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Grobner bases of nested configurations

Satoshi Aoki, Takayuki Hibi, Hidefumi Ohsugi and Akimichi Takemura

Abstract

In this paper we introduce a new and large family of configurations whose toric
ideals possess quadratic Grobner bases. As an application, a generalization of alge-
bras of Segre—Veronese type will be studied.

1 Introduction

Let K[t] = K|[ty,...,t4] be the polynomial ring over a field K. A finite set A of monomials
of K[t] is called a configuration of K|t] if there exists a nonnegative vector (wy, ..., wq) €
RZ, such that Z?:l wia; =1 for all t]*---t5* € A. Let A be a configuration of K[t]. We
associate A with the homogeneous semigroup ring K[A] which is the subalgebra of K[t]
generated by the monomials of A. Let K[X]| = K[{zy | M € A}] denote the polynomial
ring over K in the variables x;; with M € A, where each deg(xy;) = 1. The toric ideal
I4 of A is the kernel of the surjective homomorphism 7 : K[X]| — KJ[A] defined by
setting w(zp) = M for all M € A. Tt is known that the toric ideal I4 is generated by
the binomials u — v, where u and v are monomials of K[X], with 7(u) = 7(v). Moreover,
since A is a configuration, I, is generated by homogeneous binomials. See, e.g., [Stu,
Section 4].

A fundamental question in commutative algebra is to determine whether K[A] is
Koszul. A Grobner basis G is called a quadratic Grobner basis if G consists of quadratic
homogeneous polynomials. Even though it is difficult to prove that K[A] is Koszul, the
hierarchy (i) = (ii) = (iii) is known among the following properties:

(i) I4 possesses a quadratic Grobner basis.
(ii) K[A] is Koszul;
(iii) I4 is generated by quadratic binomials.

However both (ii) = (i) and (iii) = (ii) are false in general. One can find counterex-
amples for them in [OH1, Examples 2.1 and 2.2].
Let A be a configuration of a polynomial ring K[t] = K[t1,...,t,s] with d variables.

For each 1 = 1,2,...,d, let B; = {mgl), o mg\z)} be a configuration of a polynomial ring



K[u®] = K[ugi), . ,uEfi)] with yu; variables. The nested configuration arising from A and
By, ..., By is the configuration

A(Blade) :{m(“)mg?) ].STGZ, tlltlreAa ]-Sjkg)‘lk}

J1
of a polynomial ring K[u(", ..., u®]. The main result of the present paper is as follows:

Theorem 3.6. Work with the same notation as above. If the toric ideals 14, Ip,,...,Ip,
possess quadratic Grobner bases, then the toric ideal I, . B, possesses a quadratic
Grébner basis.

In addition, in Section 4, we study a quadratic Grobner basis of the toric ideal of
A(By,...,By) where A comes from a Segre—Veronese configuration.

2 Motivation from statistics

In this section we present a statistical problem, which motivates a generalization of Segre-
Veronese configuration considered in our previous paper [AHOT].

We consider nested selection of groups and items from the groups. For example, con-
sider an examination on mathematics which consists of .J groups of problems (e.g. algebra,
geometry and statistics) and each group j consists of m; individual problems. For simplic-
ity let J = 3 and m; = 3. Label the nine individual problems as A1, A2, A3, G1, G2, G3
and S1, S2, S3. Suppose that each examinee is asked to choose two groups of problems and
then ¢; = 2 problems from each chosen group j. Then there are 27 patterns of selections
of four problems as (A1,A2,G1,G2), (A1,A3,G1,G2), (A2,A3,G1,G2), ...,(G2,G3,52,S3).
Now as a simple statistical model suppose that each problem is chosen according to its
own attractiveness, independent of the choices of other problems within the same group
as well as the choice of other group. Let ga1, qas, - .., qs3 denote the attractiveness of each
problem. Then the probabilities of the selections are expressed as

Prob(Al, A2, Gl, GQ) = Cqa19A249G149G2,

Prob(G2,G3,52,S3) = ¢ qaaqa3fs2qss,

where c is the normalizing constant so that the 27 probabilities sum to one. Now associate
a configuration A to the semigroup ring

K(QAlqAZququa - aQG2QGSQS2QS31)a

which is a subring of the polynomial ring K (ga1,ga2, - - -, ¢s3) in nine variables. A system
of generators of the toric ideal for 14, such as the reduced Grobner basis, is required
for statistical test of this model. This example corresponds to A(Bj, By, B3) where A =
{t1ts, t1ts, tots} and By, By, By are copies of A with different variables.



Enumeration of different selections becomes somewhat more complicated if the same
item can be chosen more than once (“sampling with replacement”). Suppose that a
customer is given two (identical) coupons, which allow the customer to go to one of
several shops and buy two items at a discount at the shop. Buying the same item twice is
allowed. For simplicity suppose that there are only two shops A,B and they sell only two
different items {A1, A2} and {B1, B2}, respectively. A person may buy Al four times,
by going to the shop A twice and buying A1l twice each time. Or a person may buy each
of A1, A2, B1, B2 once. Note that in this scheme it is not possible to buy three items
from shop A and 1 item from shop B. Again we can think of a statistical model that the
relative popularity of selections is explained entirely by the attractiveness of each item.
This corresponds to Example 3.4 below, where A1 = ugl), A2 = uél), Bl = uEZ), B2 = uéz).

Note that in the above examples we can also consider recursive nesting of subgroups.

3 Nested configurations

In this section, we introduce an effective method to construct semigroup rings whose toric
ideals have quadratic Grobner bases.
Let A be a configuration of a polynomial ring K[t] = K[t1,...,ts] with d variables.

For each 1 = 1,2,...,d, let B; = {mgl), o mE\Z)} be a configuration of a polynomial ring
K[u®] = K[ugi), e ,u,(fi)] with p; variables. The nested configuration arising from A and

By, ..., By is the configuration

Ji

A(Blade) :{m(“)mgi’")‘ ].STGZ, tlltlreAa ]-Sjkg)‘lk}
of a polynomial ring K[u», ... u@].
Example 3.1. If B, = {mgz)} for all 1 < i < d, then we have K[A(B,..., By)] ~ K[A].

Example 3.2. Let A = {t]} and let By = {uy,...,u)} be the set of variables. Then
K[A(By)] is rth Veronese subring of the polynomial ring K[B;] = Kluy, ..., u,].

Example 3.3. Let A = {t1t,} and let B; = {u?’, : --,U(All)} and By = {U?)a - --;UE\?}
be the sets of variables. Then K[A(Bj, Bz)] is the Segre product of the polynomial rings
K[B)] = K[ul",...,u{)] and K[By] = K[u{®,...,u$)].

Let n be the cardinality of A(By,..., By) and set A(By,...,Bq) = {M,..., M,}. Let
K[x] = Klzumy, ..., 2]
Klyl = K[{yi,i.hi<rez, iv<ocin, tiy i, €4
K[z(i)] = K [zgi),...,z/(\i)] (i=1,2,...,d)

1

be polynomial rings. The toric ideal I4 is the kernel of the homomorphism 7y : K|y] —
K[t] defined by setting mo(yi,....) = ti ---t;. The toric ideal Ip, is the kernel of the
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homomorphism 7; : K[z®] — K[u®”] defined by setting ;( ]()) g) The toric ideal
I(B,....B,) is the kernel of the homomorphism 7 : K[x] — K[u M, ..., ul®] defined by
setting 7 (zpr) = M.

Let G; be a Grobner basis of Ip, with respect to a monomial order <; for 1 <17 < d.

For each M € A(By, ..., By), the expression M = mgl .. mgz) is called standard if

I =

ir=j, 1<k<r
is a standard monomial with respect to G; for all 1 < j < d.

Example 3.4. Let A = {7 t1ty, 13},
{ (1) o2 w0 ) )2
B, = my :(ul)am2 =Uyp Uy "y, My :<U2) )
2 2
Be = = (), =P, = (7).

Then A(By, By) consists of the monomials
4 3 2 2 3 4

()" () a2, () ()7 () (1Y,

2 2 2 2
)7 () (0)? 2, ()

2
D ()" U, ) ()

2 2 2 2
()" () () 0 (4 ()
4 3 2 2 3 4
()" () ) () (). 4)
and, with respect to any monomial order,

Gy = {y11y22—yf2};
G = {1V - (),
G = {72 - &)

are Grobner bases of

Ii = (ynyz2 — i),
I = (4~ G,

I = (040 - (),



respectively. Let > be a lex1cographlc order induced by yi11 >o y12 >0 Y22 and let >; a
lexicographic order induced by 2\ >; 2! >, 2\ for i =
graphic order induced by 2,7 >; 25° >; 23’ for ¢ = 1,2. For example,

M= <u§”)2 (ug”) € A(By, By)

2
has two expressions, that is, M = mgl)mg) and M = (mgl)) . Since z%l)zgl) is not

standard and (zgl))2 is standard with respect to G;, M = mgl)mgl) is not a standard

2
expression and M = <mgl)) is a standard expression.

In order to study the relation among I, Ip, and I4p, .. B,), We define homomorphisms

.....

o K[x] — Kly] , o <$m(i1),,,m(ir>> = Yirevins

J1 Jr
©; K[X] — K[Z(j)] y ©j (x (i1). m(@)) = H zj(.ik);
Jl Jr . .
ir=J, 1<k<r

where mg?) o)

;. 1s the standard expression defined above. For example,

. (x(uﬁ”)z(ué“)2>
is not zg z3 ) but (25 ))2 in Example 3.4. Throughout this paper, we order the monomials
of A(By,...,By) as A(Bl, ...y Bq) ={M,..., M,} where
7o 0 o (Tar,) Ztex =+ Ziew Mo © Qo(Thr,) (%)

with respect to the lexicographic order <., induced by ¢; > --- > t;.
Lemma 3.5. Let f be a binomial in K[x]. Then the following conditions are equivalent:

(i) f€ Ty,,...By);

(ii) @i(f) € Ip, for all1 <i<d.
Moreover, if the above conditions hold, then we have @o(f) € I4.
Proof. Let f = x* — x?. Since m(zy) = M = H;l:l 7; o pj(xp) and each m; o ;(z)
belongs to K[u)], we have

f € Iy,...B,) = ker(m)

HWJOSOJ HWJOSOJ

WjO%Oj(X )ijogoj(xﬁ) forall1<j<d
mjopi(f)=0 foralll <j<d
0;(f) € ker(m;) = Ip, foralll <j<d.

IIMHH
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Thus (i) <= (ii) holds.
(ir)

Recall that Ip, is homogeneous for all 1 <7 <d. If M = mﬁl) cemy then

d
deg(p; (=
mo 0 @o(Tar) =tiy -+ t;, = Htjeg((p]( w).
j=1

Hence we have

pi(f)elp, foralll <j<d

= deg(p;(x*)) = deg(p;(x?)) forall1<j<d
d d
— 70 po(x) = Ht;_ieg(w(xa)) _ Ht?eg(w(xﬁ)) = 70 0 o (x?)
j=1 j=1
= mpop(f)=0
— QO()(f) S ker(ﬂ'g) =14
as desired. O
Theorem 3.6. Suppose that the toric ideals 14, Ip,,...,Ip, possess quadratic Grobner
bases Gy, Gi,...,Gq with respect to <y, <i,...,<q respectively. Then the toric ideal

Ix(B,,....B,) possesses the reduced Grobner basis G consisting of all binomials of the form

T, Ty, — T, Ty where M, = m{ ) -m(-i’"), M; = mglfl)myf) . -mgs) with v < 6§

J1 J2 Ir
and
g; .
i@, tay) = 0i(Tar,Tar) for each j =0,1,....d, (1)
ix=k, = jr</{, for 1< A<r, 1<pu<s. (2)

The initial monomial of TMLTMy — TM, LMy 1S LM, T -

Example 3.4 (continued). The reduced Grébner basis G in the statement of Theorem
3.6 consists of 105 binomials. For example,

2
xmgnmgnxmgz)mgz) — xmgl)mgg)
l‘mgl)mgmﬁmgmmgz) — ﬁmgmmgl)l‘mgl)mgz)
xmg)mgnxmgl)mgz) — xmgl)mgnxmgnmgz)

2
:L‘mgl)mg) ﬁmgmmgl)l‘mgl)mgm

belong to G and the initial monomial is the first monomial for each binomial.
Proof of Theorem 3.6. Let TMLTMy — T, LMy € G. Thanks to the condition (1) above,
we have ¢;(za,2n,) — @j(2a,a;) € Ip, for all 1 < j < d. By virtue of Lemma 3.5, we

have xy, vy, — Tar, wa; € La(B,,..By)- Thus G is a subset of Iy, ... B,)-

6



Since the reduction relation modulo Grébner bases are Noetherian, [Stu, Theorem
3.12] guarantees that there exists a monomial order such that the monomial z, 2, is
the initial monomial for each xar, wn, — Tar, 205 € G-

Suppose that there exists a binomial 0 # u —v € I(B,,..,B,) such that neither u nor v
is divided by the initial monomial of any binomial in G. By virtue of Lemma 1, we have
wo(u) — @o(v) € 14 and p;(u) — ¢;(v) € Ip, for all 1 <i < d. Hence g;(u) — p;(v) g0
for all 0 <7 < d. Moreover, since neither u nor v is divided by the initial monomial of
any binomial in G, we have ¢;(u) iy @i(u) and p;(v) N ©i(v). Thus p;(u) = @;(v) for
all 0 < i < d. By virtue of py(u) = ¢o(v) and our convention (x),

S

LMy, TMy, " UMy,

o xM xM ...xM
o o o’

<

where 1 </ <. </, <, 1</ <+ <L, <nand

_ (iE,l) (i£,2) (iﬁ,rg)
Mf,g - ij,I mjg,z 7)’Lj£,?E ,
L Gen), Gien) (e
Mg’ﬁ = TrLkE1 ke 2 k&%.

Since ¢;(u) = ¢;(v) for all 1 < j < d, we have
(iﬁ,q) _ (i&q)
H ZjE,q - H Zkﬁ,q ’
ig,q=J, 1<€<p, 1<q<r¢ ig,q=J, 1<E<p, 1<q<r¢

Thanks to the condition (2), we have

i&')q = ié‘l,ql, 5 < gl :> ']gﬂq S jg,:‘],’

lgq = le'g's €< gl = kﬁ,q < k&’,q’-
Hence M,_z6 = Mgé for all 1 < & < p. Thus we have u = v and this is a contradiction. [

Example 3.7. In the definition of a nested configuration, we assumed that each B; and
B;j have no common variable. If B; and B; have a common variable for some 1 < i <
J < A, then Theorem 3.6 does not hold in general. For example, if A = {t1t4, tots, t3t6},
B1 = {ul}, B2 = {UQ}, B3 = {U3}, B4 = {UI,UQ}, B5 = {Ug,l)g} and B6 = {UI,U:),}, then
Ix(B,,...,Bs) is a principal ideal generated by a binomial of degree 3.

4 Nested configurations arising from Segre—Veronese
configurations

A typical class of semigroup rings whose toric ideal possesses a quadratic initial ideal is
algebras of Segre—Veronese type defined in [OH2, AHOT]. Fix integers 7 > 2 and n and

sets of integers b = {by,...,b,}, c ={c1,...,cn}, p={p1,.-,ont and q = {q1,. .-, Gn}
such that



(i) 0<¢ <b;forall 1 <i<m
(i) 1<p;<g<dforall<i<n.

Let Arpers C K[t1,...,tq) denote the set of all monomials H;l:l t;7i such that

. d
(i) Z]‘:1 fi=Tt.
(i) ¢ < ;I.i:pi fi <b foralll<i<n.

Then the affine semigroup ring K[A; pcrs| is called an algebra of Segre—Veronese type.

Several popular classes of semigroup rings are algebras of Segre-Veronese type. If
n=2717=2,bp=by=c=c=1,p =1, p = ¢ +1 and ¢ = d, then the affine
semigroup ring K[A; pers| is the Segre product of polynomial rings K[ti,...,t,] and
Kltg+1,.--,tq). On the other hand, if n = d, p; = ¢; =i, b = 7 and ¢; = 0 for all
1 < i < n, then the affine semigroup ring K[A; pcr s is the classical 7th Veronese subring
of the polynomial ring Klty, ..., t4]. Moreover, if n =d, p; = ¢ =1, b; =1 and ¢; = 0 for
all 1 <4 < n, then the affine semigroup ring K[A,pcrs| is the 7th squarefree Veronese
subring of the polynomial ring Klti, ..., t4]. In addition, algebras of Veronese type (i.e.,
n=d,p;=¢ =1iand ¢; =0 for all 1 < i < n) are studied in [DeHi] and [Stu].

Let K[X] denote the polynomial ring with the set of variables

{‘/Lljle"'j'r

The toric ideal I, _, . is the kernel of the surjective homomorphism 7 : K[X] —
K[A;bcrs) defined by m(z;, j,j.) = 11—y .- A monomial s, py..t. Trnymoeoms ** * Tringeons
is called sorted if we have

1 S]l S]Z S S]T Sda Ht]k EAA'r,b,c,r,s}-
k=1

b<m <. <<l <my<- o<y << <mp <-e- <

Let sort(-) denote the operator which takes any string over the alphabet {1,2,...,d} and
sorts it into weakly increasing order.

The squarefree quadratic Grébner basis of the toric ideal 14 is given as follows.

7,b,c,r,s

Theorem 4.1 ([Stu, OH2, AHOT]). Work with the same notation as above. Let G be the
set of all binomials

$4142...47xm1m2...mT — xmns“-mr—lxmm---nzr
where

SOI't(Elmngmg . 'ET’ITLT) = N1Ng - Nor.

Then there exists a monomial order on K[X] such that G is the reduced Grobner basis of
the toric ideal I, ... The initial ideal is generated by squarefree quadratic (nonsorted)
monomials.



By virtue of Theorem 3.6, if all of A, By,..., B; are arising from Segre—Veronese
configurations, then the toric ideal of the nested configuration A(Bj,..., B;) possesses
a quadratic Grobner basis. Although the following Grobner basis is different from that
Theorem 3.6 guarantee, the proof is similar.

Theorem 4.2. If K[A] is an algebra of Segre—Veronese type, and if the toric ideals
Ig,,...,Ip, possess the reduced Grobner basis G;, then the toric ideal Ia(p, ... B,) possesses
a quadratic Grobner basis G consisting of all binomial of the form

«@ 5 __
X' —X"=ZT ) @ Gore DT Go) Ga) Gioe) — T (k) (K (hor_ )T (k2), (ka)_ (k2p)
m§1l)m§33)"'mj2i_1l mj,? m o mgll)mgg3).__ml2f_ll mlzz ml44 '"ml;
where x* is the initial monomial and
kle s er = sort(i1i2 s iQT), (3)
G; .
0i(x™) 5 (X)) for each 1 < j <d, (4)
k; = ki+1 — ZZ < £i+1 (1 < <2r— 1) (5)

Moreover, if the initial ideal of Ip, is squarefree for all i, then the initial ideal of Ia(p,,..By)
18 squarefree.

Proof. By virtue of Lemma 3.5, G is a subset of Isp, . B,). Since both the sorting
operation and the reduction relation modulo Grobner bases are Noetherian, there exists
a monomial order such that the first monomial x® is the initial monomial.

Suppose that there exists a binomial 0 # v —v € I, .. B,) such that neither v nor v
is divided by any initial monomial of G. Let

u T . : i €T . . . LR . . .
(1), Gpt1)  Cr—1)pt1) (in), Gpy2)  ((r_1)pt2) Gp), G2p)  (irp)
it Miprr T Migonprr T2 Mipre TG 1ypte Mip Migp " Mirp,
U= Ty, Cpy) Eeonpr) T (k) pra)  Reenpra) T ) (Rap) | Ger)
Tt fr—1)p+1 ty Tlpio Lr—1)p+2 tp Tlap trp.

By virtue of Lemma 3.5, we have
sort(iydg - - - iyp) = sort(kike - - - kypp).
Thanks to the condition (3), we have
Q1ly - - iy = SOrt(i1in - - - dpp) = SOt (k1ko - - - kpp) = K1ka - - - Ky

Hence iy = k, for all 1 < ¢ < rp. By virtue of Lemma 3.5, we have ¢;(u) —;(v) € Ip, for
each 1 < ¢ < d. Since each G; consists of quadratic binomials and thanks to the condition
(4), ¢j(u) = ¢;(v) for each 1 < i < d. Hence

M= 11 0

ig=j, 1<q<rp kq=j, 1<q<rp



Thanks to the condition (5) together with (6) above, j, = ¢, for all 1 < ¢ < rp. Thus we
have v = v and this is a contradiction.

Suppose that the initial ideal of Ip, is squarefree for all 7 and that T 1), (i) m(ir)Z
J1 g iy

belongs to the initial ideal of I4(g, .. B,). Then

2
g =7 (1) (2) Gr) T L (ky) (k3) (kop_1)T (ko) (k) (ka;)
mymyteem mzl1 m433 mg " my 2y Semy

belongs to G. Thanks to the condition (3), we have

— o 2 _
g =, G, G2) . (ir) fUle)

(i) Gr) X (i1), _(i2) (ir) -
i mgy i - my 2

m m m
l3 lor—1 Lo Loy

Since g # 0, there exists k such that ji # for. Thanks to the condition (5), we have

Pk (xm(zl>m(zz)__,m(u) ) # Pk (fUle)mIS;z)___m(m JUm;;l)mZz),_,mgu)) .

J1 72 Jr Lor—1 27

Hence by the condition (4),

2
2 _ i . .
Pk (-Tm;lll)m;;ﬁmm;lrr) > = Pk <l‘mj(-zll)mj(-;2)"'m§:r)>

belongs to the initial ideal of I, . Since the initial ideal of Ip, is squarefree,

Pre | T (1), (i2) (i)
mh1 m].22 iy

belongs to the initial ideal of Ip,. This contradicts that ¢ is defined with a standard
expression. Thus the initial ideal of I4(p, ... 5,) is squarefree. ]

Example 4.3. Let A = {t7} and B; = {uy, ug, u3}. Then
A(By) = {u?, uyug, uyus, u5, ugus, u3 }.

The reduced Grobner basis in Theorem 3.6 consists of the binomials

2
T xufxug
1'2 — I,2T
uULu3 u% u%
ZL'2 — T2
usu3 u3tul
TurusTuiug  —  LTudTugug
xulugxug = TuiusLuyug
LujuzLusuz  —  Lujus Lol

10



and the reduced Grobner basis in Theorem 4.2 consists of the binomials

2

xufxug - xulzm
xZX,2T — 1'2
u?ty?2 uiu3
xX,20 — fL'2
u% u% u2U3
Tu2ZTuguz  —  TujugLujug
xulusxug — ZTuiuslusus
xu1u2xu§ —  TuyuszTusus

where the initial monomial of each binomial is the first monomial.
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