n

hij(p(i) − p(j)) (p ∈ Zn),

where hi(z) = ai(z− ci)2 + bi(z− ci) and hij(z) = aijz
2 + bijz are univariate

functions. In our continuous relaxation approach, we use

ḡ(p) =
n∑

i=1

hi(p(i)) +
∑

1≤i<j≤n

hij(p(i) − p(j)) (p ∈ Rn).

For each n, we generate ten test problems with randomly chosen integer
variables 1 ≤ ai, aij ≤ n, −n2 ≤ bi, ci, bij ≤ n2. For each problem, we

3http://www.math.sci.hiroshima-u.ac.jp/∼m-mat/MT/SFMT/
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Figure 1: The number of oracle calls and CPU time for L\-convex function
minimization.

randomly choose an initial discrete solution p0 satisfying −10n ≤ p0(i) ≤
10n.

As test problems for discrete M\-convex function minimization, we con-
sider the following function:

f(x) =
∑
X∈T

{aXx(X)2 + bXx(X) + cX} (x ∈ Zn),

where T is a laminar family. In our continuous relaxation approach, we use

f̄(x) =
∑
X∈T

{aXx(X)2 + bXx(X) + cX} (x ∈ Rn).

For each n, we generate ten test problems with randomly chosen real vari-
ables 0 < aX ≤ 1000, −1000 ≤ bX , cX ≤ 1000 for X ∈ T .

Our computational environment is the following: HP dx5150 SF/CT,
AMD Athlon 64 3200+ processor (2.0GHz, 512KB L2 cache), 4GB memory,
Vine Linux 4.1 (kernel 2.6.16), gcc 3.3.6.

All the algorithms implemented here provide an optimal solution under
the assumption that an oracle for computing L\-/M\-convex function values
is available. We measure the number of oracle calls and CPU time for each
problem. Our numerical results are summarized in Figures 1 and 2. The
left of Figure 1 shows the relationship between the number of oracle calls C
and dimension n for L\-convex function minimization, and the right shows
the relationship between CPU time T and n. Figure 2 shows the case of
M\-convex function minimization. In all the algorithms the relationship is
linear in log C and log n, which implies C = O(nl) for some l. Also, the
relationship is linear in log T and log n, which implies T = O(nl) for some
l. These results are displayed in Tables 3 and 4.

By numerical experiments with randomly generated test problems, we
can conclude that our continuous relaxation approach is faster than the
previously proposed algorithms.

12



10^6

10^5

10^4

10^3

 10  100

#o
ra

cl
e 

ca
lls

, C

dimension, n

SD
SD2

SCALING
RELAX

an3.9

bn3.0

cn2.6

dn1.8  0.01

 0.1

 1

 10

 10  100

C
P

U
 ti

m
e,

 T
 (s

ec
)

dimension, n

SD
SD2

SCALING
RELAX

an4.7

bn3.8

cn3.8

dn3.0

Figure 2: The number of oracle calls and CPU time for M\-convex function
minimization.

Table 3: Observed computational complexity for L\-convex function mini-
mization.

algorithm SD SCALING RELAX
oracle calls C n3.3 n2.8 n2.5

CPU time T n4.6 n4.4 n4.5

Table 4: Observed computational complexity for M\-convex function mini-
mization.

algorithm SD SD2 SCALING RELAX
oracle calls C n3.8 n3.0 n2.6 n1.8

CPU time T n4.7 n3.8 n3.8 n3.0
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