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Abstract
This paper studies a design methodology of a distributed cooperative
controller for target-enclosing operations by multiple dynamic agents.
To this end, we first present an on-line path generator design method
based on a cyclic pursuit scheme. Then, we provide the stability condi-
tion which the developed path generator should satisfy. This condition
is derived based on a simple stability analysis method for hierarchical
large-scale linear systems with generalized frequency variable. The
formation control scheme combined with a cyclic pursuit based dis-
tributed on-line path generator satisfying the derived stability condi-
tion guarantees the required global convergence property with theo-
retical rigor. Further, in order to show clearly its distinctive features,
we present how to design a formation controller for a class of multi-
agent systems where each agent is modeled as a second-order system
and is locally stabilized by the PD/PID controllers. For each cases,
we also show that the formation stability can be easily analyzed based
on the generalized Kalman-Yakubovich-Popov (KYP) lemma. Simu-
lation examples illustrate its distinctive features and the achievement
of a desired pursuit pattern.
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1 Introduction

Formation control which coordinates the motion of relatively simple and
inexpensive multiple agents is one of the essential technologies that enable
agents to cover a larger operational area and achieve complex tasks [7, 11].
Several research groups recently developed coordination control strategies
which achieve an enclosing formation around a specific area (object) by
multiple agents using local information (see [13, 7, 8, 6, 12] and the refer-
ences therein). This type of coordination of motions is not only interesting
but also significant, because it has many potential applications from an en-
gineering standpoint as mentioned in Marshall et al. [7, 8] and Sepulchre et
al. [12] For instance, it is useful when hazardous terrestrial/oceanographic
exploration, military surveillance and rescue operation are performed by co-
operative multi-agent systems.

Recently, Kim and Sugie [5] proposed a distributed on-line path planning
scheme based on a modified cyclic pursuit strategy for target-enclosing oper-
ations by multi-agent systems. Despite its simple but particularly effective
nature for target enclosing tasks, it could be a considerable drawback in
real implementations that each agent is assumed to be a point mass with
full actuation. That is, since agent’s dynamics is not explicitly considered
in path planning, their approach may suffer from the potential problem that
each agent cannot track its designed trajectory precisely. In this case, the
global convergence of multiple agents to the designated formation may not
be achieved. It is therefore required for the improvement of its real imple-
mentability to develop a simple distributed on-line path planning strategy
for multiple agents which generates the feasible trajectories under the ex-
plicit consideration of agent’s dynamics and guarantees the global conver-
gence property.

Regarding formation control with dynamic agents, Hara et al. [2] proposed
a novel technique to analyze the characteristics of hierarchical large-scale
linear systems. To this end, they first introduced the notion of a linear
system with a generalized frequency variable; this system denoted as G(s)
is developed by just replacing transfer function’s ‘s’ variable in the original
system L(s) with a rational function ‘ϕ(s)’, i.e., G(s) := L(ϕ(s)). One of
the examples of the systems which may retain generalized frequency vari-
ables is a class of formation control for multi-agent systems. Then, they
developed a simple unified framework to analyze controllability, observabil-
ity and stability of the hierarchical system G(s). Specifically, they presented
the stability condition of G(s) in relation to the pole locations of L(s) in the
complex plane and the regions which ϕ(s) maps the right-half complex plane
to. These results probably make a big contribution to the development of a
cyclic pursuit based distributed on-line path planning scheme which guar-
antees the global convergence property with theoretical rigor.
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This paper proposes a distributed cooperative control based on a cyclic pur-
suit strategy for target-enclosing operations by multiple agents. Here, it is
assumed that n agents, which have common system dynamics and identical
local controllers, are randomly dispersed in 3D space. The system of each
agent combined with a controller is denoted by H(s). In this paper, we first
present an on-line path generator design method based on a cyclic pursuit
scheme, which was proposed by Kim and Sugie [5]. Then, based on the
results of Hara et al. [2], we derive a stability condition which the above
cyclic pursuit based on-line path generator should satisfy to guarantee the
formation stability. This is described in relation to the pole locations of
the developed path generator in the complex plane and the region which
ϕ(s) (:= s/H(s)) maps the right-half complex plane to. Further, in or-
der to show clearly the distinctiveness and effectiveness of the proposed
technique, we present an explicit stability condition for a cyclic pursuit
based path generator combined with a class of multi-agent systems; each
agent is modeled as a second-order system and is locally stabilized by the
proportional-derivative (PD) or the proportional-integral-derivative (PID)
controllers. For each cases, we first show that for given dynamic agents
and on-line path generator, the formation stability can be readily analyzed
based on the generalized Kalman-Yakubovich-Popov (GKYP) lemma [3, 4].
Then, both optimization based algebraic expression based approaches for
the design of an on-line path generator, which satisfies theoretically the de-
rived stability condition, are presented. Simulation examples illustrate its
distinctive features and the achievement of a desired pursuit pattern.

The following notations will be used hereafter: For a Hermitian matrix,
M > 0, M ≥ 0, M < 0, and M ≤ 0 denote positive definiteness, posi-
tive semidefiniteness, negative definiteness, and negative semidefiniteness,
respectively. The transpose and complex conjugate transpose of the matrix
M are denoted by MT and M∗, respectively. The symbol Hn denotes the
set of n×n Hermitian matrices. The Kronecker product of matrices Γ and P
is Γ⊗P . The real and imaginary parts of a complex variable z is represented
by Re[z] and Im[z], respectively.

2 System description and control aim

Consider a group of n agents dispersed in 3D space as shown in Figure
1. All agents are ordered from 1 to n; i.e., P1, P2, · · · , Pn. We define
Pi+1 as prey agent of Pi. Denote the position vectors of the target object
and the agent Pi (i = 1, 2, · · · , n) in the inertial frame by po(t) ∈ R3 and
pi(t) ∈ R3, respectively. It is assumed that an agent Pi can measure the
following vectors:

di (:= pi − po), ai (:= pi − pi+1). (1)
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Figure 1: Coordinate frames and notations

Define the target-fixed frame {Γobj} where the origin is at the center of
target object, and Xobj-, Yobj- and Zobj-axes are parallel to x-, y- and z-axes
of the inertial frame, respectively. Let bi denote the projected vector of di

onto the Xobj-Yobj plane in the target-fixed frame, and define the following
scalars:

θi = ∠(ex,bi), αi = ∠(bi,di), di := |di|, (2)

where ex denotes the unit vector in the Xobj-direction of {Γobj}, and ∠(x,y)
denotes the counter-clockwise angle from the vector x to the vector y. Then,
di can be represented as di = [di cos θi cos αi, di sin θi cos αi, di sinαi]T . Note
that since di+1 = di − ai, θi+1 and δθi(:= θi+1 − θi) can be calculated in a
similar way based on (1). Let D denote the required distance between the
target object and the agents.

Suppose that all agents Pi (i = 1, 2, · · · , n) have common system dynamics
described by a MIMO plant as follows:

yi(s) :=

 θi(s)
di(s)
αi(s)

 = G(s)ui(s) :=

Gθ(s) 0 0
0 Gd(s) 0
0 0 Gα(s)

ui(s) (3)

where yi(s) is the system output, ui(s) is the control input, and G(s) is
the diagonal transfer matrix. Also, assume that all agents are locally stabi-
lized by an identical diagonal feedback controller K(s) defined as K(s) :=
diag(Kθ(s),Kd(s),Kα(s)) as illustrated in Figure 1. Therefore, θ-, d- and
α-directional closed-loop transfer functions of each agent are described, re-
spectively, as

Hθ(s) = Gθ(s)Kθ(s)
1+Gθ(s)Kθ(s) , Hd(s) = Gd(s)Kd(s)

1+Gd(s)Kd(s) , Hα(s) = Gα(s)Kα(s)
1+Gα(s)Kα(s) . (4)

Now we consider how to form a geometric pattern for the target-enclosing
operation by n agents. The detailed control objectives are stated as follows:

(A1) n agents enclose the target object at uniformly spaced angle and main-
tain this angle.
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(A2) Each agent approaches to the target object and finally keeps the dis-
tance D.

(A3) The angle αi which corresponds to the altitude of each agent converges
to the desired one Φ.

Note that for the sake of clarity, this paper only considers the equal con-
vergence positions for all agents; i.e., D1 = D2 = · · · = Dn = D and
Φ1 = Φ2 = · · · = Φn = Φ, while the distinct ones for each agent can be
assigned.

In the next section, the formation control scheme which achieves the objec-
tives (A1)-(A3) is developed.

3 Distributed formation control based on a cyclic
pursuit scheme

It is important from the practical viewpoint to achieve the desired global
behavior through a relatively simple control law using only local information.
As one of the feasible methods, we present a distributed cooperative control
scheme motivated by a cyclic pursuit strategy for target-enclosing task [5],
which realizes the required geometric formation mentioned in Section 2.

3.1 Design of a distributed on-line path generator

It is assumed that n agents are randomly dispersed in 3D space at the initial
time instant as depicted in Figure 1, where 0 < |δθi| < 2π for i = 1, 2, · · · , n,
and

∑n
i=1 δθi = 2π. Then, the distributed on-line path planning scheme for

the ith agent Pi is described as (see Figure 2)

θ̇i(t) = k1δθi(t), (5)
ḋi(t) = k2(D − di(t)), (6)
α̇i(t) = k3(Φ − αi(t)), (7)

where k1, k2, and k3 (> 0) are design parameters,{
δθi(t) := θi+1(t) − θi(t), i = 1, 2, · · · , n − 1
δθn(t) := θ1(t) − θn(t) + 2π, i = n.
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It is important to note that the gains k1, k2, and k3 should satisfy some
conditions to guarantee the achievement of the desired global formation
(A1)-(A3), which will be explained later in detail. Then, the reference po-
sition ri(t) = [r1

i (t), r
2
i (t), r

3
i (t)]

T := [θi(t), di(t), αi(t)]T for the ith agent
shown in Figure 1 is designed by (5), (6) and (7).

Note that, in the proposed path planning method, each agent individually
decides its reference position based on the local information on only one
other agent and the target object, which is probably minimum. Further,
it has additional distinctive features as follows: each agent individually ob-
tains the required information using the sensor systems implemented on its
body, which means that no centralized communication mechanism between
agents is introduced. Also, it is a memoryless controller in the sense that
each agent determines the next behavior based only on the current position
of its prey, independently of the past behavior of its prey. Thus, it is an
easily implementable method from the engineering viewpoint.

Now, the control objectives (A1)-(A3) in Section 2 can be formulated alge-
braically as follows:

(A1′) δθi(t) → 2π/n[rad] as t → ∞,

(A2′) di(t) → D as t → ∞,

(A3′) αi(t) → Φ[rad] as t → ∞,

for i = 1, 2, · · · , n. It has been proved in Kim and Sugie [5] that path
planning schemes (5)-(7) can achieve the above control objectives (A1′)-
(A3′) under the assumption that each agent in the group is supposed to be
a point mass. However, when agent’s dynamics is considered explicitly, the
achievement of the stable global formation (A1′)-(A3′) cannot be guaranteed
only by the condition that k1, k2 and k3 in (5)-(7) are positive real numbers.
The following example illustrates this fact clearly.

Example 1. In this example, we investigate only the θ-directional behaviors
of n = 9 agents for the sake of clarity. The initial values of θi(t)[rad] are set
as follows:

θ1 = 0.198, θ2 = 1.269, θ3 = 0.050, θ4 = 1.491, θ5 = 1.175,
θ6 = 0.189, θ7 = 2.045, θ8 = 0.793, θ9 = 1.712.

(8)

Assume that the common θ-directional agent dynamics Gθ(s) and its stabi-
lizing PD controller Kθ(s) are, respectively, given as

Gθ(s) =
1

s(s + 3)
, Kθ(s) = 5 + 2s. (9)

The reference position r1
i (t) (= θi(t)) for agent i is designed based on (5)

with k1 = 1.5. The simulation is performed for t = 5[sec]. The changes of
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From the above observation, one can see that, in order to achieve the global
formation (A1′)-(A3′), three gains k1, k2 and k3 should be set carefully.
Hence, in the following subsection, we provide a simple and unified theoreti-
cal framework showing how to determine k1, k2 and k3 in relation to agent’s
dynamics Hθ(s), Hd(s) and Hα(s), respectively.

3.2 Formation stability analysis

In the following, it is supposed for the sake of clarity that Gθ(s) = Gd(s) =
Gα(s) = G(s) and Kθ(s) = Kd(s) = Kα(s) = K(s), while the distinct case
can be handled. Thus, under the above assumptions, θ-, d- and α-directional
closed-loop transfer functions of each agent become identical as Hθ(s) =
Hd(s) = Hα(s) = H(s). In order to analyze the formation stability of
multi-agent systems considered in Section 3.1, we rewrite (5) in the following
vector form:

θ̇(t) = Aθθ + Bθ (10)

with
Aθ := circ(−k1, k1, 0, 0, · · · , 0) ∈ Rn×n,
Bθ := [0, 0, · · · , 0, 2k1π]T ∈ Rn,

(11)

where θ := [θ1, θ2, · · · , θn]T ∈ Rn and circ denotes the circulant matrix.
Thus, the overall θ-directional control scheme can be depicted as shown in
Figure 4, where Ĥ(s) := (1/s)H(s) and r1 := [r1

1, r
1
2, · · · , r1

n]T ∈ Rn. Here,
it is assumed that Ĥ(s) is strictly proper. In the same manner, (6) and (7)
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can be written, respectively, as

ḋ(t) = Add(t) + Bd, (12)
α̇(t) = Aαα(t) + Bα, (13)

with d := [d1, d2, · · · , dn]T ∈ Rn, α := [α1, α2, · · · , αn]T ∈ Rn, Ad :=
−diag(k2, k2, · · · , k2) ∈ Rn×n, Aα := −diag(k3, k3, · · · , k3) ∈ Rn×n, Bd :=
(k2D)1n ∈ Rn, Bα := (k3Φ)1n ∈ Rn where 1n := [1, 1, · · · , 1]T ∈ Rn. The
block diagrams of the d- and α-directional formation controlled systems
have the same form with that in Figure 4. Thus, for the sake of page limi-
tation, we mainly consider the θ-directional control strategy.

On the other hand, it is important to note that Aθ always has exactly one
zero eigenvalue, while the remaining n − 1 eigenvalues lie strictly in the
left-half complex plane (for details, see Section 4.2 and Kim and Sugie [5]).
It means that θ̇ converges to the null space {σ|σ = σIn, σ ∈ R} where
In = [1, 1, · · · , 1]T ∈ Rn; i.e., θ̇1 = θ̇2 = · · · = θ̇n. Then, it results in
δθ1 = δθ2 = · · · = δθn = 2π/n in the steady state, which implies the forma-
tion stability described in Section 3.1. Therefore, we can disregard exactly
one zero eigenvalue and determine the formation stability based on the re-
maining n − 1 eigenvalues of Aθ [5, 7, 13]. Based on the above facts, we
consider hereafter only n − 1 eigenvalues of Aθ except for one zero eigen-
value, if no confusion could arise.

In Figure 4, the transfer function Gθ(s) from c to θ is obtained as

Gθ(s) =

(
1

Ĥ(s)
In −Aθ

)−1

Bθ = Fu

([
Aθ Bθ

In 0

]
, Ĥ(s)In

)
(14)
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where Fu denotes the upper linear fractional transformation (LFT). By con-
sidering the transfer function

Lθ(s) = (sIn − Aθ)−1Bθ (15)

which is also written as Lθ(s) ∼ (Aθ, Bθ, In, 0), it follows from (14) that

Gθ(s) = Lθ(ϕ(s)), ϕ(s) := 1/Ĥ(s). (16)

Note that the variable ‘s’ in (15) characterizes the frequency properties of
the transfer function Lθ(s) and that Gθ(s) is generated by just replacing ‘s’
by ‘ϕ(s)’ in Lθ(s). Hence, we say that the transformed transfer function
Gθ(s) = Lθ(ϕ(s)) of Lθ(s) has a generalized frequency variable ϕ(s) (see
Hara et al. [2] for details). The transfer functions Gd(s), Ld(s), Gα(s) and
Lα(s) can be derived in a similar manner.

Next, in order to derive a formation stability condition for the system Gθ(s)
in (14), we first describe a key result on stability analysis of Gθ(s) developed
by Hara et al. [2]. In their paper, instead of Nyquist’s graphical stability test
given in Fax and Murray [1], the domain in terms of the poles of the path
generator’s dynamics Lθ(s) such that Gθ(s) = Lθ(ϕ(s)) is stable is derived.
Before we proceed, the notations which will be used throughout this paper
are introduced: the domains Ω+ and Ωc

+ in the complex plane are defined
as

Ω+ := ϕ(C+), Ωc
+ := C\Ω+, (17)

where C+ = {s ∈ C : Re[s] ≥ 0}. Since Ω+ = {λ ∈ C : ∃s ∈ C+ such that
ϕ(s) = λ}, it follows that Ωc

+ can be alternatively expressed as Ωc
+ = {λ ∈

C : ∀s ∈ C+, ϕ(s) ̸= λ}. Then, the following lemma describes a sufficient
condition for the existence of Aθ (Ad, Aα) so that the hierarchical system
Gθ(s) (Gd(s), Gα(s)) is stable for a given Ĥ(s).

Lemma 1 Suppose that Ĥ(s) is stable or that Ĥ(s) does not possess non-
minimum phase zeros. Then, there exists Aθ (Ad, Aα) such that Gθ(s) =
Lθ(ϕ(s)) (Gd(s) = Ld(ϕ(s)), Gα(s) = Lα(ϕ(s))) is stable.

Next, the key theorem which describes the conditions for controllability,
observability and stability of Gθ(s), Gd(s) and Gα(s) are provided as follows:

Theorem 1 Consider the linear systems Gθ(s) in (14) and Lθ(s) in (15),
and the generalized frequency variable ϕ(s) in (16). Assume that Ĥ(s) is
strictly proper. Then, Gθ(s) (Gd(s), Gα(s)) is controllable and observable if
and only if Lθ(s) (Ld(s), Lα(s)) and Ĥ(s) are both controllable and observ-
able. Further, Gθ(s) = Lθ(ϕ(s)) (Gd(s) = Ld(ϕ(s)), Gα(s) = Lα(ϕ(s))) is
stable if and only if all the poles of Lθ(s) (Ld, Lα) belong to Ωc

+ in (17).
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Its proof can be found in Hara et al. [2]. The above theorem means that the
stability of Gθ(s) can be judged by just looking at the locations of eigenval-
ues of Aθ in relation to a domain Ωc

+ which is determined by using Ĥ(s). It
is important to note from Lemma 1 and Theorem 1 that for the case where
Ĥ(s) does not possess non-minimum phase zeros, there exists a domain Ωc

+

containing the origin, and the eigenvalues of Aθ (Ad and Aα) can be placed
in this domain (for details, see Hara et al. [2]).

Finally, we present the following theorem which says that the global forma-
tion stability (i.e., (A1′), (A2′) and (A3′)) is guaranteed as long as n − 1
poles of Lθ(s) (except for one zero pole) and all the poles of Ld(s) and Lα(s)
belong to a domain Ωc

+.

Theorem 2 Consider the system of n dynamic agents. It is assumed that
all agents are randomly dispersed in 3D space at the initial time instant as
shown in Figure 1, where 0 < |δθi| < 2π for i = 1, 2, · · · , n, and

∑n
i=1 δθi =

2π. Also, suppose that (i) n − 1 poles of Lθ(s) (except for one zero pole)
belongs to Ωc

+, (ii) all the poles of Ld(s) and Lα(s) belong to Ωc
+. Then, the

path planning schemes (5)-(7) achieve the formation stability (A1′)-(A3′)
simultaneously.

This fact can be easily proved based on the result of Kim and Sugie [5]. The
above theorem shows how to determine k1, k2 and k3 of (5)-(7) in order to
guarantee that all agents assemble into the desired formation around the
target object in 3D space. For example, consider the multi-agent system
given in Example 1, where k1 was set as k1 = 0.85. In that case, the pole
locations of Lθ(s) and the domain Ωc

+ are as illustrated in Figure 5. It
verifies that two poles of Lθ(s) (except for one zero pole) do not belong to
Ωc

+. Consequently, one reaches the conclusion that (A1′) cannot be achieved,
which is evident from Figure 3.

10



4 Target-enclosing formation control for a class of
multi-agent systems: PD controller case

In this section, we provide a constructive methodology that describes the
domain Ωc

+ in the complex plane when the transfer function Ĥ(s) is specified.
Further, we present how to design k1, k2 and k3 in (5)-(7) guaranteeing that
n − 1 poles of Lθ(s) and all the poles of Ld(s) and Lα(s) belong to Ωc

+.

4.1 Multi-agent systems stabilized by PD controllers

It is assumed that θ-, d- and α-directional agent dynamics are identical; i.e.,

G(s) =
ζ

s(s + ξ)
(18)

where ζ > 0. Then, the PD controller KPD(s) such as

KPD(s) = kp(1 + tds) (19)

is introduced to stabilize (18). Hence, it follows from G(s) in (18) and
KPD(s) in (19) that

H(s) =
ζkptds + ζkp

s2 + (ξ + ζkptd)s + ζkp
=

tds + 1
(1/ζkp)s2 + ((ξ/ζkp) + td)s + 1

. (20)

Let s̃ = tds. Then, (20) can be modified as

H(s̃) =
s̃ + 1

1
ζkpt2d

s̃2 +
(

ξ
ζkptd

+ 1
)

s̃ + 1
=

s̃ + 1
as̃2 + bs̃ + 1

(21)

where a := 1/(ζkpt
2
d)(> 0) and b := ξ/(ζkptd) + 1. Therefore, without loss

of generality, the following form of the generalized frequency variable ϕ(s)
can be considered hereafter:

ϕ(s) =
1

Ĥ(s)
=

s

H(s)
=

as3 + bs2 + s

s + 1
. (22)

Here, H(s) is stable if and only if b > 0, since a > 0.

Next, we characterize the domains Ω+ and Ωc
+ in the complex plane. These

regions are partitioned by the image of ϕ(jω) in (22) where ω ∈ R. In order
to illustrate Ωc

+ clearly, we first define the real and the imaginary parts,
f(ω) and g(ω), of ϕ(jω) in (22) as

f(ω) := Re [ϕ(jω)] =
ω2(1 − b − aω2)

1 + ω2
, (23)

g(ω) := Im [ϕ(jω)] =
ω(1 + (b − a)ω2)

1 + ω2
. (24)
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Figure 6: The image of ϕ(jω) and the domain Ωc
+

The crossing points of ϕ(jω) and the imaginary axis can be easily obtained
by finding ωI which satisfies f(ωI) = 0 and then calculating g(ωI). Similarly,
the crossing points of ϕ(jω) and the real axis are obtained from f(ωR) where
ωR satisfies g(ωR) = 0. In this case, depending on the signs of 1 − b and
a − b, the image of ϕ(jω) yields four types of diagrams as shown in Figure
6. In this figure, C1

Im and C2
Im are determined as

C1,2
Im = g(ω1,2

I ) = ±b

(
1 − b

a

)1/2

, ω1,2
I = ±

(
1 − b

a

)1/2

∈ R, (25)

if 0 < b ≤ 1, which is equivalent to ξ ≤ 0. On the other hand, CRe is

CRe = f(ω1,2
R ) =

b

b − a
, ω1,2

R = ± 1
(a − b)1/2

∈ R, (26)

if a ≥ b > 0.

In the following subsection, a considerably simple way to judge whether
nonzero n − 1 poles of Lθ(s) with a given k1 belong to Ωc

+ in Figure 6 or
not.

4.2 Algebraic formation stability criteria

It is important to note that since Aθ is a circulant matrix, its eigenvalues
can be written in the following complex form (see Kim and Sugie [5] for

12



Im
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φ(jω)
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c

f (ω)
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circle: Ck1

k1

: Eigenvalues of Aθ

∞ω = +

ω = −∞

Figure 7: The eigenvalues λi (i = 1, 2, · · · , n) of Aθ and the domain Ωc
+

details):

λi = k1

[
cos

(
2π(i − 1)

n

)
−1

]
+ jk1 sin

(
2π(i − 1)

n

)
. (27)

Since k1 > 0, Aθ has exactly one zero eigenvalue, λ1, while the remaining
nonzero n − 1 eigenvalues λi, i = 2, 3, · · · , n, lie strictly in the left-half
complex plane; i.e., these are located on the circumference of radius k1

whose center is at (−k1, 0) as illustrated in Figure 7. Note that λ1 = 0
has the consequence that angular velocities θ̇i of all agents around Zobj-axis
converge to the same value; i.e., θ̇1 = θ̇2 = · · · = θ̇n as mentioned in Section
3.2.

Now assume that k1 is given by the designer. Then, one can easily find that
if the following condition is satisfied,

(ϕ(jω) + k1)∗(ϕ(jω) + k1) > k2
1, ∀ω ∈ R\{0}, (28)

then nonzero n − 1 eigenvalues λi (i = 2, 3, · · · , n) of Aθ are placed in the
domain Ωc

+. The inequality condition (28) is rewritten as 1 + k1Ĥ
∗(jω) +

k1Ĥ(jω) > 0 by using ϕ(jω) = 1/Ĥ(jω). Therefore, we can see that (28) is
equivalent to the following inequality condition:

L(ω) := −2Re[Ĥ(jω)] =
2(aω2 + b − 1)

a2ω4 + (b2 − 2a)ω2 + 1
<

1
k1

(29)

for ∀ω ∈ R\{0}. The condition in (29) implies that if a given k−1
1 is bigger

than the maximum value of L(ω) (except at ω = 0), then nonzero n − 1
eigenvalues λi (i = 2, 3, · · · , n) of Aθ are placed in the domain Ωc

+. From
the above observations, the following result which specifies the maximum
permissible limit of a gain k1(> 0) is obtained.

13



Theorem 3 Let Lmax0 and Lmax1 be defined, respectively, as

Lmax0 := 2(b − 1), Lmax1 :=
2(aω̂ + b − 1)

a2ω̂2 + (b2 − 2a)ω̂ + 1
, (30)

where
ω̂ =

1 − b

a
+

b

a2

√
a(a − b + 1). (31)

Suppose that a given gain k1(> 0) in (5) satisfies the following condition:

(i) k1 < L−1
max1

, if ω̂ is a positive real number and Lmax1 ≥ Lmax0,
(ii) k1 ≤ L−1

max0
, otherwise.

Then, nonzero n−1 eigenvalues λi (i = 2, 3, · · · , n) of Aθ in (27) are placed
in the domain Ωc

+.

Proof. We first find the maximum value of L(ω). It follows from (29) that

dL(ω)
dω

=
−4ω

(
a3ω4 + 2a2(b − 1)ω2 + b3 − b2 − 2ab + a

)
(a2ω4 + (b2 − 2a)ω2 + 1)2

. (32)

Hence, ω satisfying dL(ω)
dω = 0 is obtained as

ω0 = 0, ω2
1,2 =

1 − b

a
± b

a2

√
a(a − b + 1). (33)

Note that ω1 (or ω2) can be a solution of dL(ω)
dω = 0 only if ω2

1 (or ω2
2) is

a positive real number. Next, we show that ω2 is a trivial solution. The
condition (28) can be written by using (23)-(24) as (f(ω)+k1)2+g2(ω) > k2

1.
It is self-evident that if f(ω) ≥ 0, the above condition is satisfied for any
k1(> 0). Hence, it is enough to check whether (29) is guaranteed for ω
satisfying

ω2 >
1 − b

a
=: ωf , (34)

which is obtained from f(ω) < 0. It then follows from ω2
2 ∈ R in (33)

and ωf in (34) that ω2
2 ≤ ωf , since b > 0 from the stability condition of

H(s). Therefore, ω2 is a trivial solution, and the maximum value of L(ω)
is determined by ω0 or ω1(= ±

√
ω̂). From the above results, we can see

that the condition (29) is guaranteed if k−1
1 > L(ω1) (= Lmax1) holds where

ω2
1 is a positive real number and L(ω1) ≥ L(ω0) (= Lmax0), which proves

(i). On the other hand, if (a) ω2
1 /∈ R or (b) ω2

1 ∈ R and L(ω1) < L(ω0),
then the maximum of L(ω) is determined by ω = ω0(= 0). It implies that
if k−1

1 ≥ L(ω0) is satisfied, then k−1
1 > L(ω) is guaranteed for ∀ω ∈ R\{0},

which proves (ii). ¤

Some plots of L(ω) for various a and b are illustrated in Figure 8. This figure

14
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illustrates that the maximum value of L(ω) is determined by L(0)(=Lmax0)
or L(ω1)(=Lmax1).

Next, we consider the conditions for k2(> 0) and k3(> 0) in (6)-(7). Note
that matrices Ad and Aα in (12)-(13) are written as

Ad = −diag(k2, k2, · · · , k2) ∈ Rn×n, (35)
Aα = −diag(k3, k3, · · · , k3) ∈ Rn×n. (36)

Thus, the eigenvalues of Ad and Aα are, respectively, −k2 and −k3, which
implies that all eigenvalues are negative real numbers. Based on the above
observations and Figure 6, the following theorem which specifies the maxi-
mum permissible limits of k2(> 0) and k3(> 0) are obtained.

Theorem 4 Suppose that gains k2 and k3 in (6)-(7) satisfy the following
condition:

(i) b
b−a < −k2 < 0 and b

b−a < −k3 < 0, if a ≥ b,
(ii) k2 > 0 and k3 > 0, otherwise.

Then, all eigenvalues of Ad and Aα in (12)-(13) are placed in the domain
Ωc

+.

Proof. First, consider the case that given a and b satisfy a ≥ b. In this case,
the crossing point CRe(< 0) of ϕ(jω) and the imaginary axis exists, which
can be verified from (26) and Figure 6 (see Cases C and D). Hence, in order
that all eigenvalues of Ad, −k2, are placed in the domain Ωc

+, k2 should
guarantee CRe < −k2 < 0, which is also the case of k3. On the other hand,
if a and b satisfy a < b, then ϕ(jω) does not cross the imaginary axis (see
Cases A and B in Figure 6). It means that k2 and k3 can take any positive
real numbers in these cases. ¤

4.3 Optimization-based design of path generator

In this subsection, we present another method to determine k1 in (5) which
guarantees that nonzero n−1 poles of Lθ(s) belong to Ωc

+ in Figure 6. Note
that the following condition

(f(ω) + k1)2 + g2(ω) > k2
1, ∀ω ∈ R\{0} (37)

is equivalent to the inequality condition in (28). Therefore, the maximum of
k1 (k1,max), which guarantees that a circle Ck1 in Figure 7 exists inside the
domain Ωc

+ ∪ Ωb where Ωb := ϕ(jR), can also be readily found by solving
the optimization problem:

[Constrained optimization problem]

16



For f(ω) in (23) and g(ω) in (24), solve

k1,max := arg max
k1,ω

k1 (38)

subject to k1 > 0 and

(f(ω) + k1)2 + g2(ω) ≥ k2
1 (39)

where the search range of ω ∈ R is specified as follows:

(i) ω > 0 for Case A,
(ii) ω1

I ≤ ω for Case B,
(iii) 0 < ω ≤ ωR (ωR > 0) for Case C,
(iv) ω1

I ≤ ω ≤ ωR (ωR > 0) for Case D.

Hence, if k1 in (5) is set as 0 < k1 < k1,max, then all nonzero poles of Lθ(s)
belong to Ωc

+ illustrated in Figure 6. Table 1 verifies that 1/k1,max obtained
by solving (38)-(39) and the maximum value of L(ω) in (29) are identical,
where the optimization problem is solved through the constrained particle
swarm optimization method proposed by Maruta et al. [9, 10].

Example 2. To illustrate the dynamic performance of the proposed dis-
tributed cooperative control scheme, a simulation is carried out. Here, n = 9
agents are randomly dispersed in 3D space at first and finally should achieve
the required formation stated in Section 2. Specifically, the desired forma-
tion is chosen to be given by δθi = 2π/9[rad] (i = 1, 2, · · · , 9), D = 5 and
Φ = 0[rad]. The initial values of αi(t)[rad] and di(t) are set as follows:

α1 = α5 = 1.484, α2 = α6 = 1.222, α3 = 0.596,
α4 = 1.047, α7 = 0.698, α8 = 1.396, α9 = 0.960,

(40)

and

d1 = d6 = 30, d2 = d7 = 25, d3 = 13, d4 = d8 = 20, d5 = d9 = 15. (41)

The initial values of θi(t) are identical to those of Example 1. Let G(s) and
K(s) be identical, respectively, to Gθ(s) and Kθ(s) in (9); i.e., G(s) =

Table 1: The value of 1/k1,max obtained by (38)-(39) and the maximum
value of L(ω) in (29).

Case A Case B Case C Case D
a, b 3, 5 0.3, 0.6 8, 3 2, 0.5

1/k1,max 8.0 1.0911 6.2276 8.2293
Maximum value of L(ω) 8.0 1.0911 6.2276 8.2293
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Figure 9: Plots showing the global formation stability in Example 2.

1/s(s + 3) and K(s) = 5 + 2s. Hence, the image of ϕ(jω) (:= s(1 +
G(s)K(s))/G(s)K(s)) corresponds to Case A in Figure 6 (a = 1.25, b = 2.5).
Consequently, we set 0 < k1 = 0.4 < k1,max = 0.8333, k2 = 0.3 > 0 and
k3 = 0.3 > 0. Here, k1,max is obtained through the constrained parti-
cle swarm optimization method proposed by Maruta et al. [9, 10]. Eight
nonzero eigenvalues of Aθ belong to the domain Ωc

+, which is confirmed in
Figure 9(a). Figure 10(a) illustrates the resulting position trajectories of
nine agents during the simulation: all agents converge to a circular forma-
tion around the target object and maintain the form of an equilateral and
equiangular polygon. The changes of δθi with respect to time are plotted in
Figure 9(b), where δθi finally converges to 2π/9[rad]. These results clearly
demonstrate that the control goals (A1′)-(A3′) mentioned in Section 3 are
achieved. ¥

5 Target-enclosing formation control for a class of
multi-agent systems: PID controller case

In this section, we consider the case that each agent is stabilized by the PID
controller KPID(s) such as

KPID(s) = kp

(
1 +

1
tis

+ tds

)
, (42)

where kp(> 0), ti(> 0) and td(> 0) denote proportional gain, integral
and derivative times, respectively. Hence, it follows from G(s) in (18) and
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Figure 10: Simulation results of Example 2.

KPID(s) in (42) that

H(s) =
tdtis

2 + tis + 1
(ti/ζkp)s3 + (ξti/ζkp + tdti)s2 + tis + 1

. (43)

Let s̃ = tis. Then, (43) can be modified as

H(s̃) =
td
ti

s̃2 + s̃ + 1
1

ζkpt2i
s̃3 +

(
ξ

ζkpti
+ td

ti

)
s̃2 + s̃ + 1

=
âs̃2 + s̃ + 1

b̂s̃3 + (â + ĉ)s̃2 + s̃ + 1
(44)

where â := td/ti(> 0), b̂ := 1/(ζkpt
2
i )(> 0) and ĉ := ξ/(ζkpti). Thus,

without loss of generality, the following form of the generalized frequency
variable ϕ(s) can be considered hereafter:

ϕ(s) =
1

Ĥ(s)
=

s

H(s)
=

b̂s4 + (â + ĉ)s3 + s2 + s

âs2 + s + 1
. (45)

Suppose that H(s) is stable so that â + ĉ > b̂. It is easily verified from (45)
that Ĥ(s) does not possess non-minimum phase zeros. We define the real
and the imaginary parts of ϕ(jω) in (45), f(ω) := Re[ϕ(jω)] and g(ω) :=
Im[ϕ(jω)], as follows:

f(ω) =
ω4(−âb̂ω2 + b̂ − ĉ)
(1 − âω2)2 + ω2

, (46)

g(ω) =
(â2 + âĉ − b̂)ω5 + (1 − 2â − ĉ)ω3 + ω

(1 − âω2)2 + ω2
. (47)
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Figure 11: The image of ϕ(jω) and the domain Ωc
+

Then, the image of ϕ(jω) yields six types of diagrams as shown in Figure
11 where R+ denotes the positive real number. If b̂ > ĉ which is equivalent
to ξ < (1/ti), the image of ϕ(jω) corresponds to Case A-1, A-2 or A-3;
otherwise, it corresponds to Case B-1, B-2 or B-3. In this figure, C1

Im and
C2

Im are determined as C1,2
Im = g(ω1,2

I ) where

ω1,2
I = ±

[
b̂ − ĉ

âb̂

]1/2

∈ R. (48)

On the other hand, C1
Re and C2

Re are determined as C1,2
Re = f(ω1,2

R ) where

(ω1,2
R )2 =

(2â + ĉ − 1) ± [ĉ2 − 2(2â − 2b̂ + ĉ) + 1]1/2

2(â2 + âĉ − b̂)
∈ R. (49)
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Remark 1 When the PI controller of form KPI(s) = kp(1 + 1/(tis)) is
introduced, ϕ(jω) is obtained as

ϕPI(s) =
1

ĤPI(s)
=

s

HPI(s)
=

b̂s4 + ĉs3 + s2 + s

s + 1
(50)

where ĉ > b̂(> 0) which guarantees the stability of HPI(s). Also, from (50),
we have

fPI(ω) := Re[ϕPI(jω)] =
ω4(b − c)
ω2 + 1

, (51)

gPI(ω) := Im[ϕPI(jω)] =
−ω(b̂ω4 + (ĉ − 1)ω2 − 1)

ω2 + 1
. (52)

Hence, the frequency ωI satisfying fPI(ωI) = 0 is ωI = 0. On the other
hand, the frequency ω1,2

R (̸= 0) satisfying gPI(ω
1,2
R ) = 0 are

(ω1,2
R )2 =

(1 − c) ± [(1 − c)2 + 4b]1/2

2b
. (53)

However, since (ω2
R)2 = {(1 − c) − [(1 − c)2 + 4b]1/2}/2b < 0, ω2

R cannot be
a solution of gPI(ω) = 0. Note that ω1

R ∈ R always exists. Therefore, the
image of ϕPI(jω) corresponds to Case A-2.

5.1 Optimization-based design of path generator

In this subsection, we examine the formation stability. As mentioned in
Section 4.3, the gain k1 in (5), which guarantees that nonzero n − 1 poles
of Lθ(s) belong to Ωc

+ in Figure 11, can also be obtained through an opti-
mization technique; i.e., the admissible range of k1 is obtained by solving
the following constrained optimization problem:

[Constrained optimization problem]

For f(ω) in (46) and g(ω) in (47), solve the constrained optimization prob-
lem (38) subject to k1 > 0 and (39) where the range of ω ∈ R is set as
follows:
(i) ω > 0 for Case A-1,
(ii) 0 < ω ≤ ω1

R (ω1
R > 0) for Cases A-2 and A-3,

(iii) ω ≥ ω1
I for Case B-1,

(iv) ω1
I ≤ ω ≤ ω1

R (ω1
R > 0) for Cases B-2 and B-3.

Hence, if k1 in (5) is set as 0 < k1 < k1,max, then all nonzero poles of
Lθ(s) belong to Ωc

+ illustrated in Figure 11. Also, similarly to Theorem
4 presented in Section 4.2 the following conditions on k2 and k3 are easily
derived from Figure 11:
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Figure 12: Plots showing the global formation stability in Example 3.

1. Cases A-1 and B-1: k2 and k3 can take any positive real number, since
ϕ(jω) does not intersect with the real axis except at the origin.

2. Cases A-2 and B-2:

{
CRe < −k2 < 0,

CRe < −k3 < 0.

3. Cases A-3 and B-3:

{
Cmax

Re < −k2 < 0 or − k2 < Cmin
Re ,

Cmax
Re < −k3 < 0 or − k3 < Cmin

Re .

Example 3. To illustrate the dynamic performance of the proposed dis-
tributed cooperative control scheme, a simulation is performed. Here, n = 9
agents are randomly dispersed in 3D space at first and finally should achieve
the required formation stated in Section 2. Specifically, the desired forma-
tion is chosen to be given by δθi = 2π/9[rad] (i = 1, 2, · · · , 9), D = 5 and
Φ = 0[rad]. The initial values of αi(t)[rad], di(t) and θi(t)[rad] are identical
to those of Example 2. Let G(s) and K(s) be given as

G(s) =
1

s(s − 1)
, K(s) = 12 +

1
0.2s

+ 3s. (54)

The image of ϕ(jω) corresponds to Case B-2 in Figure 11. Consequently,
we set 0 < k1 = 0.5 < k1,max = 0.7856, 0 < k2 = 0.3 < k2,max = 2.9235
and 0 < k3 = 0.3 < k3,max = 2.9235. Here, k1,max is obtained through
the constrained particle swarm optimization method proposed by Maruta
et al. [9, 10]. Eight nonzero eigenvalues of Aθ belong to the domain Ωc

+,
which is confirmed in Figure 12(a). The simulation results are shown in
Figures 12(b) and 13. First, Figure 13(a) illustrates the resulting position
trajectories of a group of nine agents during the simulation: the agents
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Figure 13: Simulation results of Example 3.

assemble into the desired configuration. Figure 13(b) depicts the trajectories
of all agents projected onto x-y plane. They show that all agents converge
to a circular formation around the target object and maintain the form of
an equilateral and equiangular polygon. The changes of δθi with respect to
time are plotted in Figure 12(b), where δθi finally converges to 2π/9[rad]. It
clearly demonstrates that the control goals (A1′)-(A3′) mentioned in Section
3 are achieved. ¥

6 Formation stability analysis based on the gener-
alized KYP lemma

In this subsection, we show that the frequency-domain inequality (FDI)
condition (28), which should be guaranteed for ∀ω ∈ R\{0}, can be easily
checked via the generalized Kalman-Yakubovich-Popov (GKYP) lemma [3,
4].

First, note that it is equivalent to (28) that[
Ĥ(jω)

1

]∗
Π

[
Ĥ(jω)

1

]
< 0, Π :=

[
0 −k1

−k1 −1

]
(55)

for ∀ω ∈ R\{0}. In (55), Ĥ(s) is proper as shown in (22) for PD controller
case or (45) for PID controller case, and thus has the following state-space
realization:

Ĥ(s) = Ch(sI − Ah)−1Bh + Dh. (56)
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It also should be noted that if the FDI specification in (55) is satisfied only in
a specified frequency range presented in Figure 14 for PD controller case and
Figure 15 for PID controller case, then the θ-directional pursuit formation
stability is guaranteed. It means that one does not need to check (55) for the
entire frequency range. In Figures 14 and 15, ωϵ and ω∞ denote, respectively,
infinitesimally small positive real number and sufficiently large positive real
numbers (these are design variables), R+ denotes the positive real number,
and ωmax

R and ωmin
R denote, respectively, the frequencies corresponding to

Cmax
Re and Cmin

Re .

For the above problem, the FDI specification (55) can easily be checked by
using the GKYP lemma [3, 4], which transforms a FDI in a finite (or semi-
infinite) frequency range into a set of linear matrix inequalities (LMIs). In
the following, a unified form of the GKYP lemma is presented.

Theorem 5 (Generalized KYP lemma [3]) Let Π ∈ Hp, Γ, Ψ ∈ H2, and
define the rational function

G(λ) := C(λE − A)−1(B − λF ) + D, (57)

where λ ∈ C, A,E ∈ Cn×n, B,F ∈ Cn×m, C ∈ Cp×n, and D ∈ Cp×m.
Suppose i) det(λE − A) ̸= 0 for all λ ∈ Λ(Γ, Ψ) where

Λ(Γ, Ψ) :=
{

λ ∈ C :
[

λ
1

]∗
Γ

[
λ
1

]
= 0,

[
λ
1

]∗
Ψ

[
λ
1

]
≥ 0

}
, (58)

and ii) either E is nonsingular or Λ is bounded. Then, the parameterized
inequality condition

G(λ)∗ΠG(λ) < 0, for all λ ∈ Λ̄(Γ, Ψ) (59)

where Λ̄ is defined as

Λ̄ :=

{
Λ if Λ is bounded

Λ ∪ {∞} otherwise
(60)

holds if and only if there exist matrices P,Q ∈ Hn satisfying

Q > 0, M∗ZM < 0, Z = diag(Γ ⊗ P + Ψ ⊗ Q,Π) (61)

where H is defined by

M :=

 A B
E F
C D

 . (62)

The above presented GKYP lemma means that checking the FDI in (55)
within a given frequency range specified in Figures 14 and 15 can be con-
verted to the search for matrices P,Q ∈ Hn satisfying the LMI in (61).
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Figure 14: PD controller case: Four types of ranges of ω and the corre-
sponding Ψ

Note that LMIs are numerically tractable and can be solved efficiently. In
our problem setting, Ψ ∈ H2 is set as defined in Figure 14 for PD controller
case and Figure 15 for PID controller case. On the other hand, Γ ∈ H2 is
set as

Γ :=
[

0 1
1 0

]
, (63)

since the continuous-time setting is considered in this paper. For details of
choices of Γ and Ψ, refer to Iwasaki and Hara [4].

The following example illustrates how to examine the formation stability via
the GKYP lemma.

Example 4. The image ϕ(jω) of (22) with Gθ(s) = 1/s(s − 2) and Kθ(s) =
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1+4s corresponds to the Case B in Figure 14 (a = 0.0625, b = 0.5). In this
case, the frequency range to be considered is |ω| ≥ ω1

I ≈ 0.7071, and thus

Ψ is set as Ψ =
[

1 0
0 −0.70712

]
. Consider the case k1 = 0.7, which leads

to Π =
[

0 −0.7
−0.7 −1

]
. Then, the matrices P,Q ∈ H3 satisfying (61) are

obtained as

P =

 1.9831 1.9649 0.6998
1.9649 6.8831 1.4271
0.6998 1.4271 0.6996

 , Q =

 0.6082 0 1.1599
0 0.0723 0

1.1599 0 2.4494


via the LMI Control Toolbox in MATLAB. It means that all nonzero eigen-
values of Aθ are placed in the domain Ωc

+, and thus the formation stability
is guaranteed. On the other hand, if k1 = 0.8, no feasible P,Q ∈ H3 are
found, which means the formation instability. ¥

Remark 2 Some of the coefficients in Ψ defined in Figures 14 and 15 are
complex and, therefore, the variables P and Q must be sought over the set
of complex matrices. However, some LMI solvers, such as the LMI Control
Toolbox in MATLAB, can handle LMIs with real coefficients and real vari-
ables only. To overcome this limitation, a complex LMI can be converted to a
real LMI of larger dimension through the equivalence of X +jY = (X +jY )∗

and [
X Y
−Y X

]
=

[
X Y
−Y X

]T

> 0,

where X and Y are real square matrices representing the real and imaginary
parts of the complex LMI [3].

7 Pole assignment scheme for target-enclosing for-
mation control

In this section, we consider the following problem: how to set k1 in (5) so
that all the poles of Gθ(s)(= Lθ(ϕ(s))) in (14) are placed in a predesignated
region; e.g., the shaded region in Figure 16(a) where κ ≥ 0 and φ satisfying
0 ≤ φ ≤ π is given a priori.

First, similar to the definition of domains Ω+ and Ωc
+ in (17), the domains

Ωφ+ and Ωc
φ+ in the complex plane are defied as follows:

Ωφ+ := ϕ(Cφ+), Ωc
φ+ := C\Ωφ+, (64)

where Cφ+ = {s := κejϑ ∈ C : −φ ≤ ϑ ≤ φ, ∀κ > 0}. Note that the do-
main Ωc

φ+ includes the origin of the complex plane. Hence, we can see that
if all the eigenvalues (27) of Aθ belong to the domain Ωc

φ+ characterized by
κe±jφ, then all the poles of Gθ(s) are located in the predesignated region.
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Figure 16: The image of ϕ(κe±jφ) and the corresponding domain Ωc
φ+

In this case, the maximum value of k1 in (5), which guarantees the above-
mentioned property, can be readily obtained by solving the following con-
strained optimization problem:

[Constrained optimization problem]

For fφ(κ) and gφ(κ) defined, respectively, as

fφ(κ) := Re[ϕ(κejφ)], gφ(κ) := Im[ϕ(κejφ)] (65)

where φ is given a priori, solve

k̂1,max := arg max
k̂1,κ

k̂1 (66)

subject to
(fφ(κ) + k̂1)2 + g2

φ(κ) ≥ k̂2
1, k̂1 > 0, κ > 0. (67)

Therefore, if one sets k1 in (5) as 0 < k1 < k̂1,max, then all the poles of Gθ(s)
in (14) are placed in the predesignated region. It is a considerably simple
pole assignment technique. This fact is verified through the numerical ex-
ample presented at the end of this subsection.

On the other hand, it can be easily checked based on the GKYP lemma
whether all the eigenvalues of Aθ with k1 given a priori exist inside the do-
main Ωc

+ or not; i.e., the following inequality condition needs to be checked:[
Ĥ(κejφ)

1

]∗
Π

[
Ĥ(κejφ)

1

]
< 0, Π :=

[
0 −k1

−k1 −1

]
, ∀κ > 0, (68)
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for given k1 and φ. In order to check (68) within a framework of GKYP
lemma, we first characterize the range of κ. For example, in case that
ϕ(s)(= 1/Ĥ(s)) and φ are given, ϕ(κejφ) is readily obtained (see Figure
17). Then, κ̄R and κ̄I (0 < κ̄R < κ̄I) satisfying Re[ϕ(κ̄Rejφ)] = 0 and
Im[ϕ(κ̄Ie

jφ)] = 0 respectively are found via simple calculations (if exist).
Now one can see from Figure 17(a) that it is sufficient to check the condition
(68) in the range κ̄R ≤ κ ≤ κ̄I . In this case, the set of complex numbers
Λ(Γ, Ψ) corresponding to the above-mentioned range of κ is defined as

Λ(Γ, Ψ) :=
{

λ ∈ C :
[

λ
1

]∗
Γ

[
λ
1

]
= 0,

[
λ
1

]∗
Ψ

[
λ
1

]
≥ 0

}
, (69)

where

Γ :=
[

0 tan φ − j
tanφ + j 0

]
, Ψ :=

[
−1 λc

λ̄c −κ̄Rκ̄I

]
, (70)

and λc = κ̄R+κ̄I
2 ejφ (see Figure 17(b)). Hence, under the above setting

(69)-(70), the formation stability condition of form (68) can easily be con-
firmed through the GKYP lemma presented in Section 6. Its effectiveness
is illustrated in the following numerical example.

Remark 3 A set of complex numbers Λ(Γ, Ψ) is the intersection of Λ(Γ, 0)
and Λ(0, Ψ), and represents a certain class of curves. Note that the type of
curves depends on the choices of Γ and Ψ. For example, a circle of radius
rc with center at λc is represented as[

λ
1

]∗ [
1 −λc

−λ̄c |λc|2 − r2
c

] [
λ
1

]
= |λ − λc|2 − r2

c = 0, (71)
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and a straight line with the normal vector a + jb ̸= 0 is represented as[
λ
1

]∗ [
0 a + jb

a − jb 2c

] [
λ
1

]
= 2(aRe[λ] + bIm[λ] + c) = 0. (72)

The matrices Γ and Ψ given in (70) are derived from (71)-(72). For details,
refer to [3, 4].

7.1 Numerical example

Suppose that n = 9 agents have common dynamics Gθ(s) = 1/s(s − 0.5)
and its stabilizing PD controller is given as Kθ(s) = 1 + s. In this case, the
images of ϕ(jω) and ϕ(κejφ) with φ = 19π/36(rad) are illustrated in Figure
18(a). Here, k1,max = 0.2374 and k̂1,max ≈ 0.1451 are obtained by solving the
constrained optimization problems given respectively in Sections 4.3 and 7
thorough the constrained particle swarm optimization scheme [9, 10]. Then,
all pole locations of Gθ(s) with k1 = 0.2374 or k1 = 0.1451 are depicted
in Figure 18(b). From this figure, it can be easily confirmed that if it is
required for all the poles of Gθ(s) in (14) to be assigned to a predesignated
region (the shaded region in Figure 18(b)), the only thing one should do is
to find k̂1,max and then set k1 as 0 ≤ k1 ≤ k̂1,max. The above fact shows that
it is an easily implementable pole assignment technique. The time plots of
δθi(t) (i = 1, 2, · · · , 8) for k = 0.1451 and 0.2374 are illustrated in Figure
19.

Next, we show that the specification (68) with a given k1 can readily be
examined through the GKYP lemma under (69)-(70). From the above-
mentioned multiple agent system with k1 = 0.12 and φ = 19π/36, we obtain
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κ̄R ≈ 0.7490 and κ̄I ≈ 1.1573. Then, by using the LMI Control Toolbox in
MATLAB, the matrices P,Q ∈ H3 satisfying the LMI in (61) with Γ and Ψ
in (68)-(70) are obtained as

P = 103 ×

 0.5821 0.1969 − 1.1302j −0.5316 − 0.1822j
0.1969 + 1.1302j 2.2809 0.1795 − 1.1170j
−0.5316 + 0.1822j 0.1795 + 1.1170j 0.5690

 ,

Q =

 11.1358 5.3084 − 21.4341j −9.5893 − 5.0699j
5.3084 + 21.4341j 43.9731 5.2354 − 21.0703j
−9.5893 + 5.0699j 5.2354 + 21.0703j 10.7849

 .

It means that all the eigenvalues of Aθ exist in the domain Ωc
φ+. Note that

Γ and Ψ of this example are complex-valued matrices. Thus, we introduced
the procedure presented in Remark 2 to turn complex-valued LMIs into
real-valued LMIs. ¥

8 Conclusion

In this paper, we presented a design methodology of a distributed cooper-
ative controller for target-enclosing operations by multiple dynamic agents.
To this end, we first presented an on-line path generator design method
based on a cyclic pursuit scheme. Then, we provided the stability condi-
tion which the developed path generator should satisfy. This condition was
derived based on a considerably simple unified stability analysis method
for hierarchical large-scale linear systems with a generalized frequency vari-
able. The formation control scheme combined with a cyclic pursuit based
distributed on-line path generator satisfying the derived stability condition
guarantees the required global formation stability with theoretical rigor.
Further, in order to show clearly its distinctive features, we presented how
to develop a cyclic pursuit based formation control strategy for a class of
multi-agent systems where each agent is modeled as a second-order system
and is locally stabilized by the PD/PID controllers. It was also presented
that the formation stability analysis can be easily performed based on the
generalized Kalman-Yakubovich-Popov (KYP) lemma. Its effectiveness was
verified through simulation examples.
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