
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Calculus of Minimals:
Deriving Dynamic-Programming Algorithms

based on Preservation of Monotonicity

Akimasa MORIHATA and Kiminori MATSUZAKI and
Zhenjiang HU and Masato TAKEICHI

METR 2007–61 December 2007

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

Calculus of Minimals: Deriving Dynamic-Programming Algorithms

based on Preservation of Monotonicity

Akimasa Morihata Kiminori Matsuzaki Zhenjiang Hu Masato Takeichi

{morihata,kmatsu}@ipl.t.u-tokyo.ac.jp
{hu,takeichi}@mist.i.u-tokyo.ac.jp

The University of Tokyo

Abstract

Constructing efficient algorithms is difficult and often considered to be a privilege of a few special-
ists. Program calculation is a methodology for easy construction of efficient algorithms, where efficient
algorithms are systematically derived from naive but obviously correct algorithms by calculational laws.
This paper shows an ongoing effort to give a clear and effective methodology to deal with combinatorial
optimization problems based on program calculation. First, we formalize greedy algorithms and dynamic
programming algorithms in terms of minimals and the strictly monotone property. Next, we propose a
new calculational law to derive dynamic programming algorithms, which builds on some calculational
laws to construct orders satisfying monotone properties. Our law is not only applicable for a wide
class of combinatorial optimization problems, but also suitable for automatic implementation. Finally,
as a nontrivial application of our calculational laws, we show systematic derivations of algorithms for
regular-language constrained shortest path problems.

1 Introduction

Constructing efficient algorithms is a laborious task. We need to investigate specific properties of the prob-
lem in detail, use complicated and tricky procedure to avoid unnecessary or inefficient computations, and
accomplish probably painful proofs for its correctness with incomprehensible mathematics. These processes
would be too difficult for nonspecialists.

Program calculation [BdM96] (or calculational programming) is a methodology for easy construction of
efficient algorithms. The point of program calculation is to divide an algorithm construction process into
two steps. We first give an obviously correct algorithm with no attention to its efficiency; after that, we
improve its efficiency by applying calculational laws, which are mathematically correct program transfor-
mation rules. Program calculation has many advantages over the usual way. First, we do not need to
worry about the correctness of the algorithm constructed. Because the calculational laws are correct, the
algorithm constructed is proved to be correct by its construction. Second, we can understand the key
insight of the algorithm from its construction. Since similar derivations for similar problems yield simi-
lar algorithms, we can characterize algorithms by their derivation processes. Third, program calculation
is suitable for automatic implementation. Since what we manipulate are programs, we may achieve au-
tomatic improvement of programs by automating program transformations. Therefore, program calcula-
tion is helpful to construct efficient algorithms for everyone: not only specialists but also nonspecialists or
even computers. Many researches about program calculation have been done, such as formalizing calcula-
tional laws [Bir84, BdM93a, BdM93b, dM95, Cur96, SHTO00, Cur03, MKHT06], deriving nontrivial algo-
rithms [Bir89, Rav99b, dMG99, dMG00, Bir01, Bir06], and automating calculations [dMS01, SdM01, Yok06].

Our objective is to give a clear and effective methodology to deal with combinatorial optimization problems
based on program calculation. Combinatorial optimization problems are optimization problems where a
solution is constructed by a sequence of discrete decisions. Since combinatorial optimization problems have
a great many applications, they are recognized to be one of the most important classes of problems in
algorithm construction.

1

Although many endeavors have been made, it is still nontrivial to deal with combinatorial optimization
problems calculationally. On one hand, several researches have been devoted to formalizing calculational
laws for combinatorial optimization problems [BdM93b, BdM93a, dM95, BdM96, Cur96, Cur03]. Though
they give a clear characterization for a wide class of combinatorial optimization problems, they are not
suitable for automatic implementation. The calculational laws require an appropriate order that satisfies
the monotonicity condition on candidates; however, such appropriate order may not be apparent from the
specification of the problem. On the other hand, some classes of combinatorial optimization problems have
been identified to be solvable automatically [ALS91, BPT92, SHTO00]. They are interesting, but maximum
marking problems on a tree are the only things that they can cope with. To see the hardship, let us consider
the regular-language constrained shortest path problem [Rom88, BJM00], which we will solve calculationally in
Section 6. Given an edge-weighted edge-labeled graph and a regular language, a regular-language constrained
shortest path problem is the problem to find the shortest path from the source to the destination such that
the label of the path is in the regular language. It is difficult to solve regular-language constrained shortest
path problems based on existing calculational laws. While the only order found in the specification is the
order to compare weights of paths, it does not satisfy the monotonicity condition. Since regular-language
constrained shortest path problems are maximum marking problems on a graph, not on a tree, the works
given above cannot deal with them.

Our objective is to give a calculational framework that is easy to use and can cope with a large class of
combinatorial optimization problems. Our main contributions are summarized as follows:

• We formalize a calculational framework for minimals, while existing calculational laws are based on
minimums. Minimals satisfy good properties that minimums do not have. We show minimals are
useful for calculation by giving calculational laws for them.

• We propose a new calculational law to derive dynamic programming algorithms for combinatorial
optimization problems. Our law is applicable for a wide class of combinatorial optimization problems,
including the regular-language shortest path problems. Moreover, our law is suitable for automatic
implementation.

• We show systematic derivations of algorithms for regular-language constrained shortest path problems,
which indicate the promise of our calculational laws.

The rest of this paper is organized as follows. In Section 2, we fix the basis of our formalization and show
some basic results. In Section 3, we review existing works and discuss their strengths and drawbacks. In
Section 4, we formalize a calculational framework for minimals. In Section 5, we propose our new calculational
laws and discuss their properties. In Section 6, we explain how our calculational laws work throughout the
derivations of efficient algorithms to solve regular-language constrained shortest path problems. We discuss
related works in Section 7 and conclude this paper in Section 8.

2 Program Calculation

In this section, we explain the definitions and notations used throughout this paper. We basically follow
Bird and de Moor [BdM96].

2.1 Basic Notations

Functions A function f that maps each element of a set A to an element of a set B is denoted by
f : A → B. The identity function on a set A is denoted by idA : A → A, i.e., idA(x) def= x for all x ∈ A.
The subscript may be omitted. The composition of functions is denoted by an operator ◦ and its definition is
(f ◦ g)(x) def= f(g(x)). To denote repeated compositions of the same function, we borrow the power notation,
i.e., f0 def= id and fn def= f ◦ fn−1 if 1 ≤ n ∈ N. Parentheses to denote function application may be omitted.

Tuples We use a pair of parentheses split by commas to denote a tuple, i.e., (x, 0) means a tuple of a
variable x and an integer 0. The projection of ith element is denoted by πi, i.e., πi(a1, . . . , ai, . . . , ak) def= ai.
A pair of angle brackets split by a comma, namely 〈 , 〉, is used to construct pairs, and its definition is
〈f, g〉(x) def= (f(x), g(x)).

2

Sequences We use a pair of brackets split by commas to denote a sequence. A set of sequences that
consist in values of type A is denoted by A∗. The empty sequence is denoted by []. The concatenation of
two sequences is denoted by ++, i.e., [x0, . . . , xn] ++ [y0, . . . , ym] = [x0, . . . , xn, y0, . . . , ym].

Sets We use a pair of curly brackets to denote a set. The empty set is denoted by ∅. A set of all subset
of A is denoted by 2A. Basic operators for sets, such as ∪, ∩, \, and ×, are defined as usual. The size of a
set S is denoted by |S|, or just S if it is not ambiguous. The operator] is used to merge the results of two
functions, and its definition is (f] g)(x) def= f(x)∪ g(x). For a predicate p : A → Bool , the filtering function
raised by p is denoted by p4 : 2A → 2A, i.e., p4(X) def= {a | a ∈ X ∧ p(a)}.

Graphs We assume that readers know basic notions of graphs and basic algorithms for the shortest path
problems. Refer textbooks such as [CSRL01, KT05] if necessary. A graph G = (V,E) is a pair of a set of
vertexes V and a set of edges E. A vertex is denoted by a pair of edges, thus V ⊆ E ×E. We express a path
as a sequence of edges. Given a weight function w : E → R, an edge-weighted graph N = (G,w) is called
a network. Given an alphabet Σ, a graph G = (V,E) is said to be labeled by Σ when a labeling function
l : E → Σ is given. We use both labeling function l and weight function w to compute label and weight of
a path respectively, as usual. We assume that there is no cycle whose weight is negative.

2.2 Functors

A category consists of a set of objects and a set of morphisms. Here we consider the category whose objects
are sets and morphisms are total functions. A functor is a morphism of categories. For two categories A and
B, a functor F : A → B maps each object A ∈ A to FA ∈ B, and each morphism f ∈ A to Ff ∈ B, with
satisfying the following properties.

F(idA) = idB
F(f ◦ g) = Ff ◦ Fg

An important functor is the power-set functor P, where P(A) def= 2A and Pf(X) def= {f(a) | a ∈ X}.
Another important class of functors is polynomial functors. A functor is said to be polynomial if it is

constructed by the combinations of the identity functor I, the constant functor !B where B is a parameter,
the product bifunctor ×, and the coproduct bifunctor +. The definition is the following, in which F and G
denote functors, A and B denote objects, and f denotes a morphism of appropriate type.

IA
def= A

If
def= f

!BA
def= B

!Bf
def= idB

(F × G)A def= (FA × GA)
(F × G)f(x, y) def= (Ff(x),Gf(y))

(F + G)A def= ({1} × FA) ∪ ({2} × GA)

(F + G)f(x) def=
{

(1, Ff(a)) if (1, a) = x
(2, Gf(b)) if (2, b) = x

It is well-known that polynomial functors give a good characteristics of algebraic data types [MFP91, Fok92,
Mei92].

2.3 Recursion Schema

In program calculation, combinatorial optimization problems have been formalized in two forms: the cata-
morphisms [BdM93b, BdM96, SHTO00] and the repetition operator [Cur96, Cur03]. First we introduce the
notion of catamorphisms.

Definition 2.1 (algebra). For a functor F, an F-algebra is a pair (A,ψ), where A is a set and ψ : FA → A
is a function.

3

Definition 2.2 (algebra morphism). For two F-algebras A = (A,ψ) and B = (B,φ), an algebra morphism
from A to B is a function h : A → B that satisfies the following equation.

h ◦ ψ = φ ◦ Fh

Definition 2.3 (initial algebra and catamorphism). An F-algebra (µF, inF) is said to be initial if for all
F-algebra (B,φ) there exists a unique algebra morphism from (µF, inF) to (B,φ). The unique morphism is
called catamorphism and denoted by ([φ])F.

The catamorphism ([φ])F is well-defined because the initial F-algebra is unique up to isomorphism. We
may omit the subscript for catamorphisms if it is clear from the context.

Catamorphisms have a fusion law.

Theorem 2.4 (cata fusion [MFP91]).

(f ◦ φ = ψ ◦ Ff) ⇒ (f ◦ ([φ])F = ([ψ])F)

Catamorphisms are known to be a general recursion schema. Almost all functions that iterate over a
tree-like structure can be recognized in terms of catamorphisms. However, catamorphisms hardly capture
the functions that traverse on graphs. Thus, we introduce the notion of repetition, where a computation
is repeated until no more computations are necessary. A comparison of catamorphisms and repetitions is
found in [Cur96].

Definition 2.5 (repetition). For a function f : A → A, the repetition of f , denoted by f∗, is defined as
follows.

f∗(a) def= fn(a) if fn(a) = fn+1(a)

Repetitions have a promotion law.

Theorem 2.6 (repetition promotion).

(f ◦ φ = ψ ◦ f) ⇒ (f ◦ φ∗ = ψ∗ ◦ f)

Proof. From the definition of the repetition operator, it is sufficient to show ∀n ∈ N : f ◦ φn = ψn ◦ f holds.
The claim is proved by induction. The claim obviously holds for the base case, namely the case of n = 0.
The step case is proved by the following calculation.

f ◦ φk+1 = { definition of the power notation }
f ◦ φ ◦ φk

= { assumption }
ψ ◦ f ◦ φk

= { induction }
ψ ◦ ψk ◦ f

= { definition of the power notation }
ψk+1 ◦ f

2.4 Relational Calculus

Relations are useful to express optimization problems, because orders or nondeterministic choices are easily
described in terms of relations. Here we introduce the notion of relations and relators with some useful
operators. We give set-theoretic definitions with axiomatic characterizations for many operators. The former
is easy to understand the meaning, while the latter is useful to give formal calculational proofs in abstract
settings.

In this paper, a relation is a set of pairs. We basically distinguish relations from sets of pairs because
we use them in different context. Functions are also relations, but again, we basically distinguish functions
from relations. We denote a relation R between elements of set A and elements of set B, namely R ⊆ A×B,
as R : B ; A. We may denote a R b instead of (a, b) ∈ R.

We use the operator ◦ to denote the composition of relations, as the same as for functions, and it is
defined as follows:

a (R ◦ S) b
def= ∃c : a R c ∧ c S b

4

Note that this definition coincides with that of function compositions if both R and S are functions.
The converse of a relation R is denoted by R◦, and its definition is a R◦ b

def= b R a. It is known [BdM96]
that relators respect converses, namely F(R◦) = (FR)◦.

To introduce relations to categorically settings, we will consider the category of relations, where an objects
is a set and a morphism is a relation of appropriate type. Not all functors in the category are useful for
calculations, and thus we introduce the notion of relators.

Definition 2.7 (relator). A functor F is said to be a relator if it respects inclusions, that is, R ⊆ S implies
FR ⊆ FS for any relations R and S.

From now on, we only consider relators as functors and use sanserif characters to denote them. Actually
almost all useful functors in computer science are relators. For example, the powerset functor is a relator
where relations are mapped as X (PR) Y

def= (∀a ∈ X : (∃b ∈ Y : a R b)) ∧ (∀b ∈ Y : (∃a ∈ X : a R b)).
Polynomial functors are also relators, and its mapping on relations is defined as follows.

IR
def= R

!AR
def= idA

(u,w) ((F × G)R) (v, x) def= u (FR) v ∧ w (GR) x

u ((F + G)R) v
def=

{
u′ (FR) v′ if (1, u′) = u and (1, v′) = v
u′ (GR) v′ if (2, u′) = u and (2, v′) = v

An operator Λ, called power transpose, takes a relation and returns the set-valued function that enumer-
ates all element related. Its formal definition is the following.

ΛR(b) def= {a | a R b}

The power operator is characterized by the following equation.

ΛS = T ⇔ S = ∈ ◦ T

The following lemma shows the relationship between functors and power transpose.

Lemma 2.8. For any relator F and relation S, ΛFS = ΛF∈ ◦ FΛS holds.

Proof.

ΛFS = ΛF∈ ◦ FΛS ⇔ { property of Λ }
FS = ∈ ◦ ΛF∈ ◦ FΛS

⇔ { ∈ cancels out Λ }
FS = F∈ ◦ FΛS

⇔ { F is functor }
FS = F(∈ ◦ ΛS)

⇔ { ∈ cancels out Λ }
FS = FS

An operator ∩ is used to express “conjunction” of two relations. The following is the set-theoretic
definition of ∩. Notice that the operator ∩ for relations is exactly the usual intersection operator of sets
when we express relations as sets of pairs.

a (R ∩ S) b
def= a R b ∧ a S b

The operator ∩ can be characterized by the following property.

(R ∩ S) ⊇ X ⇔ (R ⊇ X) ∧ (S ⊇ X)

In general, relators do not distribute over ∩. For example, the powerset functor P does not distribute over
∩. However, polynomial functors distribute over ∩.

Lemma 2.9. For any relator F and relations R and S, F(R ∩ S) ⊆ FR ∩ FS.

5

Proof.

F(R ∩ S) ⊆ (FR ∩ FS) ⇔ { property of ∩ }
(F(R ∩ S) ⊆ FR) ∧ (F(R ∩ S) ⊆ FS)

⇐ { relator }
((R ∩ S) ⊆ R) ∧ ((R ∩ S) ⊆ S)

⇔ { property of ∩ }
True

Lemma 2.10. For any polynomial functor F and relations R and S, F(R ∩ S) = FR ∩ FS.

Proof. It is a direct consequence of Propositions 6.3.10 and 5.3.9 in [dM92].

Similar to ∩, we can define an operator ∪ as follows.

a (R ∪ S) b
def= a R b ∨ a S b

The operator ∪ is characterized by the following property.

(R ∪ S) ⊆ X ⇔ (R ⊆ X) ∧ (S ⊆ X)

Different from ∩, relators do not distribute over ∪, even if they are polynomial.

Lemma 2.11. For any relator F and relations R and S, FR ∪ FS ⊆ F(R ∪ S) holds.

Proof.

(FR ∪ FS) ⊆ F(R ∪ S) ⇔ { property of ∪ }
(FR ⊆ F(R ∪ S)) ∧ (FS ⊆ F(R ∪ S))

⇐ { relator }
(R ⊆ (R ∪ S)) ∧ (S ⊆ (R ∪ S))

⇔ { property of ∪ }
True

The operator ⇒, corresponding to the logical implication, is defined as follows.

a (R ⇒ S) b
def= ¬(a R b) ∨ a S b

Its characteristic property is the following.

(R ⇒ S) ⊇ X ⇔ S ⊇ (R ∩ X)

Nothing interesting is known about relationship between relators and the ⇒ operator. But, for polynomial
functors, we have the following lemma.

Lemma 2.12. For any polynomial functor F and relations R and S, F(R ⇒ S) ⊆ FR ⇒ FS.

Proof.

F(R ⇒ S) ⊆ (FR ⇒ FS) ⇔ { property of ⇒ }
(F(R ⇒ S) ∩ FR) ⊆ FS

⇔ { Lemma 2.10 }
F((R ⇒ S) ∩ R) ⊆ FS

⇐ { relator }
((R ⇒ S) ∩ R) ⊆ S

⇔ { property of ⇒ }
True

6

We use negation operator ¬, whose definition is ¬R
def= R ⇒ ∅. In our set theoretic setting, the operators

introduced satisfy “usual” laws that logical operators satisfy, such as the double negation elimination law or
the De Morgan law.

We will use the operator /, which is used to introduce “for all” quantification. Its definition is the
following.

a (R/S) b
def= ∀c : b S c ⇒ a R c

Its axiomatic definition is the following.

R/S ⊇ X
def= R ⊇ (X ◦ S)

From the definition, / operator is anti-monotonic to the right operand. Following lemmas show its relationship
to relators.

Lemma 2.13. For any relator F and relations R and S, F(R/S) ⊆ FR/FS.

Proof.

F(R/S) ⊆ FR/FS ⇔ { property of / }
(F(R/S) ◦ FS) ⊆ FR

⇐ { relator }
((R/S) ◦ S) ⊆ R

⇔ { property of / }
True

Lemma 2.14 (Lemma 8.3.1.2 in [dM92]). For any polynomial functor F and relations R and S, F((R/S)∩
S◦) = (FR/FS) ∩ FS◦.

For functions, some useful properties are known. We will use the following properties, where R and S
are relations and f is a total function.

Λ(S ◦ f) = ΛS ◦ f (1)
(f ◦ R ⊆ S) ⇔ (R ⊆ f◦ ◦ S) (2)
(R ◦ f◦ ⊆ S) ⇔ (R ⊆ S ◦ f) (3)

2.5 Orders and Minimization

We use quasi-order (also called preorder) to describe optimization problems.

Definition 2.15 (quasi-order). A relation R : A ; A is called quasi-order if the following two properties
are satisfied.

∀a ∈ A : a R a (reflectivity)
(a R b ∧ b R c) ⇒ a R c (transitivity)

Definition 2.16 (totality). A relation R : A ; A is said to be total if for all a ∈ A and b ∈ A, aRb∨ bRa
is satisfied.

Equivalence relations and linear orders1 are ones of the most well-known and important classes of quasi-
orders.

Definition 2.17 (equivalence relation). A quasi-order R : A ; A is called equivalence relation if the
following property is satisfied.

a R b ⇒ b R a (symmetry)

Definition 2.18 (linear order). A total quasi-order R : A ; A is called linear order if the following property
is satisfied.

1Linear orders are also called total orders. We do not use the name to avoid the confusion between total orders and total
quasi-orders.

7

(a R b ∧ b R a) ⇒ a = b (antisymmetry)

Here we would like to define some notations. We make a special use of = and <. For a quasi-order R, R=
denotes the equivalent part of R, i.e., a R=b

def= aRb∧bRa. Similarly, for a quasi-order R, R
< denotes the strict

part of R, i.e., a
R
<b

def= aRb∧¬(bRa). We use a function to produce an order from an order. For a function
g : A → B and a quasi-order R : A ; A, a quasi-order Rg : B ; B is defined by a Rg b

def= g(a) R g(b)
where both g(a) and g(b) must be defined. It is easy to confirm that these definitions exactly meet the
requirement of quasi-orders or equivalent relations. The following equations show alternative definition of
them.

R=
def= R ∩ R◦

R
<

def= R ∩ ¬R◦

Rg
def= g◦ ◦ R ◦ g

It is known that the sequential composition (also called lexicographic composition) of two quasi-orders is
a quasi-order.

Definition 2.19 (sequential composition of two orders). For two relations R : A ; A and S : A ; A, the
sequential composition of R and S, denoted by R ; S, is defined as follows.

a (R ; S) b
def= a S b ∧ (¬(b S a) ∨ a R b)

The sequential composition of two quasi-orders R and S, namely R ; S, is a quasi-order, where the
ordering is the same as S expect for equivalent elements in S, and equivalent elements in S are compared
by R. The operator ; is associative. Note that the following definition is equivalent to the definition above.

R ; S
def= S ∩ (S◦ ⇒ R)

We introduce the notion of stronger order, which has a deep relationship to min and mnl .

Definition 2.20 (stronger, strictly stronger, completely stronger). A quasi-order R is said to be stronger
than a quasi-order S if aSb implies aRb for any a and b. A quasi-order R is said to be strictly stronger than
a quasi-order S if a

S
< b implies a

R
< b for any a and b. A quasi-order R is said to be completely stronger

than a quasi-order S if R is both stronger and strictly stronger than S.

Notice that the strictly stronger property does not imply the stronger property. It is because “R is strictly
stronger than S” means that the strict part of R is stronger than that of S.

To extract minimum elements, we use an operator min. For a relation R : A ; A, the relation
minR : PA ; A is defined as follows.

(a,X) ∈ minR
def= ∀b ∈ X : a R b

We can also give an equivalent definition in axiomatic style as follows.

minR
def= ∈ ∩ R/3

We use mnl to extract minimal elements, which is similar to min but different.

(a, X) ∈ mnlR
def= ∀b ∈ X : b R a ⇒ a R b

The following definition is equivalent to the above.

mnlR = minR◦⇒R

If the relation R is a total quasi-order, ΛminR(X) computes all minimum elements in X based on the
order R. However, minR is useless when R is not total. For example, assume neither a R b nor b R a holds;
then, ΛminR(X ∪ {a, b}) = ∅ for any X. Note that contrary to minR, mnlR works well even when R is not
total.

The following lemmas are known important properties of min.

8

Lemma 2.21 (Equation 7.5 of [BdM96]).

minR ◦ ΛS = (S ∩ R/S◦)

Lemma 2.22 (Exercise 7.10 of [BdM96]). For any reflexive relations R and S, R ⊆ S is equivalent to
minR ⊆ minS.

Proof.
(⇒)

minR ⊆ minS ⇔ { Definition of min }
(∈ ∩ R/3) ⊆ (∈ ∩ S/3)

⇐ { trivial }
R/3 ⊆ S/3

⇔ { property of / }
(R/3 ◦ 3) ⊆ S

⇐ { (R/3 ◦ 3) ⊆ R holds because of the property of / }
R ⊆ S

⇔ { assumption }
True

(⇐)

minR ⊆ minS ⇔ { power transpose }
∀X : ΛminR(X) ⊆ ΛminS(X)

⇒ { Let X = {a, b} where a R b }
∀a, b : a R b ⇒ (ΛminR({a, b}) ⊆ ΛminS({a, b}))

⇒ { from definition of min and reflectivity of R, {a} ⊆ ΛminR({a, b}) }
∀a, b : a R b ⇒ {a} ⊆ ΛminS({a, b})

⇒ { definition of min }
∀a, b : a R b ⇒ a S b

3 Combinatorial Optimization Problems in Program Calculation

In this section, we review the results of existing works that give calculational laws for combinatorial opti-
mization problems.

Optimization problems are problems where the objective is to find the best solution that is feasible. We
can express specifications of optimization problems in terms of a function, a predicate, and a quasi-order; a
function enumerate enumerates all solutions, a predicate feasible tests whether a solution is feasible or not,
and an order R determines which solution is better.

ΛminR ◦ feasible4 ◦ enumerate

In combinatorial optimization problems, a sequence of nondeterministic computation yields each solution.
Let S be a relation that corresponds to the one step of nondeterministic computation. Then, we can express
enumerate in terms of S.

enumerate = ([Λ(S ◦ F∈)])

Or, alternatively, we can use the repetition style as follows.

enumerate = (Λ(S ◦ ∈))∗

Our objective is to give general calculational laws for problems described in the following forms.

ΛminR ◦ feasible4 ◦ ([Λ(S ◦ F∈)])
ΛminR ◦ feasible4 ◦ (Λ(S ◦ ∈))∗

9

3.1 Greedy Theorem and Thinning Theorem

In this subsection, we review the existing results of Bird and de Moor [BdM93b, BdM93a, dM95, BdM96]
and Curtis [Cur96, Cur03].

First, observe that min can do the computation of feasible4. Let Q be the relation whose definition is
aQb

def= feasible(a)∨¬feasible(b); then Q is a total quasi-order. Intuitively, Q is an ordering where elements
for which feasible holds are smaller than those for which feasible does not hold. Now that the computation
of feasible4 is equivalent to minQ whenever there is at least one feasible solution, the following expression
is equivalent to the specification above.

ΛminR;Q ◦ enumerate

Thus it is sufficient for our objective to give calculational laws that enable us to solve problems written in
the form above.

Alternatively, we can eliminate the feasible4 part by fusing it with enumerate. Here we do not go this
direction, while de Moor [dM95] gives a calculational law based on this observation.

In the existing works [BdM93b, BdM96, Cur96, Cur03], sufficient conditions to obtain efficient algorithms
are shown.

Definition 3.1 (monotone). A relation S : FA ; A is monotonic with respect to a quasi-order R : A ; A
if the following property holds.

∀a ∈ FA, b ∈ FA, a′ ∈ A : (a FR b ∧ a′ S a) ⇒ (∃b′ ∈ A : b′ S b ∧ a′ R b′)

Note that the inequality above is equivalent to the following inequality.

R ◦ S ⊇ S ◦ FR

For a relation S : A ; A, the monotonicity condition above can be rephrased as follows by letting the
relator F be I.

R ◦ S ⊇ S ◦ R

Now we introduce the greedy theorems.

Theorem 3.2 (greedy theorem for catamorphqisms [BdM93b, BdM96]). If a relation S : FA ; A is
monotonic with respect to a quasi-order R◦, then the following inequality holds.

minR ◦ ([Λ(S ◦ F∈)]) ⊇ ∈ ◦ ([Λ(minR ◦ (ΛS ◦ F∈))])

Theorem 3.3 (greedy theorem for repetitions [Cur96, Cur03]). If a relation S : A ; A is monotonic with
respect to a quasi-order R◦, then the following inequality holds.

minR ◦ (Λ(S ◦ ∈))∗ ⊇ ∈ ◦ (Λ(minR ◦ (ΛS ◦ ∈)))∗

The statement of greedy theorems is natural. Since the monotone property implies that smaller elements
are produced from smaller elements, we can discard nonminimum elements at each step to produce solutions.
Note that “S is monotonic with respect to R” means “larger element yields larger element”; thus the theorems
require monotonicity for R◦.

Although these theorems give a clear formalization of greedy algorithms, they are difficult to use for
nonspecialist. The most significant hardship is the step to find an appropriate order. The theorems require
the monotone property, which is not easy to check because of its “for all something, exists something” style
definition. To see the hardship, recall that a general specification of combinatorial optimization problems:

ΛminR ◦ feasible4 ◦ ([Λ(S ◦ F ∈)])

Defining a new relation Q such that aQb
def= feasible(a)∨¬feasible(b), we have derived the following program,

for which the greedy theorem is applicable.

ΛminR;Q ◦ ([Λ(S ◦ F ∈)])

But, it is not easy to confirm S is monotonic with respect to the complicated order R ; Q. Moreover, the
relation S may not be monotonic with respect to the order R ; Q, that is, R ; Q is too strong and too many

10

useful elements are discarded. Now, we would like to introduce a new weaker order T (namely, R ; Q is
stronger than T), so that we could save appropriate amount of elements. However, since T is weaker than
R ; Q, T will not total. and then the greedy theorems may become useless, because minT results in an empty
set for many useful inputs if T is not total.

Bird and de Moor proposed another operator thin to deal with non-total quasi orders. For a quasi-order
R : A ; A, thinR : PA ; PA is a relation satisfying the following property.

(Y,X) ∈ thinR
def= (Y ⊆ X ∧ ∀b ∈ X, ∃a ∈ Y : a R b)

Intuitively, thin discards a part of elements that are larger than another element. Notice that thin can work
well even if R is not total, which is one of the most important difference between min and thin. Now let us
introduce another theorem, called thinning theorem.

Theorem 3.4 (thinning theorem [BdM96, Bir01]). For any relations R and S, and an quasi-order Q, the
following inequality holds provided that S is monotonic with respect to Q◦ and Q ⊆ R.

minR ◦ ([Λ(S ◦ F ∈)]) ⊇ minR ◦ ([thinQ ◦ Λ(S ◦ F ∈)])

As similar to the greedy theorems, the thinning theorem matches our intuition. We can discard elements
that never yield minimums, even when minR discards elements that may yield minimums. The disposal of
useless elements are performed by thinQ, and the monotonicity condition of Q guarantees correctness of the
disposal.

It is worth noting that one must give an implementation of thinQ. Since the efficiency of derived algo-
rithms highly depends on the implementation of thinQ, the choice of its implementation is one of the most
substantial issue. However, it is difficult to give appropriate implementation for thinQ in general, because
definition of thin is quite vague and there are too many choices. Too many functions, and even the identity
function, satisfy the characterization.

Another important issue is how we obtain the order Q. The order Q does not appear in the specification,
and thus one need to find Q from nothing; besides, Q◦ must satisfy the monotone property. Therefore,
obtaining an appropriate order Q is not easy in practice.

Lastly, let us mention the inequality in the statements of the greedy theorems and the thinning theorem.
The inequality implies that resulted programs may produce nothing even if there exist minimum elements.
Although such outcomes are hardly raised for practical examples, those theorems guarantees nothing about
it.

3.2 Automatic Derivation of Dynamic Programming Algorithms

Some researches [ALS91, BPT92, SHTO00] show that a class of combinatorial optimization problems, called
maximum marking problems, is solvable automatically. Maximum marking problems are the problems where
a solution is a marking of an underlying structure and the objective is to obtain the solution whose marked
elements has the maximum sum. Marking should satisfy some constraint, which makes the problem hard.
Bird [Bir01] clarified the relationship between the result about maximum marking problems and the thinning
theorem. We review the result in this subsection.

First, we formalize the maximum marking problem. Let SA be the type of the structure S that consists
in values of type A. Let MA be the type expressing markings for a value of type A, and its definition is
MA = {M(a) | a ∈ A}∪{N(a) | a ∈ A} where M and N are constructors. Let allMarkingS : SR → 2SMR be a
function that stands for enumeration of all marking on the structure S. Let wsum : SMR → R be the function
that sums up all numbers marked by M in a structure S. Now, given a constraint constraint : SMR → Bool ,
a maximum marking problem is a problem to compute the following expression.

Λmin≥wsum ◦ constraint4 ◦ allMarkingS

Sasano et al. [SHTO00] showed that a class of maximum marking problems is solvable automatically. While
they give the theorem that can cope with all algebraic data structures, here we only consider maximum
marking problems on sequences for the simplicity of presentation. The followings are concrete definitions of

11

functions allMarking : R∗ → 2(M∗
R) and wsum : M∗

R → R for the case of sequences.

allMarking([]) def= []
allMarking([a] ++ x) def= {[a′] ++ y | a′ ∈ {M(a), N(a)} ∧ y ∈ allMarking(x)}
wsum([]) def= 0
wsum([M(a)] ++ x) def= a + wsum(x)
wsum([N(a)] ++ x) def= wsum(x)

In addition, we use an operator fold defined as follows.

fold (f,e)([]) = e

fold (f,e)([a] ++ x) = f(a, fold (f,e)(x))

Theorem 3.5 (optimization theorem on lists [SHTO00]). Let MMP be a maximum marking problem defined
as follows.

MMP def= Λmin≥wsum ◦ (accept ◦ fold (φ,e))4 ◦ allMarking

Then, the following program computes an optimal solution in time linear to the size of the input, whenever
the range of fold (φ,e) is finite, functions φ and accept are computed in constant time, and all results of wsum
and fold (φ,e) are memoized.

MMP = Λmin≥wsum ◦ (accept ◦ fold (φ,e))4 ◦ reducedMarking

reducedMarking([]) def= []
reducedMarking([a] ++ x) def= ΛmnlR({[a′] ++ y | a′ ∈ {M(a), N(a)} ∧ y ∈ reducedMarking(x)})
a R b

def= a ≥wsum b ∧ fold (φ,e)(a) = fold (φ,e)(b)

Notice that the function reducedMarking generates only a small set of markings, because majority of
markings are discarded by mnlR in each step of recursion. Therefore, the programs resulted are efficient.
The strong point of Theorem 3.5 is that we can obtain efficient program immediately once the specification
of the problem is written in the required form.

As a concrete example, let us solve the maximum segment sum [Ben86, Bir89] problem by Theorem 3.5.
The problem is to find the segment, namely consecutive sublist including an empty sequence, which has the
maximum sum. The specification of the maximum segment sum problem MSS can be given in the maximum
marking problem style as follows.

MSS = Λmin≥wsum ◦ (accept ◦ fold (φ,e))4 ◦ allMarking

accept(p, q, r) def= p

e
def= (True,True,True)

φ(M(a), (p, q, r)) def= (q, q,False)
φ(N(a), (p, q, r)) def= (p, r, r)

In the specification above, the function φ computes three boolean values, where the first records whether
the marking corresponds to a segment, the second records whether the marking corresponds to an initial-
segment, and the third records whether there is no marked element. Now that the specification of the
maximum segment sum problem is certainly written in the required form, Theorem 3.5 immediately gives a
linear-time program. Though the derived program is a bit inefficient, it exactly corresponds to the efficient
program introduced by Bentley [Ben86], when we remove its inefficiency by the optimization proposed by
Matsuzaki [Mat07].

Arnborg et al. [ALS91] and Borie et al. [BPT92] independently showed results similar to that of Sasano et
al. Any maximum marking problem is solvable in time linear to the size of the underlying structure, whenever
the underlying structure is a tree-decomposable graph and constraint is expressed by a monadic second order
logic formula. The point is that we can translate these problems into equivalent maximum marking problems,
where the underlying structure is a tree and the constraint can be checked by a tree automaton. Noticing
that the operator fold does the same iteration to the string automaton, we can understand Theorem 3.5
as a special case of their results, where underlying structures are monadic trees. Their general results also

12

corresponds to the general result of Sasano et al.: Sasano et al. use catamorphisms as a a generalization of
fold to express constraints, and a tree automaton is essentially equivalent to a catamorphism of finite range.

Though they are interesting and useful, their drawback is the lack of generality. Only the maximum
marking problems on a tree can be dealt with. They cannot work for other problems, for example problems
on graphs.

Bird [Bir01] showed a correspondence between these results and the thinning theorem. Notice that the
function allMarking can be expressed by a catamorphism, that is, allMarking = ([Λ(marking ◦ F∈)]) where
marking is an appropriate relation. The key observation is that the function marking is always monotonic
with respect to the order R

def= ≥wsum ∩ =fold(φ,e)
. Moreover, ΛmnlR certainly satisfies the requirement

of thinR in this case. Now we can see that the thinning theorem yields Theorem 3.5. This result sounds
helpful to extend Theorem 3.5 so that it can cope with more general class of problems. However, Bird
showed nothing about the extension of Theorem 3.5, and it is still unclear when the R above satisfies the
monotonicity condition and when ΛmnlR satisfies the requirement of thinR.

4 Calculus of Minimals

The objective of this section is to give an solution of the following four questions, which are not solved in
the existing works.

• When can we obtain all minimums based on greedy algorithms?

• Can we check the premise of the greedy theorems more easily?

• Can we give a more concrete alternative of thin?

• Can we unify the greedy theorems and the thinning theorem into one framework?

We first introduce the notion of proper thinnings, which characterizes an appropriate disposal of surely
unnecessary elements. We develop a calculus of minimals by identifying mnlR as a proper thinning. In
summary, we propose our greedy theorems for mnl , which give a solution of the questions above. Necessary
lemmas are shown at the last of this section.

4.1 Proper thinning

First of all, let us introduce the notion of proper thinnings.

Definition 4.1. A function f : PA → PA such that f(X) ⊆ X for any X ⊆ A is said to be a proper
thinning if the following equation holds.

f(f(X) ∪ f(Y)) = f(X ∪ Y)

The notion of proper thinnings corresponds to discarding surely unnecessary elements. Consider f(X ∪
Y), discarding unnecessary elements in X ∪ Y . The requirement states that we can locally discard surely
unnecessary elements beforehand. In other words, the discarding must be conservative in the sense that it
must not discard elements that may affect global disposal.

The following two lemmas shows important properties of proper thinnings.

Lemma 4.2. For any proper thinning f , f(X) = f(f(X)) holds.

Proof.

f(f(X) ∪ f(Y)) = f(X ∪ Y) ⇒ { Let Y = ∅ }
f(f(X) ∪ f(∅)) = f(X ∪ ∅)

⇔ { f(∅) = ∅ because Y ⊇ f(Y) }
f(f(X)) = f(X)

Lemma 4.3. For any proper thinning f and sets X and Y such that X ⊇ Y , f(X) = f(Y) holds if and
only if Y ⊇ f(X) holds.

13

Proof. The “only if” part is proved by the contraposition. If Y ⊇ f(X) does not holds, f(X) = f(Y) never
holds because Y ⊇ f(Y). The following calculation proves the “if” part.

(X ⊇ Y) ∧ (Y ⊇ f(X)) ⇒ { f(X) ∪ Y = Y }
(X ⊇ Y) ∧ (f(f(X) ∪ Y) = f(Y))

⇔ { f is a proper thinning, Lemma 4.20 }
(X ⊇ Y) ∧ (f(X ∪ Y) = f(Y))

⇒ { X ∪ Y = X }
f(X) = f(Y)

The notion of proper thinning is general. Most of enumeration of minimums, enumeration of minimals,
and filtering are proper thinnings. It is easy to see that a filtering function p4 raised by a predicate p is a
proper thinning.

Lemma 4.4. For any predicate p, the filtering function p4 is a proper thinning.

Proof. It is fairly easy to see p4 satisfies the requirement.

However, neither ΛminR nor ΛmnlR is a proper thinning in general. For example, consider a quasi-order
R, where neither a R b nor b R a holds for elements a and b. Let X = {a, b}, Y = {b}. Then, although
ΛminR(ΛminR(X) ∪ ΛminR(Y)) = ΛminR(∅ ∪ {b}) = {b}, ΛminR(X ∪ Y) = ∅ and the requirement is not
satisfied. But this fact is not awkward. Notice that ΛminR(X) is not appropriate use of min in the sense it
attempt to obtain the minimum elements from a set in which we cannot define the minimum. We would like
to exclude such peculiar cases, and actually Bird and de Moor [dM92, BdM92, BdM96] introduced notions
to determine proper use of min or mnl .

Definition 4.5 (well-bounded). A relation R : A ; A is said to be well-bounded if, for any nonempty set
X ⊆ A, the following property is satisfied.

∀b ∈ X : ∃a ∈ ΛminR(X) : a R b

The notion of well-boundedness is expressed by the following inequality.

∈ ⊆ R◦ ◦ minR

Definition 4.6 (well-supported). A relation R : A ; A is said to be well-supported if, for any nonempty
set X ⊆ A, the following property is satisfied.

∀b ∈ X : ∃a ∈ ΛmnlR(X) : a R b

Similar to well-boundedness, the notion of well-supportedness is expressed by the following inequality.

∈ ⊆ R◦ ◦ mnlR

Now we show that both ΛminR and ΛmnlR are proper thinnings if we exclude peculiar cases.

Lemma 4.7. The function ΛminR is a proper thinning if R is well-bounded and transitive.

Proof. From Lemma 4.22, X ∪ Y ⊇ ΛminR(X)∪ΛminR(Y) ⊇ ΛminR(X ∪ Y) holds. Thus the requirement
holds from Lemma 4.21, well-boundedness, and transitivity.

Lemma 4.8. The function ΛmnlR is a proper thinning if R is well-supported and transitive.

Proof. From Lemma 4.22, X ∪ Y ⊇ ΛmnlR(X)∪ΛmnlR(Y) ⊇ ΛminR(X ∪ Y) holds. Thus the requirement
holds from Lemma 4.21 and well-boundedness, because (R◦ ⇒ R) ◦ R ⊆ (R◦ ⇒ R) holds as the following
calculation shows.

c (R◦ ⇒ R) b ∧ b R a ⇔ { definition of ⇒ }
(¬(b R c) ∨ c R b) ∧ b R a

⇔ { distributing ∧ over ∨ }
(¬(b R c) ∧ b R a) ∨ (c R b ∧ b R a)

⇒ { transitivity }
¬(a R c) ∨ (c R a)

⇔ { definition of ⇒ }
c (R◦ ⇒ R) a

14

As shown, many known computations are proper thinning. Moreover, we can construct proper thinnings.

Lemma 4.9. For any proper thinning f , f ◦ p4 is a proper thinning.

Proof.

(f ◦ p4)(X ∪ Y) = { trivial (filter) }
f(p4(X) ∪ p4(Y))

= { f is a proper thinning }
f((f ◦ p4)(X) ∪ (f ◦ p4)(Y))

= { Since f(X) ⊆ X, p4 ◦ f ◦ p4 = f ◦ p4 }
f((p4 ◦ f ◦ p4)(X) ∪ (p4 ◦ f ◦ p4)(Y))

= { trivial (filter) }
(f ◦ p4)((f ◦ p4)(X) ∪ (f ◦ p4)(Y))

Now we would like to introduce our theorem, which shows when a proper thinning enables us to obtain
an efficient algorithm. Recall that combinatorial optimization problems are formalized as follows.

ΛminR ◦ feasible4 ◦ enumerate

In the previous section, we expressed enumerate in terms of a sequence of nondeterministic choices. For
example, in repetition style, we describe enumerate as (ΛS ◦ ∈)∗. Here we would like to give a bit more
detailed observation. A step of nondeterministic computation is expressed in terms of a union of deterministic
choices. That is, there are appropriate functions fi with an index set I such that S =

⋃
i∈I fi, in which

each function fi denotes each choice. This decomposition is natural in combinatorial optimization problems,
because each choice is usually apparent from the problem.

Theorem 4.10 (proper thinning law for catamorphisms). If a function g is a proper thinning and g ◦ Pfi ◦
ΛF∈ ⊆ Pfi ◦ ΛF∈ ◦ Fg holds for all fi, then the following equation holds.

g ◦ ([(
⊎
i∈I

Pfi) ◦ ΛF∈])F = ([g ◦ (
⊎
i∈I

Pfi) ◦ ΛF∈])F

Proof. From Theorem 2.4, it is sufficient to show that g ◦ (
⊎

i∈I Pfi) ◦ ΛF∈ = g ◦ (
⊎

i∈I Pfi) ◦ ΛF∈ ◦ Fg.

g ◦ (
⊎

i∈I Pfi) ◦ ΛF∈ = { g is a proper thinning }
g ◦ (

⊎
i∈I(g ◦ Pfi ◦ ΛF∈))

= { premise of the theorem and Lemma 4.3 }
g ◦ (

⊎
i∈I(g ◦ Pfi ◦ ΛF∈ ◦ Fg))

= { g is a proper thinning }
g ◦ (

⊎
i∈I Pfi) ◦ ΛF∈ ◦ Fg

Theorem 4.11 (proper thinning law for repetition). If a function g is a proper thinning and g◦Pfi ⊆ Pfi◦g
holds for all fi, then the following equation holds.

g ◦ (
⊎
i∈I

Pfi)∗ = (g ◦ (
⊎
i∈I

Pfi))∗ ◦ g

Proof. From Theorem 2.6, it is suffice to show that g ◦ (
⊎

i∈I Pfi) = g ◦ (
⊎

i∈I Pfi) ◦ g.

g ◦ (
⊎

i∈I Pfi) = { g is a proper thinning }
g ◦ (

⊎
i∈I(g ◦ Pfi))

= { premise of the theorem and Lemma 4.3 }
g ◦ (

⊎
i∈I(g ◦ Pfi ◦ g))

= { g is a proper thinning }
g ◦ (

⊎
i∈I Pfi) ◦ g

Our greedy theorems above show when one can discard unnecessary elements based on a proper thinning.
One important characteristics of our theorems is the guarantee that the derived programs can enumerate
all optimal solutions. Peculiar cases, such as a generated program results in an empty set for many useful
input, are excluded. It is one of our objective.

15

Another important characteristics is the use of functions. In our theorems, enumeration of candidates
is described by an union of functions, instead of a relation. The key observation used here is that proper
thinnings guarantees that the disposal is conservative; thus we can decompose a relation into union of
functions. Though it may look a small change, it is quite effective. It is sufficient to consider teach choice
independently for confirming the premise for our theorems. Moreover, we can enjoy many good properties of
functions. In the next subsection, we will propose our greedy theorems, whose premises are easy to confirm
thanks for the use of functions. In the next section, we will make intensive use of properties of functions and
introduce useful calculational laws.

4.2 Calculus of Minimals

In this section, we focus on a specific proper thinning, mnlR with well-supported quasi-order R, and develop
a calculus of mnl . We show greedy theorems for mnl , which are similar to those for min. In the next section,
we will build a useful calculational law on the greedy theorems for mnl .

One may wonder why we focus on ΛmnlR, instead of ΛminR. First of all, nothing is lost from use of
mnlR instead of minR.

Lemma 4.12. Well-boundedness implies well-supportedness.

Proof. It is obvious because each minimum element is a minimal element.

Lemma 4.13. For any well-bounded quasi-order R, minR is equivalent to mnlR.

Proof. First, notice that well-boundedness implies totality. It is because, if R is not total, there exist elements
a and b such that neither a R b nor b R a holds, and then {a, b} has no minimum element. Therefore, from
Lemma 2.22, it is sufficient to show R = (R◦ ⇒ R) if R is total.

a (R◦ ⇒ R) b ⇔ { definition of ⇒ }
¬(b R a) ∨ a R b

⇔ { trivial (∨) }
(¬(b R a) ∧ ¬(a R b)) ∨ a R b

⇔ { R is total }
a R b

Moreover, the use of mnl is beneficial. Well-supportedness is much easier to obtain than well-boundedness,
and we can enjoy many properties when we consider to construct appropriate orders. One important differ-
ence is about equivalence relations. Any equivalence relation is well-supported, while it is not well-bounded
unless it has exactly one equivalence class. Furthermore, different from well-boundedness, well-supportedness
is remarkably stable under usual construction of quasi-orders.

Lemma 4.14. Any equivalence relation is well-supported.

Proof. From definition, ΛmnlR = id if R is an equivalence relation. Thus R is well-supported.

Lemma 4.15 (Lemma 8 in [BdM92]). For any polynomial functor F, function f , and well-supported relations
R and S, Rf , R ∩ S, R ; S, and FR are well-supported.

Well, let us see the properties of mnl itself. The lemma bellow shows that the strictly stronger property
characterizes the computation of mnlR.

Lemma 4.16. A quasi-order R is strictly stronger than a quasi-order S if and only if mnlR ⊆ mnlS holds.

Proof. Notice that relations (R◦ ⇒ R) and (S◦ ⇒ S) are reflective. Thus, from Lemma 2.22, it is sufficient
to show that R is strictly stronger than S if and only if (R◦ ⇒ R) ⊆ (S◦ ⇒ S) holds.

16

R
< ⊇ S

< ⇔ { definition of R
< and S

< }
(¬R◦ ∩ R) ⊇ (¬S◦ ∩ S)

⇔ { introducing negations }
¬(¬R◦ ∩ R) ⊆ ¬(¬S◦ ∩ S)

⇔ { De Morgan law }
(R◦ ∪ ¬R) ⊆ (S◦ ∪ ¬S)

⇔ { introducing implications }
(R ⇒ R◦) ⊆ (S ⇒ S◦)

⇔ { introducing converse }
(R ⇒ R◦)◦ ⊆ (S ⇒ S◦)◦

⇔ { Lemma 4.23 }
(R◦ ⇒ R) ⊆ (S◦ ⇒ S)

We would like to consider the greedy theorem for mnl . Since we have formalized enumeration of candidates
in terms of functions instead of a relation, the notion of monotonicity becomes simpler.

Definition 4.17 (monotone, strictly monotone, completely monotone). For a function f : FA → A and a
quasi-order R : A ; A, f is monotonic (strictly monotonic, completely monotonic) with respect to R if Rf

is stronger (strictly stronger, completely stronger, respectively) than FR.

The definition of monotonicity above exactly corresponds to the definition of previous section. Notice that
since IA is equivalent to A, a function f : A → A is monotonic (strictly monotonic, completely monotonic)
with respect to R if Rf is stronger (strictly stronger, completely stronger, respectively) than R. Now we
give greedy theorems for mnl .

Theorem 4.18 (minimal-based greedy theorem for catamorphqisms). Given a polynomial functor F and
well-supported relation R, the following equation holds provided that each total function fi : FA → A is
strictly monotonic with respect to R.

ΛmnlR ◦ ([(
⊎

i∈I Pfi) ◦ ΛF∈]) = ([ΛmnlR ◦ (
⊎

i∈I Pfi) ◦ ΛF∈])

Proof. Since ΛmnlR is a proper thinning because of the well-supportedness of R, it suffices to show ΛmnlR ◦
Pfi ◦ ΛF∈ = ΛmnlR ◦ Pfi ◦ FΛmnlR from Theorem 4.10.

ΛmnlR ◦ Pfi ◦ ΛF∈ = { trivial (mnl) }
Pfi ◦ ΛmnlRfi

◦ ΛF∈
= { Rfi ⊇ FR, and Lemmas 4.3 and 4.16 }

Pfi ◦ ΛmnlRfi
◦ ΛmnlFR ◦ ΛF∈

= { Lemma 4.24 }
Pfi ◦ ΛmnlRfi

◦ ΛF∈ ◦ FΛmnlR
= { trivial (mnl) }

ΛmnlR ◦ Pfi ◦ ΛF∈ ◦ FΛmnlR

Theorem 4.19 (minimal-based greedy theorem for repetitions). If each total function fi is strictly mono-
tonic with respect to a well-supported relation R, then the following equation holds.

ΛmnlR ◦ (
⊎

i∈I Pfi)
∗ = (ΛmnlR ◦

⊎
i∈I Pfi)

∗ ◦ ΛmnlR

Proof. Since ΛmnlR is a proper thinning because of the well-supportedness of R, it is suffice to show ΛmnlR◦
Pfi = ΛmnlR ◦ Pfi ◦ ΛmnlR from Theorem 4.10.

ΛmnlR ◦ Pfi = { trivial (mnl) }
Pfi ◦ ΛmnlRfi

= { Rfi ⊇ R, and Lemmas 4.3 and 4.16 }
Pfi ◦ ΛmnlRfi

◦ ΛmnlR
= { trivial (mnl) }

ΛmnlR ◦ Pfi ◦ ΛmnlR

17

The theorems above show sufficient conditions to solve combinatorial optimization problems efficiently.
When R is total, we can obtain optimal solutions by considering only minimum candidates in each step. This
case corresponds to greedy algorithms. Even if R is not total, we can obtain optimal solutions by computing
minimal candidates in each step. This case corresponds to dynamic programming algorithms. Therefore,
our theorems can derive both greedy and dynamic programming algorithms. It is worth noting that thanks
for the use of functions, our theorems are much easier to confirm the premise than existing greedy theorems
seen in the previous section. For our theorems, checking “for all something, something holds” style condition
is sufficient, while one must check “for all something, exists something such that something holds” style
condition for the existing theorems.

4.3 Remarks

Here we would like to mention relationship between existing greedy theorems and our greedy theorems.
As explained in Section 3.1, Bird, de Moor, and Curtis formalized greedy theorems [BdM93b, BdM93a,

BdM96, Cur96, Cur03]. Our motivation is to give greedy theorems that are easier to use. We formalized
mnl instead of min so that we will not be in trouble with totality. We use union of functions instead of
relations to enumerate solutions so that we can easily check the monotonicity condition. We seek for the
condition in which equality between specification and derived program exactly holds, so that we need not
distinguish enumerating of all optimal solutions from obtaining an optimal solution. Actually, as the price
of easiness, our theorems are a bit more restrictive than exiting ones. However, our theorems can cope with
most of cases that existing theorems can cope with.

We use mnlR instead of minR. Even though mnlR is equivalent to minR◦⇒R, the use of mnlR is a
challenging task, because R◦ ⇒ R is not always a quasi-order even if R is a quasi-order. Thus theories
prepared for min is not directly applicable for mnl . More precisely, R◦ ⇒ R is always reflective and total,
but not transitive in general. If R◦ ⇒ R is transitive, our results agree with the existing result, because
the monotonicity condition for R◦ ⇒ R is exactly the strictly monotonicity condition of R, as shown by
Lemma 4.16.

To deal with non-total quasi-orders, Bird and de Moor introduced the thinning theorem [BdM96]. Al-
though the thinning theorem is effective, the definition of thin is vague and thus use of thin is difficult.
We focus on mnl and avoid introducing it. Certainly, ΛmnlR satisfies the requirement of thin if R is well-
supported. The definition of mnlR is not vague. Moreover, our greedy theorem can cope with most cases
that the thinning theorem can cope with.

4.4 Lemmas

Lemma 4.20. A function f : A → A such that X ⊇ f(X) is a proper thinning if and only if f(f(X)∪Y) =
f(X ∪ Y) holds for any sets X ⊆ A and Y ⊆ A.

Proof.
(⇒)

f(f(X) ∪ Y) = { f is a proper thinning }
f(f(f(X)) ∪ f(Y))

= { Lemma 4.2 }
f(f(X) ∪ f(Y))

= { f is a proper thinning }
f(X ∪ Y)

(⇐)

f(X ∪ Y) = { assumption }
f(f(X) ∪ Y)

= { ∪ is commutative }
f(Y ∪ f(X))

= { assumption }
f(f(Y) ∪ f(X))

= { ∪ is commutative }
f(f(X) ∪ f(Y))

18

Lemma 4.21. For relations S, T , P , and Q, assume that P ◦ Q ⊆ P , and ∈ ⊆ Q◦ ◦ minP hold. Then,
minP ◦ ΛT ⊆ S ⊆ T implies minP ◦ ΛS ⊆ minP ◦ ΛT .

Proof.

minP ◦ ΛS ⊆ minP ◦ ΛT ⇔ { Lemma 2.21 }
(S ∩ P/S◦) ⊆ (T ∩ P/T ◦)

⇔ { property of ∩ }
((S ∩ P/S◦) ⊆ T) ∧ ((S ∩ P/S◦) ⊆ P/T ◦)

⇔ { S ⊆ T }
(S ∩ P/S◦) ⊆ P/T ◦

⇐ { trivial (∩) }
P/S◦ ⊆ P/T ◦

⇔ { property of / }
P/S◦ ◦ T ◦ ⊆ P

⇐ { T = ∈ ◦ ΛT ⊆ Q◦ ◦ minP ◦ ΛT ⊆ Q◦ ◦ S }
P/S◦ ◦ S◦ ◦ Q ⊆ P

⇐ { property of / }
P ◦ Q ⊆ P

⇔ { assumption }
True

Lemma 4.22. For any relations R, S, and T , minR ◦ Λ(S ∪ T) ⊆ (minR ◦ ΛS) ∪ (minR ◦ ΛT) holds.

Proof.

minR ◦ Λ(S ∪ T) ⊆ (minR ◦ ΛS) ∪ (minR ◦ ΛT)
⇔ { Lemma 2.21 }

((S ∪ T) ∩ R/(S◦ ∪ T ◦)) ⊆ ((S ∩ R/S◦) ∪ (T ∩ R/T ◦))
⇔ { distribute ∩ over ∪ }

((S ∩ R/(S◦ ∪ T ◦)) ∪ (T ∩ R/(S◦ ∪ T ◦))) ⊆ ((S ∩ R/S◦) ∪ (T ∩ R/T ◦))
⇐ { trivial }

(R/(S◦ ∪ T ◦) ⊆ R/S◦) ∧ (R/(S◦ ∪ T ◦) ⊆ R/T ◦)
⇐ { / is anti-monotonic to its right operand }

(S◦ ∪ T ◦) ⊇ S◦ ∧ (S◦ ∪ T ◦) ⊇ T ◦

⇔ { trivial (∪) }
True

Lemma 4.23.
(R ⇒ S)◦ = (R◦ ⇒ S◦)

Proof. It is sufficient to show ((R ⇒ S)◦ ⊇ X) ⇔ ((R◦ ⇒ S◦) ⊇ X) for any X.

(R ⇒ S)◦ ⊇ X ⇔ { introducing converse }
(R ⇒ S) ⊇ X◦

⇔ { property of ⇒ }
S ⊇ (R ∩ X◦)

⇔ { introducing converse }
S◦ ⊇ (R◦ ∩ X)

⇔ { property of ⇒ }
(R◦ ⇒ S◦) ⊇ X

Lemma 4.24. For any polynomial functor F and relation R, ΛmnlFR ◦ ΛF∈ = ΛF∈ ◦ FΛmnlR holds.

Proof.

19

ΛmnlFR ◦ ΛF∈ = { ΛF∈ is a function, and the property of functions (1) }
Λ(mnlFR ◦ ΛF∈)

= { Lemma 2.21 }
Λ(F∈ ∩ (FR◦ ⇒ FR)/F∈◦)

= { F is polynomial and Lemma 2.12 }
Λ(F∈ ∩ F(R◦ ⇒ R)/F∈◦)

= { F is polynomial and Lemma 2.14 }
Λ(F(∈ ∩ (R◦ ⇒ R)/3))

= { definition of mnl }
ΛFmnlR

= { Lemma 2.8 }
ΛF∈ ◦ FΛmnlR

5 Preservation of Monotonicity

We explained the monotonicity properties are the key issue to construct efficient algorithms, though ap-
propriate orders are hard to obtain in practice. In this section, we show several calculational laws to solve
combinatorial optimization problems. First we introduce some calculational laws to obtain appropriate
orders. We adopt the constructive approach, in which we construct appropriate complicated orders by com-
bining simple orders. After that, we propose a theorem that enables us to solve combinatorial optimization
problems with ease, as the outcome of the proposed laws. Necessary lemmas are shown in Section 5.3 with
their proofs.

5.1 Preservation of Monotonicity

Recall the drawback of the greedy theorems. Although the monotonicity properties are necessary for the
greedy theorems, it is hard to find such an appropriate order. What we need is calculational laws to derive
an appropriate order constructively.

First we show that one of the simplest orders, namely equivalence relations, satisfies good properties.

Lemma 5.1. Any function is strictly monotonic with respect to any equivalence relation.

Proof. Any equivalence relation has no strict part; thus any function is strictly monotonic with respect to
them.

Lemma 5.2. Any function is completely monotonic with respect to the equivalence relation =.

Proof. For any function f , a = b implies f(a) = f(b) and thus f is monotonic with respect to =. From
Lemma 5.1, any function is strictly monotonic with respect to =. In summary, any function is completely
monotonic with respect to =.

Although the statement of Lemmas 5.1 and 5.2 might sound trivial, they are important. Recall that any
equivalence relation is well-supported, as shown in Lemma 4.14. These properties imply that equivalence
relations are useful to construct appropriate orders.

Next, we show the way to construct orders that satisfy monotonicity properties. The following lemma
gives a way to check whether Rf satisfies monotonicity properties.

Lemma 5.3. For relation R : A ; A and functions f : B → A and g : FB → B, assume that there exists
a (possibly partial) function g′ : FA → A such that f ◦ g = g′ ◦ Ff holds. Then, g is monotonic (strictly
monotonic, completely monotonic) with respect to Rf if and only if g′ is monotonic (strictly monotonic,
completely monotonic, respectively) with respect to R on the range of Ff .

Proof. We give a proof for the monotonic case. Others are similar.

20

(Rf)g ⊇ FRf ⇔ { definition of (Rf)g }
g◦ ◦ f◦ ◦ R ◦ f ◦ g ⊇ F(f◦ ◦ R ◦ f)

⇔ { property of converses }
(f ◦ g)◦ ◦ R ◦ (f ◦ g) ⊇ F(f◦ ◦ R ◦ f)

⇔ { assumption }
(g′ ◦ Ff)◦ ◦ R ◦ (g′ ◦ Ff) ⊇ F(f◦ ◦ R ◦ f)

⇔ { property of converses and and relators }
Ff◦ ◦ g′

◦ ◦ R ◦ g′ ◦ Ff ⊇ Ff◦ ◦ FR ◦ Ff
⇔ { definition of Rg′ }

Ff◦ ◦ Rg′ ◦ Ff ⊇ Ff◦ ◦ FR ◦ Ff

Corollary 5.4. For any functions f and g, g is completely monotonic with respect to =f if and only if there
exists a (possibly partial) function g′ such that f ◦ g = g′ ◦ Ff holds.

Proof. From Lemma 5.3, it is sufficient that g′ is completely monotonic with respect to =, and it is always
satisfied because of Lemma 5.2.

Lemma 5.3 and Corollary 5.4 show that if we can successfully obtain a function g′ such that f ◦g = g′◦Ff
holds, then we can check the monotonicity properties much easier. Note that obtaining such g′ is a sufficient
condition of fusion transformation, as shown in Theorem 2.4. Fusion transformation is well researched, and
many researches have done for automatic implementation of Theorem 2.4 [SdM01, YHT05, Yok06]. We can
automatically guarantee the existence of g′ by borrowing results of such researches.

Effectiveness of use of functions, instead of relations, can be clearly seen in Lemma 5.3 and Corollary 5.4.
It is very difficult to find similar lemmas if f and g are relations. The use of functions enables us to obtain
monotonicity conditions constructively.

Monotonicity properties are closed under intersections, which is useful to construct a weaker relation.

Lemma 5.5. For any relations R and S, a function f : FA → A is monotonic (strictly monotonic,
completely monotonic) with respect to R ∩ S, provided that f is monotonic (strictly monotonic, completely
monotonic, respectively) with respect to both R and S.

Proof. We give a proof for the monotonic case. Others are similar.

(R ∩ S)f ⊇ F(R ∩ S) ⇔ { (R ∩ S)f = Rf ∩ Sf }
Rf ∩ Sf ⊇ F(R ∩ S)

⇒ { assumption }
FR ∩ FS ⊇ F(R ∩ S)

⇔ { Lemma 2.9 }
True

Next is about sequential composition of two orders, namely R ; S.

Lemma 5.6. For any polynomial functor F and relations R and S, a function f : FA → A is monotonic
(strictly monotonic, completely monotonic) with respect to R ; S, provided that f is completely monotonic
with respect to S and monotonic (strictly monotonic, completely monotonic, respectively) with respect to R.

Proof. The monotonic case is proved in Lemma 5.15. The strictly monotonic case is proved by combining
Lemmas 5.11 and 5.15. The completely monotonic case is the combination of both result.

Lemma 5.6 is useful in practice. An order R ; S is used to solve multi-objective optimization problems,
in which one would like to find R-minimum elements in the S-minimum elements.

Let us consider a concrete example borrowed from [MPRS99]. For a network, the length and the capacity
of a path are respectively the weight sum and the maximum weight of edges in the path. Consider problems
to find a minimum-length path or a maximum-capacity path. Since we may construct solutions by extending
paths step by step, we would like to know whether an extension of a path satisfies the monotonicity conditions.
For the minimum-length paths problem, an extension of a path is completely monotonic; for two paths p1

and p2 of the same destination, where the length of p1 is strictly less than (equal to) the length of p2, the
length of p1 ++ [e] is certainly strictly less than (equal to) the length of p2 ++ [e]. For the maximum-capacity
paths problem, an extension of a path is monotonic but not strictly monotonic; for two paths p1 and p2

of the same destination, where the capacity of p1 is strictly larger than the capacity of p2, the capacity of

21

p1 ++ [e] is larger or equal than the capacity of p2 ++ [e]. From the observation above, we can conclude
that we can efficiently compute the maximum-capacity path in the shortest paths, because of Lemma 5.6;
however, it may be hard to compute the shortest path in the maximum-capacity paths, because Lemma 5.6
is not applicable.

As seen in the example above, Lemma 5.6 enables us to solve complicated problems having additional
constraints in a step-by-step manner by decomposing a problem into small and simple subproblems.

So far, we have explained how appropriate orders are obtained constructively. It is worth noting that the
proposed constructions also preserve the well-supportedness, as shown in Lemma 4.15. Thus the constructed
orders are applicable for mnl without caring well-supportedness.

5.2 Derivation of Dynamic Programming

In the previous section, we introduced some ways to obtain appropriate order. While they may be insightful
in some extent, they have no direct connection to concrete problems. They do not give any solutions
straightforwardly for a class of combinatorial optimization problems. In this section, we propose a useful
theorem that enables us to solve a class of combinatorial optimization problems directly.

Before proposing the theorem, we would like to introduce a notion.

Definition 5.7 (follow). For functions f : A → B and g : A → C, we say that f follows g if g(a1) = g(a2)
implies f(a1) = f(a2) for any elements a1 ∈ A and a2 ∈ A.

Lemma 5.8. For functions f and g, the following statements are equivalent.

1. f follows g.

2. =f ⊇ =g.

3. There exists a (possibly partial) function f ′ such that f = f ′ ◦ g.

Proof. The second statement is just a rephrase of the first one. It is easy to see the third statement implies
the second one: g(a1) = g(a2) implies f(a1) = f ′(g(a1)) = f ′(g(a2)) = f(a2). In the following, we show that
the second statement implies the third. Let f ′ = f ◦g◦. Then f ⊆ f ′ ◦g holds from the property of functions
(3). The following calculation shows f ⊇ f ′ ◦ g also holds.

f = { h = h ◦ h◦ ◦ h holds for any function h }
f ◦ f◦ ◦ f

⊇ { =f ⊇ =g and =f = f◦ ◦ f }
f ◦ g◦ ◦ g

= { definition of f ′ }
f ′ ◦ g

Thus f ′ ◦ g = f holds. Now it is sufficient to show f ′ is simple, that is (f ◦ g◦) ◦ (f ◦ g◦)◦ ⊆ id .

(f ◦ g◦) ◦ (f ◦ g◦)◦ ⊆ id ⇔ { distributing a converse over the composition }
f ◦ g◦ ◦ g ◦ f◦ ⊆ id

⇔ { f is a function, and the properties of functions (2) and (3) }
g◦ ◦ g ⊆ f◦ ◦ f

⇔ { (f◦ ◦ f) ⇔ =f }
=g ⊆ =f

Now we would like to introduce our theorem.

Theorem 5.9 (derivation of dynamic programming). An index set I, functions p : A → Bool, qi : FA →
Bool, q′i : A → Bool, fi : FA → A, where i ∈ I and a well-supported quasi-order R : A ; A are given.
Assume that each function fi is strictly monotonic with respect to R. Then, the following equations hold,
where R′ is defined as R′ def= R ∩ =g1 ∩ =g2 ∩ =g3 , provided that there exist functions gj where j ∈ {1, 2, 3}

22

such that p, each qi, and each q′i follow functions g1, g2, and g3, respectively, and ∃f ′
ij : gj ◦ fi = f ′

ij ◦ Fgj

holds for each fi.

ΛmnlR ◦ p4 ◦ ([
⊎
i∈I

(q′i4 ◦ Pfi ◦ qi
4) ◦ ΛF∈]) = ΛmnlR ◦ p4 ◦ ([ΛmnlR′ ◦

⊎
i∈I

(q′i4 ◦ Pfi ◦ qi
4) ◦ ΛF∈])

ΛmnlR ◦ p4 ◦ (
⊎
i∈I

(q′i4 ◦ Pfi ◦ qi
4))

∗
= ΛmnlR ◦ p4 ◦ (ΛmnlR′ ◦

⊎
i∈I

(q′i4 ◦ Pfi ◦ qi
4))

∗
◦ ΛmnlR′

Proof. Since p follows g1, ΛmnlR◦p4 = ΛmnlR◦p4 ◦ΛmnlR∩=g holds from Lemma 5.17. From Lemmas 4.3,
4.16, and 5.14, ΛmnlR ◦p4 ◦ΛmnlR∩=g = ΛmnlR ◦p4 ◦ΛmnlR′ . R′ is well-supported from Lemmas 4.14 and
4.15, and fi is strictly monotonic with respect to R′ from Lemma 5.5. Therefore, thanks for Lemma 5.18,
the minimal-based greedy theorems (Theorems 4.18 or 4.19) are applicable and yield the equations.

Theorem 5.9 is general, but a bit complicated and hard to understand. The intricacy comes from the
filters qi

4 and q′i
4, which expresses restrictions of domain and range of fi. In other words, Theorem 5.9 deal

with problems where each choice itself has constraint, for example, each choice must not be chosen twice.
The following corollary is simpler, which corresponds to the case where each choice has no constraint.

Corollary 5.10. Assume that a function p follows a function g and each function fi is strictly monotonic
with respect with a quasi-order R. Then the following equations hold, provided that there exist functions f ′

i

such that g ◦ fi = f ′
i ◦ Fg for all functions fi.

ΛmnlR ◦ p4 ◦ ([(
⊎
i∈I

Pfi) ◦ ΛF∈]) = ΛmnlR ◦ p4 ◦ ([ΛmnlR∩=g ◦ (
⊎
i∈I

Pfi) ◦ ΛF∈])

ΛmnlR ◦ p4 ◦ (
⊎
i∈I

Pfi)
∗

= ΛmnlR ◦ p4 ◦ (ΛmnlR∩=g ◦ (
⊎
i∈I

Pfi))
∗
◦ ΛmnlR∩=g

Proof. It is a direct consequence of Theorem 5.9; let each function qi and q′i be the constant function that
always returns True.

Theorem 5.9 and Corollary 5.10 give a way to efficiently solve combinatorial optimization problems.
Assume that we can solve a simple problem to get R-minimal elements. Then we can solve a complicated
problem having additional constraint, whenever the constraint satisfies the requirement. They are applicable
for a quite wide class of combinatorial optimization problems because they does not require any specific
structure of problems.

Corollary 5.10 states that considering (R ∩ =g)-minimal solutions are enough to get optimal solutions if
the premises are satisfied. Recall that (R∩=g) is the order where two candidates a and b are compared by R
if and only if both elements belong to the same equivalent class of =g, i.e., g(a) = g(b); thus Corollary 5.10
can be understood as a derivation of dynamic programming algorithm. At each step of recursion, fill the
table whose keys are equivalent classes of =g and the values are the R-minimal solutions of each classes.
Theorem 5.9 requires much larger table whose keys are equivalent classes of =g1 ∩ =g2 ∩ =g3 .

Let us examine the time complexity of the resulted programs of Corollary 5.10. First, assume R is a
linear order. In this case, it is sufficient for each recursion step to keep only one element for each equivalent
class, which is raised from g. Let k denote the size of the range of g; then k candidates are considered in
each step. Thus their time complexity is O(kTp + knI(TR + Tg + Tf)) where TR, Tg, Tp, and Tf are the
costs to compute R, g, p, and each fi, respectively, n is the number of recursion, which is the size of the
input structure for the case of catamorphisms, and I is the index set used in the corollary, which is the set of
choices in each step. Notice that parameters except k are fixed when program inputted is fixed. Therefore
the choice of g determines the efficiency of the derived program. If R is not a linear order, then the corollary
might not be effective. For example, if R is an equivalence relation mnlR cannot discard any candidates and
the corollary can do nothing. But the corollary is effective for most of cases in practice. Similar observation
can be done for Theorem 5.9: the time complexity of resulted program is proportional to the size of range
of g1 times that of g2 times that of g3.

The resulted algorithm may have a local inefficiency caused by the recursive recomputations of R and gj .
Memoizing the result of R and gj may improve efficiency, especially the solutions are large structures and
each choice corresponds to a construction of a structure.

What Theorem 5.9 requires is existence of functions gj and f ′
ij . To find an appropriate function gj , one

of the easiest ways is decomposition, as Lemma 5.8 suggests. For example, assume that p is decomposed into

23

p1 ◦p2; then, since p follows p2 from Lemma 5.8, p2 is a candidate of g1. Actually, the constraints are defined
in terms of a composition of functions in the most of cases. Next, we should confirm the existence of functions
f ′

ij such that gj ◦ fi = f ′
ij ◦ Fgj . As explained, this is a well-known premise of fusion transformations and we

can automate this step. It may be interesting fact that fusability implies derivation of dynamic programming.
Corollary 5.10 is a generalization of Theorem 3.5. In Theorem 3.5, constraints are expressed by (accept ◦

fold (f,e))4. Thus the constraint, namely accept ◦ fold (f,e), follows fold (f,e) from Lemma 5.8. Moreover,
fold (f,e) is always fusable to allMarking , which is fairly easy to confirm. In summary, since allMarking is a
catamorphism on lists, Corollary 5.10 is always applicable for the maximum marking problems considered
here, and yields linear-time algorithms if the range of fold (f,e) is finite. The same result also holds for the
general result of Sasano et al. [SHTO00], namely the results for maximum marking problems on trees.

Finally, we would like to discuss a small extension of Theorem 5.9. Consider optimal solutions should
satisfy two constraints p1 and p2. Assume that there exist functions h1 and h2 such that p1 follows h1,
p2 follows h2, and both h1 and h2 satisfies the premises of Theorem 5.9. From the requirement of h1

and Lemma 5.5, R ∩ =h1 satisfies the strictly monotone condition. Thus, from the requirement of h2 and
Lemma 5.5, R ∩ =h1 ∩ =h2 satisfies the strictly monotone condition. Now we can see that our theorem
easily cope with logical conjunctions of constraints. Moreover, since logical negations do not affect to check
the premise of Theorem 5.9, the theorem can cope with the logical conjunctions, logical disjunctions, and
logical negations of constraints. The important thing is that it is sufficient to consider conditions p1 and
p2 independently. This fact much eases difficulty to obtain efficient algorithms when one want to deal with
complicated constraints.

5.3 Lemmas

Lemma 5.11. For any relations R and S, R ; S
< is equivalent to R

< ; S.

Proof.
R ; S
< ⇔ { definition of R ; S

< }
(S ∩ (¬S◦ ∪ R)) ∩ (¬S◦ ∪ (S ∩ ¬R◦))

⇔ { distributivity }
(S ∩ (¬S◦ ∪ R) ∩ ¬S◦) ∪ (S ∩ (¬S◦ ∪ R) ∩ (S ∩ ¬R◦))

⇔ { simplification }
(S ∩ ¬S◦) ∪ (S ∩ (¬S◦ ∪ R) ∩ ¬R◦)

⇔ { distributivity }
(S ∩ ¬S◦) ∪ (S ∩ ¬S◦ ∩ ¬R◦) ∪ (S ∩ R ∩ ¬R◦)

⇔ { simplification }
(S ∩ ¬S◦) ∪ (S ∩ R ∩ ¬R◦)

⇔ { distributivity }
S ∩ (¬S◦ ∪ (R ∩ ¬R◦))

⇔ { definition of R
< and ⇒ }

S ∩ (S◦ ⇒ R
<)

⇔ { definition of R
< ; S }

R
< ; S

Lemma 5.12. For any relation R and equivalence relation S, R ∩ S is equivalent to R ; S.

Proof.

R ; S = { definition of R ; S }
S ∩ (¬S◦ ∪ R)

= { distributivity }
(S ∩ ¬S◦) ∪ (S ∩ R)

= { Since S is equivalence relation, S ∩ ¬S◦ = ∅ }
S ∩ R

Lemma 5.13. For any quasi-orders R and S, R ; S is strictly stronger than S.

Proof.

24

R ; S
< ⊇ S

< ⇔ { Lemma 5.11 }
R
< ; S ⊇ S

<

⇔ { definition of R
< ; S }

(S ∩ (¬S◦ ∪ R
<)) ⊇ S

<
⇔ { distributivity }

((S ∩ ¬S◦) ∪ (S ∩ R
<)) ⊇ S

<

⇔ { definition of S
< }

(S
< ∪ (S ∩ R

<)) ⊇ S
<

⇔ { trivial (∪) }
True

Lemma 5.14. For any relation R and equivalence relation S, R is completely stronger than R ∩ S.

Proof. It is obvious that R is stronger than R ∩ S. The following calculation shows R is strictly stronger
than R ∩ S.

R ∩ S
< = { Lemma 5.12 }

R ; S
<

= { Lemma 5.11 }
R
< ; S

= { Lemma 5.12 }
R
< ∩ S

⊆ { trivial (∩) }
R
<

Lemma 5.15. For any polynomial functor F and relations R and S, a function f : FA → A is monotonic
with respect to R ; S, provided that f is monotonic with respect to R and completely monotonic with respect
to S.

Proof.

(R ; S)f ⊇ F(R ; S) ⇔ { (R ; S)f = Rf ; Sf }
Rf ; Sf ⊇ F(R ; S)

⇔ { definition of R ; S }
(Sf ∩ (Sf

◦ ⇒ Rf)) ⊇ F(S ∩ (S◦ ⇒ R))
⇐ { F is polynomial, and Lemmas 2.9 and 2.12 }

(Sf ∩ (Sf
◦ ⇒ Rf)) ⊇ (FS ∩ (FS◦ ⇒ FR))

⇔ { property of ∩ }
(Sf ⊇ (FS ∩ (FS◦ ⇒ FR))) ∧ ((Sf

◦ ⇒ Rf) ⊇ (FS ∩ (FS◦ ⇒ FR)))
⇔ { Sf ⊇ FS holds from assumption }

(Sf
◦ ⇒ Rf) ⊇ (FS ∩ (FS◦ ⇒ FR))

⇔ { property of ⇒ }
¬Sf

◦ ∪ Rf ⊇ (FS ∩ (¬FS◦ ∪ FR))
⇔ { distributivity }

¬Sf
◦ ∪ Rf ⊇ ((FS ∩ ¬FS◦) ∪ (FS ∩ FR))

⇐ { trivial (∪) }
(¬Sf

◦ ⊇ (FS ∩ ¬FS◦)) ∧ (Rf ⊇ (FS ∩ FR))
⇔ { Rf ⊇ FR holds from assumption }

¬Sf
◦ ⊇ (FS ∩ ¬FS◦)

⇔ { Sf ⊇ FS holds from assumption }
Sf ∩ ¬Sf

◦ ⊇ (FS ∩ ¬FS◦)

⇔ { definition of FS
< and

Sf

< }
Sf

< ⊇ FS
<

⇔ { assumption }
True

25

Lemma 5.16. Let ¹ be a linear order in which True is strictly smaller than False. Then, for any quasi-order
R and predicate q, the following inequality holds.

(ΛmnlR ◦ q4)(X) ⊆ ΛmnlR;¹q (X)

Proof. If q4(X) = ∅, then (ΛmnlR ◦ q4)(X) = ∅ ⊆ ΛmnlR;¹q (X). Now assume q4(X) = Y 6= ∅.

(ΛmnlR ◦ q4)(X) ⊆ ΛmnlR;¹q (X) ⇔ { definition of q4 }
ΛmnlR(Y) ⊆ ΛmnlR;¹q (X)

⇔ { Since ∀b1, b2 ∈ Y : b1 ¹p b2, ΛmnlR(Y) = ΛmnlR;¹q (Y) }
ΛmnlR;¹q (Y) ⊆ ΛmnlR;¹q (X)

⇐ { Λmnl is a proper thinning, X ⊇ Y , and Lemma 4.3 }
ΛmnlR;¹q (X) ⊆ Y

⇔ { Λmnl¹q (X) = Y }
ΛmnlR;¹q (X) ⊆ Λmnl¹q (X)

⇔ { Lemmas 4.16 and 5.13 }
True

Lemma 5.17. For any well-supported quasi-order R, predicate p, and function g, the following equation
holds if p follows g.

ΛmnlR ◦ p4 = ΛmnlR ◦ p4 ◦ ΛmnlR∩=g

Proof. From Lemmas 4.3 and 4.9, it is sufficient to show ΛmnlR∩=g
(X) ⊇ (ΛmnlR ◦ p4)(X). Let ¹ be a

linear order in which True is strictly smaller than False.

ΛmnlR∩=g
(X) ⊇ { Claim: R ; ¹p is strictly stronger than R ∩ =g, and Lemma 4.16 }

ΛmnlR;¹p(X)
⊇ { Lemma 5.16 }

(ΛmnlR ◦ p4)(X)

Now we prove the claim.
R ∩ =g

< = { Lemma 5.12 }
R ; =g

<
= { Lemma 5.11 }

R
< ; =g

= { Lemma 5.12 }
R
< ∩ =g

⊆ { p follows g and Lemma 5.8 }
R
< ∩ =p

= { definition of ¹p }
R
< ∩ ¹p ∩ ¹p

◦

⊆ { (A ∩ B) ⊆ ((A ∩ B) ∪ ¬A) = A ⇒ B }
(¹p

◦ ⇒ R
<) ∩ ¹p

= { definition of R
< ; ¹p }

R
< ; ¹p

= { Lemma 5.11 }
R ; ¹p

<

Lemma 5.18. For functions f , g, p, and q, let f ′ be a partial function such that Pf ′ = p4 ◦Pf ◦q4. Such f ′

always exists, and f ′ is monotonic (strictly monotonic, completely monotonic) with respect to a quasi-order
R ∩ =g1 ∩ =g2 , provided that p and q follow g1 and g2 respectively, and f is monotonic (strictly monotonic,
completely monotonic, respectively) with respect to R ∩ =g1 ∩ =g2 .

26

Proof. First, we give the definition of f ′.

f ′(a) def= f(a) if q(a) ∧ p(f(a))

It is obvious that f ′ satisfies the requirement. Now we check the monotone property. We prove the monotonic
case, and others are similar.

a (R ∩ =g1 ∩ =g2) b ⇔ { definition of R ∩ =g1 ∩ =g2 }
a (R ∩ =g1 ∩ =g2) b ∧ g2(a) = g2(b)

⇔ { q follows g2 }
a (R ∩ =g1 ∩ =g2) b ∧ q(a) = q(b)

⇒ { assumption }
f(a) (R ∩ =g1 ∩ =g2) f(b) ∧ q(a) = q(b)

⇒ { definition of R ∩ =g1 ∩ =g2 }
f(a) R f(b) ∧ g1(f(a)) = g1(f(b)) ∧ q(a) = q(b)

⇒ { p follows g1 }
f(a) R f(b) ∧ p(f(a)) = p(f(b)) ∧ q(a) = q(b)

From the calculation above, a (R ∩ =g) b implies the following two: (i) f(a) R f(b) (ii) f ′(a) is undefined if
and only if f ′(b) is undefined. Therefore, f ′ is monotonic with respect to R ∩ =g1 ∩ =g2 .

6 Deriving Algorithms for Regular-Language Constrained Short-
est Path Problems

In this section, we consider the regular-language constrained shortest path problems [Rom88, BJM00]. We
derive algorithms to solve the problems as applications of Theorem 5.9. Note that since we assume there is
no negatively weighted cycle, there is a lower bound of distance of two vertexes. In other words, each order
used in this section is well-supported.

6.1 Shortest Path Problems

Before discussing the regular-language shortest path problems, we would like to review calculational aspects
of the shortest path problems. Given a network ((V,E), w), a source s ∈ V , and a destination t ∈ V ,
a shortest path problem is the problem to compute the shortest paths from s to t. The following is the
specification of the shortest path problems in a calculational style.

SP def= (π1 ◦ ΛmnlW ◦ endWitht
4 ◦ (

⊎
e∈E Pextende] Pid)∗) {([], s)}

endWithv(p, v′) def= v = v′

extende(p, v) def= (p ++ [e], v′) if e = (v, v′)
(p1, v1) W (p2, v2)

def= w(p1) ≤ w(p2)

Throughout the computation, we manage a pair as a candidate, whose first value records a path and second
value records the terminal vertex of the path. All paths are enumerated by recursive application of extende,
where subscript e stands for the edge concatenated to paths. We extract all paths terminating with the
vertex t, and search the path of the minimum weight.

6.1.1 Deriving the Bellman-Ford Algorithm

Now we would like to derive an efficient algorithm from the specification. Notice that we can decompose
extende into a function addEdgee with a predicate endWithv.

Pextende = PaddEdgee ◦ endWithπ1(e)
4

addEdgee(p, v) def= (p ++ [e], π2(e))

Since addEdgee is a total function, while extende is a partial function, it is easy to confirm the monotonicity
condition. Actually it is obvious that id and addEdgee is strictly monotonic with respect to W . Now observe

27

that endWithv uses only its second input, which tells us endWithv follows π2. Therefore, we use π2 to derive
a dynamic programming algorithm based on Theorem 5.9.

Let us calculate as follows.

SP
= { definition of SP }

(π1 ◦ ΛmnlW ◦ endWitht
4 ◦ (

⊎
e∈E Pextende] Pid)∗) {([], s)}

= { decompose extende }
(π1 ◦ ΛmnlW ◦ endWitht

4 ◦ (
⊎

e∈E(PaddEdgee ◦ endWithπ1(e)
4)] Pid)∗) {([], s)}

= { Theorem 5.9 (claim: π2 ◦ addEdgee = f ′
e ◦ π2; notice that π2 ◦ id = id ◦ π2 holds.) }

(π1 ◦ ΛmnlW ◦ endWitht
4 ◦ (ΛmnlW∩=π2

◦ (
⊎

e∈E(PaddEdgee ◦ endWithπ1(e)
4)] Pid))∗) {([], s)}

= { folding extende }
(π1 ◦ ΛmnlW ◦ endWitht

4 ◦ (ΛmnlW∩=π2
◦ (

⊎
e∈E Pextende] Pid))∗) {([], s)}

The claim is confirmed as follows.

(π2 ◦ addEdgee) (p, v) = { definition of addEdgee }
π2(e)

= { Let f ′
e(v) def= π2(e) }

(f ′
e ◦ π2) (p, v)

We derived a program based on Theorem 5.9. Recall that the quasi-order W ∩=π2 compares the paths of the
same destination. Therefore, this program recursively computes candidates of shortest paths from s to each
vertex, until we cannot find better paths any more. This algorithm is exactly the Bellman-Ford algorithm.
The time complexity of the derived algorithm is O(V E).

6.1.2 Deriving the Dijkstra Algorithm

If all weights are positive, the Dijkstra algorithm improves efficiency. The idea of the Dijkstra algorithm is
to delay finding a path until it becomes the shortest path not searched yet. To express such delay, we give
a counter that counts the number of recursive calls accomplished.

SP = (π1 ◦ ΛmnlW ′ ◦ endWith ′
t
4 ◦ (

⊎
e∈E Pextend ′

e] Pnext)∗) {([], s, 0)}

endWith ′
v(p, v′, k) def= v = v′

extend ′
e(p, v, k) def= (p ++ [e], v′, k + 1) if e = (v, v′)

next(p, v, k) def= (p, v, k + 1)
(p1, v1, k) W ′ (p2, v2, k) def= w(p1) ≤ w(p2)

We introduce new functions extendDe that delay constructing paths to a vertex v until χ(π2(e))-th recursive
call, according to a function χ : V → N.

extendDe(p, v, k) def= extend ′
e(p, v, k) if e = (v, v′) ∧ k ≥ χ(v′)

Notice that extendDe does nothing harmful: it does nothing in the early step, and it will be equivalent to
extend ′

e after some proper number of recursive calls. Therefore, (
⊎

e∈E PextendDe] Pnext)∗ is equivalent
to (

⊎
e∈E Pextend ′

e] Pnext)∗.
Now we do similar process to the previous derivation. First, we decompose the extendDe into a total

function with a filtering.
PextendDe = PaddEdge ′

e ◦ properDe
4

addEdge ′
e(p, v, k) def= (p ++ [e], π2(e), k + 1)

properDe(p, v, k) def= e = (v, v′) ∧ χ(v′) ≤ k

Observe that properDe uses only its second and third input; thus properDe follows 〈π2, π3〉. endWith ′
t also

28

follows 〈π2, π3〉, since endWith ′
t uses only its second input. Now we calculate as follows.

SP
= { delayed variant of SP }

(π1 ◦ ΛmnlW ′ ◦ endWith ′
t
4 ◦ (

⊎
e∈E PextendDe] Pnext)∗) {([], s, 0)}

= { decompose extendDe }
(π1 ◦ ΛmnlW ′ ◦ endWith ′

t
4 ◦ (

⊎
e∈E(PaddEdge ′

e ◦ properDe
4)] Pnext)∗) {([], s, 0)}

= { Theorem 5.9 (premises are confirmed bellow), and let W ′
23 = W ′ ∩ =〈π2,π3〉 }

(π1 ◦ ΛmnlW ′ ◦ endWith ′
t
4 ◦ (ΛmnlW ′

23
◦ (

⊎
e∈E(PaddEdge ′

e ◦ properDe
4)] Pnext))∗) {([], s, 0)}

= { folding extendDe }
(π1 ◦ ΛmnlW ′ ◦ endWith ′

v
4 ◦ (ΛmnlW ′

23
◦ (

⊎
e∈E PextendDe] Pnext))∗) {([], s)}

The premises of Theorem 5.9 is easy to confirm, as the following calculations show.

(〈π2, π3〉 ◦ next) (p, v, k) = { definition of next }
(v, k + 1)

= { Let g(v, k) def= (v, k + 1) }
(g ◦ 〈π2, π3〉) (p, v, k)

(〈π2, π3〉 ◦ addEdge ′
e) (p, v, k) = { definition of addEdgee }

(π2(e), k + 1)
= { Let f ′′

e (v, k) def= (π2(e), k + 1) }
(f ′′

e ◦ 〈π2, π3〉) (p, v, k)

We have derived an efficient algorithm for delayed variant of SP . In the calculation, we do not use any
specific property of χ. This fact tells us that the correctness of the derived algorithms does not depend on
the choice of χ. However, the efficiency of derived algorithms does depend the choice of χ. In the Dijkstra
algorithm, χ results in the nearness ranking from the source vertex. The exact value of χ is not known in
advance, but revealed as the computation goes. Since all weights of edges are positive, the nearest vertex
that has not been visited yet is certainly the next nearest vertex in each step of computation. The time
complexity of the Dijkstra algorithm is O(V log V +E), if we implement it efficiently using a Fibonacci heap.
Similarly, we can use A∗ search algorithms, which is also delayed variant but uses another definition of χ.

6.2 Regular-Language Constrained Shortest Path Problems

In previous subsection, we saw that our theorem enables us to derive and prove the well-known shortest
path algorithms. In this subsection, we show that our theorem also works well for more difficult problems,
namely regular-language constrained shortest path problems. Regular-language constrained shortest path
problems are the problems to compute the shortest path such that the label of the path should be in a
regular language. Here we give the formal definition of the regular-language shortest path problems.

Definition 6.1 (regular-language constrained shortest path problem). Given a network N = ((V,E), w)
with a labeling function l, a source s ∈ V , a destination t ∈ V , and a regular language L, a regular language
constrained shortest path problem is the problem to find the shortest path p from s to t such that l(p) ∈ L.

Romeuf [Rom88] might be the first one who introduced the problems. Barret et al. [BJM00] generalized
the problems as the formal-language constrained path problems. Regular-language constrained shortest
path problems contain many problems, such as shortest odd/even path problems, shortest path problems
with forbidden paths [VD05], and the traveling salesman problem; besides, regular-language constrained
shortest path problems are important in many areas, such as transportation networks [BBJ+02, BBJ+07]
and queries [FFG06].

A regular-language constrained shortest path problem have an constraint, namely the label of each path
should be in a regular language. We use deterministic finite state automata to determine whether a string
is in a regular language or not.

Definition 6.2 (deterministic finite state automata). A deterministic finite state automaton A is a tuple
(Q,Σ, δ, q0, QF), where Q is a finite set of states, Σ is an alphabet, δ : (Q×Σ) → Q is a function to compute
transition, q0 ∈ Q is the initial state, and QF ⊆ Q is a set of final states.

29

The run of an automaton A = (Q, Σ, δ, q0, QF) is denoted a function acceptA : Σ∗ → Bool , which is
defined using a function stateA : Σ∗ → Q as follows.

acceptA
def= (∈QF) ◦ stateA

stateA([]) def= q0

stateA(x ++ [σ]) def= δ(state(x), σ)

We assume l(e) = e for the simplicity of the presentation; thus, the alphabet of automata is E. Now we give
the specification of the problem in a calculational style.

RLSP def= (π1 ◦ ΛmnlW ◦ (acceptA ◦ π1)4 ◦ endWitht
4 ◦ (

⊎
e∈E Pextende] Pid)∗) {([], s)}

The specification is the same as the usual shortest path problem, except for the additional constraint
(acceptA ◦ π1)4.

6.2.1 Basic Algorithm

Romeuf [Rom88] proposed the basic algorithm to solve the regular-language constrained shortest path prob-
lem. In this subsection, we derive the algorithm from Theorem 5.9. The process of the derivation is almost
the same as the case of the usual shortest path problems. Recall that extende can be decomposed into
addEdgee with endWithπ(e). From the definition of acceptA and Lemma 5.8, acceptA ◦π1 follows stateA ◦π1.
The following calculation confirm the fusable requirement.

(stateA ◦ π1 ◦ addEdgee) (p, v) = { definition of addEdge }
stateA(p ++ [e])

= { definition of stateA, where A = (Q,Σ, δ, q0, QF) }
δ(stateA(p), e)

= { let ge(q)
def= δ(q, e) }

(ge ◦ stateA ◦ π1) (p, v)

Recall that endWithv follows π2. Thus Theorem 5.9 derives the following algorithm, where an order WA
def=

W ∩ =stateA◦π1 ∩ =π2 is used to discard unnecessary candidates.

RLSP = (π1 ◦ ΛmnlW ◦ (acceptA ◦ π1)4 ◦ endWitht
4 ◦ (ΛmnlWA ◦ (

⊎
e∈E

Pextende] Pid))
∗
) {([], s)}

This program works as follows: compute candidates of shortest paths from the initial state of the source
vertex to each state of each vertex recursively, until we cannot find better paths any more. We can recog-
nize the program as the Bellman-Ford algorithm on the larger graph where each vertex and each edge are
duplicated according to the states of the automaton. This is exactly the idea of the algorithm proposed
by Romeuf [Rom88]. Romeuf showed that the regular-language constrained shortest paths are the shortest
paths on the larger graph that corresponds to the product of the underlying graph and the automaton. The
time complexity of the resulting program is O(V Q2E), where Q is the set of states of the automaton. This
result is a bit inefficient. We need to construct the larger graph explicitly to compute the result, while many
vertexes and edges are probably unnecessary to find the optimal path to the destination.

6.2.2 Case 1: all weights are positive

When all weights are positive, we can easily remove the inefficiency by the Dijkstra algorithm. The improve-
ment was proposed by Barrett et al. [BBJ+02, BBJ+07].

We do the similar calculation. Again, we introduce extendDe to introduce the Dijkstra algorithm.
extendDe can be decomposed into addEdge ′

e and properDe. stateA ◦π1 satisfies the fusable condition, which
is confirmed almost the same calculation as the previous one. It is because the computation for first compo-
nent in addEdge ′

e is the same as that in addEdgee and stateA ◦π1 is only sensitive to first components. Now,
since properD follows 〈π2, π3〉, we obtain the following algorithm, where W ′

A
def= W ′ ∩ =stateA◦π1 ∩ =〈π2,π3〉.

RLSP = (π1 ◦ ΛmnlW ′ ◦ (acceptA ◦ π1)4 ◦ endWith ′
t
4 ◦ (ΛmnlW ′

A
◦ (

⊎
e∈E

PextendDe] Pnext))
∗
) {([], s, 0)}

30

Recall that a function χ manages the delay of extendDe. Choosing an appropriate χ, we obtain the Dijkstra-
like algorithm to solve regular-language constrained shortest path problems. The time complexity of the
algorithm is O(V Q log(V Q) + EQ), if we implement it efficiently using a Fibonacci heap, where Q is the set
of states of the automaton. Since the feasible solution found firstly is the optimal solution, we may avoid
constructing and traversing whole of the large graph. Similarly, we can use other algorithms, such as A∗

algorithms.
The most important lesson is that the additional constraint, namely (acceptA ◦ π1)4, does not affect

from the delay. The only thing required is stateA satisfies an appropriate property to the construction
of first component in addEdgee. In other words, from any procedure to construct paths, we can derive a
dynamic-programming based algorithm for regular-language constrained shortest path problems, whenever
construction of a path is expressed in terms of one-step extensions of a path, that is p ++ [e].

6.2.3 Case 2: general case

As discussed, the Dijkstra algorithm improves efficiency very much. Now we propose a new efficient algorithm
that works even if the graph has some negatively weighed edges.

We have derived the algorithms based on Theorem 5.9. These derivations suggest that we can derive an
efficient algorithm even if we change weights. If we can redefine weights so that there are no negatively-
weighted edges, then we can apply the Dijkstra algorithm. Though redefining weights may change shortest
paths, we can do it without changing shortest paths, as shown by Johnson [Joh77]. One of the most important
observations is the following lemma.

Lemma 6.3. For a graph G = (V,E), two weight functions w and w′, assume that there exists a function
h : V → R such that w′(u, v) def= w(u, v) + h(u) − h(v) holds for all (u, v) ∈ E. Then shortest paths in the
network (G, w) is the same as those in the network (G,w′).

Thus, redefining the weight function according to h does not change the shortest paths. Furthermore,
we can construct an appropriate h such that w(u, v) + h(u) − h(v) ≥ 0 holds for all (u, v) ∈ E, by solving
a shortest path problem. Consider a graph G′ = (V ∪ {v∗}, E ∪ {(v∗, v) | v ∈ V }) and a weight function
w′′(e) = if e ∈ E then w(e) else 0. Solve the single-source shortest path problem on the network (G′, w′′)
from v∗, and let h(v) be the optimal cost from v∗ to v. Then, w(u, v) + h(u) − h(v) ≥ 0 holds, because the
optimality of h(v) implies w(u, v) + h(u) ≥ h(v).

Now the calculation in Section 6.2.2 certainly shows that this redefinition does not affect the correctness
of the derived algorithm. In summary, we can efficiently compute the regular-language constrained shortest
path problems in the general setting by the following procedure. First, compute the special single-source
shortest path problem, described above, to obtain the appropriate weights. After that, compute the regular-
language constrained shortest path problems on the positively weighted graph, which is solved by the Dijkstra
algorithm. The overall evaluation requires O(V E + V Q log(V Q) + EQ).

It is worth noting that it is unnecessary to recompute special single-source shortest path problem, if we
have already solved it. It is probable that we query many times using different regular languages. In such
cases, precomputing the h improves efficiency.

6.3 Summary

We have derived several algorithms based on Theorem 5.9. Our theorem enables us to derive algorithms
quite easily. Furthermore, our theorems clarify the correspondence between algorithms for usual shortest
path problems and those for regular-language constrained shortest path problems.

The knowledge about usual shortest path problems enables us to solve regular-language constrained
shortest path problems efficiently: the Dijkstra algorithm improves efficiency, and Johnson algorithm enables
us to use the Dijkstra algorithm. The most important intuition from Theorem 5.9 is summarized as the
following sentence. The good relationship between automata and addEdgee enables us to solve regular-
language shortest path problems based on the dynamic programming technique, and the fact never depend
the algorithm to find shortest path, whenever we construct a path by repetition of one-step extension. So we
can consider the efficiency, namely the part to compute shortest paths, separately from the regular-language
constraint part.

31

7 Related Works

In this paper, we formalized greedy algorithms and dynamic programming algorithms in terms of minimals
and the strictly monotone property, and proposed new calculational laws that enable us to solve a large
class of combinatorial optimization problems. Since dynamic programming is one of the most important
techniques for constructing efficient algorithms, there are many researches to formalize it [Bel57, Iba73,
Mor82, Hel89, dM92, BdM93a, dM95, BdM96, Cur96, Cur97, KV06] and automatically obtain it [ALS91,
BPT92, SHTO00, GS02, GM02, LS03, SOH05]. Many researchers mention the importance of the strictly
monotone property. If we have the strictly monotone property, then naive memoization enables us to produce
a dynamic programming algorithm. Though obtaining the strictly monotone property is one of the most
important parts to construct dynamic programming algorithms, most of the researches treat the strictly
monotone property as an assumption. We concentrated to construct the strictly monotone property.

In Section 6 we derived algorithms for the regular-language constrained shortest path problems. Although
many researches devoted themselves to deriving graph algorithms, for example [BdM93b, BvKW98, Rav99a,
Rav99b] and especially shortest path algorithms [MR93, BvdEvG94, Dur02], it is known to be hard to derive
graph algorithms systematically. Existing works were tried to derive basic algorithms, such as the Dijkstra
algorithm. We have gone another way. We proposed the theorem that enables us to derive complicated
dynamic programming algorithms from simple and basic algorithms.

We introduced Theorem 5.9 to derive dynamic programming algorithms. The programs derived from
Theorem 5.9 may not be efficient. To improve their efficiency, we are considering three approaches. The first
approach is to improve base greedy algorithms, as shown in Section 6.2. Theorem 5.9 derives a dynamic
programming algorithm from a greedy algorithm, and to refine the greedy algorithm will improve the derived
algorithm. The second one is to reduce the size of the table. The technique to reduce and minimize automata
may be useful to reduce the size of the table. Matsuzaki [Mat07] also proposed a procedure to reduce the size
of the table, which is applicable for maximum marking problems. The third one is to derive more efficient
algorithms, such as greedy algorithms or parallel algorithms. Ibaraki [Iba78] showed that a class of dynamic
programming problems corresponds to a class of problems that are solvable by a branch-and bound procedure.
Matsuzaki [Mat07] showed that all maximum marking problems on binary trees are parallelizable.

8 Conclusion

As an ongoing effort to establish a methodology to construct efficient algorithms for combinatorial opti-
mization problems, we showed the following three in this paper. First, we gave a framework to calculate
combinatorial optimization problems using functions, minimals, and the strictly monotone property. Second,
we introduced lemmas to construct orders satisfying the monotone properties, and proposed Theorem 5.9
that enables us to derive complicated dynamic programming algorithms from simple algorithms. Finally,
we showed derivations of algorithms to solve regular-language constrained shortest path problems, as an
application of Theorem 5.9.

Now we are considering two directions of further research.
For theory, we would like to give a general formalization that contains both catamorphisms and repeti-

tions. In this paper, we independently showed the results about catamorphisms and repetitions, and these
results are, hopefully, unified into a general framework. Furthermore, we would like to give a methodology
to derive greedy algorithms. The strictly monotone property is also important for greedy algorithms. We
hope that our result is helpful to derive greedy algorithms.

For application, we would like to construct a system to compute optimal path queries. In Section 6, we
showed regular-language constrained shortest path problems are solved efficiently. There are other variants
of shortest path problems, for example resource constrained shortest path problems [AAN83, Jaf84] and
shortest path problems of time-dependent networks [OR90, IGSD98], and their combinations [BJ04, SJH06].
Such variants of shortest path problems, called optimal path problems, are important because they have a
lot of practical applications. We believe Theorem 5.9 can cope with a wide class of them.

Acknowledgements

We are very grateful to Shin-Cheng Mu for his helpful comment about the relationship between our work
and existing calculational works. His comment helped us very much to improve the whole of this paper.

32

References

[AAN83] Yash. P. Aneja, V. Aggarwal, and Kunhiraman Nair. Shortest chain subject to side constraints.
Networks, 13(2):295–392, 1983.

[ALS91] Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable graphs.
Journal of Algorithms, 12(2):308–340, 1991.

[BBJ+02] Christopher L. Barrett, Keith Bisset, Riko Jacob, Goran Konjevod, and Madhav V. Marathe.
Classical and contemporary shortest path problems in road networks: Implementation and
experimental analysis of the TRANSIMS router. In Algorithms - ESA 2002, 10th Annual
European Symposium, Rome, Italy, September 17-21, 2002, Proceedings, volume 2461 of Lecture
Notes in Computer Science, pages 126–138. Springer, 2002.

[BBJ+07] Christopher L. Barrett, Keith Bisset, Riko Jacob, Goran Konjevod, Madhav V. Marathe, and
Dorothea Wagner. Label constrained shortest path algorithms: An experimental evaluation
using transportation networks. Technical report, Virginia Tech (USA), Arizona State University
(USA), and Karlsruhe University (Germany), 2007.

[BdM92] Richard S. Bird and Oege de Moor. Between dynamic programming and greedy: Data com-
pression. Programming Research Group, 11 Keble Road, Oxford OX1 3QD, England, 1992.

[BdM93a] Richard S. Bird and Oege de Moor. From dynamic programming to greedy algorithms. In
Formal Program Development - IFIP TC2/WG 2.1 State-of-the-Art Report, volume 755 of
Lecture Notes in Computer Science, pages 43–61. Springer, 1993.

[BdM93b] Richard S. Bird and Oege de Moor. Solving optimisation problems with catamorphisms. In
Mathematics of Program Construction, 2nd International Conference, Oxford, U.K., June 29
- July 3, MPC 1992, Proceedings, volume 669 of Lecture Notes in Computer Science, pages
45–69, 1993.

[BdM96] Richard S. Bird and Oege de Moor. Algebra of Programming. Prentice Hall, 1996.

[Bel57] Richard Bellman. Dynamic Programming. Princeton University Press, 1957.

[Ben86] Jon Bentley. Programming Pearls. ACM, New York, NY, USA, 1986.

[Bir84] Richard S. Bird. The promotion and accumulation strategies in transformational programming.
ACM Transactions on Programming Languages and Systems, 6(4):487–504, 1984.

[Bir89] Richard S. Bird. Algebraic identities for program calculation. Computer Journal, 32(2):122–126,
1989.

[Bir01] Richard S. Bird. Maximum marking problems. Journal of Functional Programming, 11(4):411–
424, 2001.

[Bir06] Richard S. Bird. Loopless functional algorithms. In Mathematics of Program Construction,
8th International Conference, MPC 2006, Kuressaare, Estonia, July 3-5, 2006, Proceedings,
volume 4014 of Lecture Notes in Computer Science, pages 90–114. Springer, 2006.

[BJ04] Gerth Stølting Brodal and Riko Jacob. Time-dependent networks as models to achieve fast
exact time-table queries. Electronic Notes in Theoretical Computer Science, 92:3–15, 2004.

[BJM00] Christopher L. Barrett, Riko Jacob, and Madhav V. Marathe. Formal-language-constrained
path problems. SIAM Journal on Computing, 30(3):809–837, 2000.

[BPT92] Richard B. Borie, R. Gary Parker, and Craig A. Tovey. Automatic generation of linear-time
algorithms from predicate calculus descriptions of problems on recursively constructed graph
families. Algorithmica, 7(5&6):555–581, 1992.

[BvdEvG94] Roland Carl Backhouse, J. P. H. W. van den Eijnde, and A. J. M. van Gasteren. Calculating
path algorithms. Science of Computer Programming, 22(1–2):3–19, 1994.

33

[BvKW98] Rudolf Berghammer, Burghard von Karger, and Andreas Wolf. Relation-algebraic derivation
of spanning tree algorithms. In Mathematics of Program Construction, MPC 1998, Marstrand,
Sweden, June 15-17, 1998, Proceedings, pages 23–43, London, UK, 1998. Springer-Verlag.

[CSRL01] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. Introduction
to algorithms, Second edition. MIT Press, Cambridge, MA, USA, 2001.

[Cur96] Sharon A. Curtis. A Relational Approach to Optimization Problems. PhD thesis, Oxford
University Computing Laboratory, 1996.

[Cur97] Sharon A. Curtis. Dynamic programming: a different perspective. In Algorithmic Languages
and Calculi, IFIP TC2 WG2.1 International Workshop on Algorithmic Languages and Calculi,
17-22 February 1997, Alsace, France, volume 95 of IFIP Conference Proceedings, pages 1–23.
Chapman & Hall, 1997.

[Cur03] Sharon A. Curtis. The classification of greedy algorithms. Science of Computer Program,
49(1–3):125–157, 2003.

[dM92] Oege de Moor. Categories, Relations and Dynamic Programming. PhD thesis, Oxford Univer-
sity Computing Laboratory, 1992. Technical Monograph PRG-98.

[dM95] Oege de Moor. A generic program for sequential decision processes. In Programming Languages:
Implementations, Logics and Programs, 7th International Symposium, PLILP’95, Utrecht, The
Netherlands, September 20-22, 1995, Proceedings, volume 982 of Lecture Notes in Computer
Science, pages 1–23. Springer, 1995.

[dMG99] Oege de Moor and Jeremy Gibbons. Bridging the algorithm gap: A linear-time functional
program for paragraph formatting. Science of Computer Programming, 35(1):3–27, 1999.

[dMG00] Oege de Moor and Jeremy Gibbons. Invited talk: Pointwise relational programming. In Alge-
braic Methodology and Software Technology. 8th International Conference, AMAST 2000, Iowa
City, Iowa, USA, May 20-27, 2000, Proceedings, volume 1816 of Lecture Notes in Computer
Science, pages 371–390. Springer, 2000.

[dMS01] Oege de Moor and Ganesh Sittampalam. Higher-order matching for program transformation.
Theoretical Computer Science, 269(1–2):135–162, October 2001.

[Dur02] Juan Eduardo Durán. Transformational derivation of greedy network algorithms from descrip-
tive specifications. In Mathematics of Program Construction, 6th International Conference,
MPC 2002, Dagstuhl Castle, Germany, July 8-10, 2002, Proceedings, volume 2386 of Lecture
Notes in Computer Science, pages 40–67. Springer, 2002.

[FFG06] Sergio Flesca, Filippo Furfaro, and Sergio Greco. Weighted path queries on semistructured
databases. Information and Computation, 204(5):679–696, 2006.

[Fok92] Maarten M. Fokkinga. Law and Order in Algorithmics. PhD thesis, University of Twente, Dept
INF, Enschede, The Netherlands, 1992.

[GM02] Robert Giegerich and Carsten Meyer. Algebraic dynamic programming. In Algebraic Method-
ology and Software Technology, 9th International Conference, AMAST 2002, Saint-Gilles-les-
Bains, Reunion Island, France, September 9-13, 2002, Proceedings, volume 2422 of Lecture
Notes in Computer Science, pages 349–364. Springer, 2002.

[GS02] Robert Giegerich and Peter Steffen. Implementing algebraic dynamic programming in the
functional and the imperative programming paradigm. In Mathematics of Program Construc-
tion, 6th International Conference, MPC 2002, Dagstuhl Castle, Germany, July 8-10, 2002,
Proceedings, volume 2386 of Lecture Notes in Computer Science, pages 1–20. Springer, 2002.

[Hel89] Paul Helman. A common schema for dynamic programming and branch and bound algorithms.
Journal of the ACM, 36(1):97–128, 1989.

34

[Iba73] Toshihide Ibaraki. Solvable classes of discrete dynamic programming. Journal of mathematical
analysis and applications, 43(3):642–693, 1973.

[Iba78] Toshihide Ibaraki. Branch-and-bound procedure and state-space representation of combinato-
rial optimization problems. Information and Control, 36(1):1–27, 1978.

[IGSD98] Irina Ioachim, Sylvie Gélinas, François Soumis, and Jacques Desrosiers. A dynamic program-
ming algorithm for the shortest path problem with time windows and linear node costs. Net-
works, 31(3):193–204, 1998.

[Jaf84] Jeffery M. Jaffe. Algorithms for finding paths with multiple constraints. Networks, 14(1):95–
116, 1984.

[Joh77] Donald B. Johnson. Efficient algorithms for shortest paths in sparse networks. Journal of the
ACM, 24(1):1–13, 1977.

[KT05] Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2005.

[KV06] Jevgeni Kabanov and Varmo Vene. Recursion schemes for dynamic programming. In Mathemat-
ics of Program Construction, 8th International Conference, MPC 2006, Kuressaare, Estonia,
July 3-5, 2006, Proceedings, volume 4014 of Lecture Notes in Computer Science, pages 235–252.
Springer, 2006.

[LS03] Yanhong A. Liu and Scott D. Stoller. Dynamic programming via static incrementalization.
Higher-Order and Symbolic Computation, 16(1–2):37–62, 2003.

[Mat07] Kiminori Matsuzaki. Parallel Programming with Tree Skeletons. PhD thesis, Graduate School
of Information Science and Technology, The University of Tokyo, 2007.

[Mei92] Erik Meijer. Calculating Compilers. PhD thesis, Nijmegen University, 1992.

[MFP91] Erik Meijer, Maarten M. Fokkinga, and Ross Paterson. Functional programming with bananas,
lenses, envelopes and barbed wire. In Functional Programming Languages and Computer Archi-
tecture, 5th ACM Conference, Cambridge, MA, USA, August 26-30, 1991, Proceedings, volume
523 of Lecture Notes in Computer Science, pages 124–144. Springer, 1991.

[MKHT06] Akimasa Morihata, Kazuhiko Kakehi, Zhenjiang Hu, and Masato Takeichi. Swapping argu-
ments and results of recursive functions. In Mathematics of Program Construction, 8th In-
ternational Conference, MPC 2006, Kuressaare, Estonia, July 3-5, 2006, Proceedings, volume
4014 of Lecture Notes in Computer Science, pages 379–396. Springer, 2006.

[Mor82] Thomas L. Morin. Monotonicity and the principle of optimality. Journal of Mathematical
Analysis and Applications, 86:665–674, 1982.

[MPRS99] Ernesto Q. Vieira Martins, Marta Margarida B. Pascoal, Deolinda Maria L. Dias Rasteiro, and
Jose Luis E. Santos. The optimal path problem. Investigação Operacional, 19:43–69, 1999.

[MR93] Bernhard Möller and Martin Russling. Shorter paths to graph algorithms. In Mathematics of
Program Construction, Second International Conference, Oxford, U.K., June 29 - July 3, 1992,
Proceedings, volume 669 of Lecture Notes in Computer Science, pages 250–268. Springer, 1993.

[OR90] Ariel Orda and Raphael Rom. Shortest-path and minimum-delay algorithms in networks with
time-dependent edge-length. Journal of the ACM, 37(3):607–625, 1990.

[Rav99a] Jesús N. Ravelo. Relations, graphs and programs. Technical report, Programming Research
Group Technical Monograph PRG-125, Oxford University Computing Laboratory, 1999.

[Rav99b] Jesús N. Ravelo. Two graph algorithms derived. Acta Informatica, 36(6):489–510, 1999.

[Rom88] Jean-François Romeuf. Shortest path under rational constraint. Information Processing Letters,
28(5):245–248, 1988.

35

[SdM01] Ganesh Sittampalam and Oege de Moor. Higher-order pattern matching for automatically
applying fusion transformations. In Proceedings of the Second Symposium of Programs as
Data Objects, PADO’01, volume 2053 of Lecture Notes in Computer Science, pages 218–237.
Springer, 2001.

[SHTO00] Isao Sasano, Zhenjiang Hu, Masato Takeichi, and Mizuhito Ogawa. Make it practical: a
generic linear-time algorithm for solving maximum-weightsum problems. In Proceedings of the
5th ACM SIGPLAN International Conference on Functional Programming, ICFP’00, pages
137–149, New York, NY, USA, 2000. ACM Press.

[SJH06] Hanif D. Sherali, Chawalit Jeenanunta, and Antoine G. Hobeika. The approach-dependent,
time-dependent, label-constrained shortest path problem. Networks, 48(2):57–67, 2006.

[SOH05] Isao Sasano, Mizuhito Ogawa, and Zhenjiang Hu. Maximum marking problems with accumula-
tive weight functions. In Theoretical Aspects of Computing - ICTAC 2005, Second International
Colloquium, Hanoi, Vietnam, October 17-21, 2005, Proceedings, pages 562–578. Springer, 2005.

[VD05] Daniel Villeneuve and Guy Desaulniers. The shortest path problem with forbidden paths.
European Journal of Operational Research, 165(1):97–107, 2005.

[YHT05] Tetsuo Yokoyama, Zhenjiang Hu, and Masato Takeichi. Calculation rules for warming-up in
fusion transformation. In the 2005 Symposium on Trends in Functional Programming, TFP
2005, Tallinn, Estonia, 23-24 September 2005, pages 399–412, 2005.

[Yok06] Tetsuo Yokoyama. Deterministic Higher-order Matching for Program Transformation. PhD
thesis, Graduate School of Information Science and Technology, The University of Tokyo, March
2006.

36

