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Abstract

We consider the problem of maximizing a nondecreasing submodu-
lar set function under a matroid constraint. Recently, Calinescu et al.
(2007) proposed an elegant framework for the approximation of this
problem, which is based on the pipage rounding technique by Ageev
and Sviridenko (2004), and showed that this framework indeed yields
a (1− 1/e)-approximation algorithm for the class of submodular func-
tions which are represented as the sum of weighted rank functions
of matroids. This paper sheds a new light on this result from the
viewpoint of discrete convex analysis by extending it to the class of
submodular functions which are the sum of M\-concave functions. M\-
concave functions are a class of discrete concave functions introduced
by Murota and Shioura (1999), and contain the class of the sum of
weighted rank functions as a proper subclass. Our result provides a
better understanding for why the pipage rounding algorithm works for
the sum of weighted rank functions.

1 Introduction

We consider the maximization of a nondecreasing submodular function un-
der a matroid constraint. In the area of mathematical programming, the
maximization of a concave function is recognized as a tractable problem
while the maximization of a convex function is hard to solve. In discrete
optimization, submodular function is often regarded as discrete convexity,
and indeed the maximization of a submodular function is known to be NP-
hard. On the other hand, some classes of submodular functions are deeply
related to discrete concavity (cf. [6, 10, 14]). For example, a set function
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f(X) = ϕ(|X|) given by a univariate concave function ϕ is a submodu-
lar function, and it is natural that such a function has discrete concavity.
The objective of this paper is to shed a new light on the pipage rounding
algorithm from the viewpoint of discrete convex analysis by pointing out
that discrete concavity plays an essential role in computing an approximate
solution in the maximization of a submodular function.

Our problem is formulated as follows:

(P) Maximize f(X) subject to X ∈ F ,

where f : 2N → R is a nondecreasing submodular set function on a finite
set N with f(∅) = 0, and M = (N,F) is a matroid with the family of
independence sets F . We assume that the membership oracle for M is
available. A set function f : 2N → R is said to be submodular if it satisfies
f(X)+ f(Y ) ≥ f(X ∩Y )+ f(X ∪Y ) for any X,Y ∈ 2N , and nondecreasing
if f(X) ≤ f(Y ) for any X,Y ∈ 2N with X ⊆ Y .

In the literature, various problems related to (P) have been discussed
over decades [3, 4, 7, 17, 20]. Recently, Calinescu et al. [2] proposed an
elegant framework for the approximation of the problem (P), which is based
on the pipage rounding technique developed by Ageev and Sviridenko [1].
In their framework, they firstly consider a relaxation of the problem (P):

(RP) Maximize f̃(x) subject to x ∈ P (M),

where P (M) (⊆ R
N ) is the matroid polytope of M and f̃ : [0, 1]N → R is

an extension of f , i.e., a nondecreasing concave function such that f̃(χX) =
f(X) for any X ∈ 2N and its characteristic vector χX ∈ {0, 1}N . Then,
an optimal (fractional) solution x ∈ [0, 1]N of the relaxed problem (RP) is
computed and rounded to a {0, 1}-vector that corresponds to an independent
set of M by using a potential function defined over [0, 1]N . The main result
of Calinescu et al. [2] is described as follows, where e denotes the base of
natural logarithm, and for a matroid M′ = (N,F ′) and a nonnegative vector
w ∈ R

N
+ , a weighted rank function f : 2N → R is defined by

f(X) = max{w(Y ) | Y ∈ F ′, Y ⊆ X} (X ∈ 2N ). (1)

Theorem 1.1 ([2]). Let f : 2N → R be a nondecreasing submodular func-
tion with f(∅) = 0. Suppose that there exists an extension f̃ of f such that
the relaxed problem (RP) can be solved in polynomial time. Then, the pipage
rounding algorithm (see Section 2.2) outputs a (1 − 1/e)-approximate solu-
tion of the problem (P) in polynomial time. In particular, if f is given as
the sum of weighted rank functions, the pipage rounding algorithm outputs
a (1 − 1/e)-approximate solution in polynomial time.

A connection of this result to discrete concavity is made by the observa-
tion that a weighted rank function has discrete concavity called M\-concavity
(see Section 2.3 for the definition).
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Theorem 1.2. Any weighted rank function is an M\-concave function.

The concepts of M\-concavity/M\ -convexity are introduced by Murota
and Shioura [15] as discrete concavity/convexity for functions defined over
the integer lattice, and are variants of M-concavity/M-convexity due to
Murota [13]. These concepts play primary roles in the theory of discrete
convex analysis [14]. The class of M\-concave functions properly contains
that of weighted rank functions; for example, the set function f(X) = ϕ(|X|)
with concave ϕ is an M\-concave function and not a weighted rank function.
Therefore, the class of the sum of M\-concave functions contains the class
of the sum of weighted rank functions, but so far we do not know whether
this is a proper inclusion or not.

An M\-concave function has a natural extension called the concave clo-
sure (see Section 2 for the precise definition). This enables us to solve the
maximization of the sum of the concave closures of M\-concave functions
(almost) optimally in polynomial time. We assume that the membership
oracle for M and the function evaluation oracles for M\-concave functions
are available. We denote by n the cardinality of N .

Theorem 1.3. Let fk : 2N → R (k = 1, 2, . . . ,m) be a family of nondecreas-
ing M\-concave functions with fk(∅) = 0, and denote by fk : [0, 1]N → R the
concave closure of fk for k = 1, 2, . . . ,m. Suppose that the function f̃ in the
problem (RP) is given as f̃(x) =

∑m
k=1

fk(x).
(i) For any ε > 0, a (1 − ε)-approximate solution of (RP) can be computed
in time polynomial in n, m, Γ, and log(1/ε), where

Γ =

m
∑

k=1

max
X∈2N

| log fk(X)|. (2)

(ii) If each fk is an integer-valued function, then an optimal solution of (RP)
can be computed in time polynomial in n, m, and Γ.

Our algorithm used in the proof of Theorem 1.3 is based on the ellipsoid
method combined with an algorithm for computing a subgradient of the
concave function f̃ . Since f̃(x) =

∑m
k=1

fk(x), a subgradient of f̃ is given as
the sum of subgradients of the functions f k (k = 1, 2, . . . ,m), and subgradi-
ents of each fk are computed in polynomial time by using the combinatorial
structure of M\-concave functions.

As a corollary of Theorem 1.3, we see that the pipage rounding algorithm
of Calinescu et al. [2] also works for the sum of M\-concave functions.

Corollary 1.4. Suppose that the function f is given as f(X) =
∑m

k=1
fk(X)

with a family of nondecreasing M\-concave functions fk : 2N → R (k =
1, 2, . . . ,m).
(i) For any ε > 0, a (1 − 1/e − ε)-approximate solution of the problem (P)
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can be obtained in time polynomial in n, m, Γ, and log(1/ε).
(ii) If each fk is an integer-valued function, then a (1 − 1/e)-approximate
solution of (P) can be obtained in time polynomial in n, m, and Γ.

Our results show that the success of the pipage rounding algorithm for
the sum of weighted rank functions can be understood as a special case of
Corollary 1.4.

The organization of this paper is as follows. In Section 2, we review the
pipage rounding framework of Calinescu et al. [2] as well as the definition
and some fundamental properties of M\-concavity. In Section 3, we present
an algorithm for computing a subgradient of the concave closure of an M\-
concave function. Finally, we propose a polynomial-time algorithm for the
maximization of the sum of concave closures in Section 4.

2 Preliminaries

2.1 Matroids

Throughout this paper, we assume that M = (N,F) is a matroid with the
family of independent sets F , which gives a constraint in the problem (P).
We denote by B the base family of M, and let rM : 2N → {0, 1, . . . , n} be
the rank function of M. For any X ∈ 2N , we denote by χX ∈ {0, 1}N the
characteristic vector of X, i.e., (χX)(j) = 1 (j ∈ X) and (χX)(j) = 0 (j ∈
N \ X). The matroid polytope P (M) (resp., the base polytope B(M)) is
defined as the convex hull of the set of {0, 1}-vectors {χX | X ∈ F} (resp.,
{χX | X ∈ B}). They are also given as

P (M) = {x ∈ R
N | x(X) ≤ rM(X) (X ⊆ N)},

B(M) = {x ∈ R
N | x ∈ P (M), x(N) = rM(N)}.

Given a vector x ∈ P (M), we say that a subset X of N is tight if x(X) =
rM(X).

In the following, we assume that the membership oracle for F is available.
Since the function value of the matroid rank function rM for M can be
computed by using the membership oracle at most n times, the following
problems concerning M can be solved in polynomial time as well by using
submodular function minimization algorithms [9, 18].

• [membership] check whether a given vector x ∈ R
N is contained

in P (M) (or B(M)) or not,
• [separation] given a vector x ∈ R

N not contained in P (M) (or
B(M)), find a set X ∈ 2N such that x(X) > rM(X),
• [saturation capacity] for x ∈ P (M) and i ∈ N , compute the
value

ĉ(x, i) = max{η | η ∈ R, x + ηχi ∈ P (M)},
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• [exchange capacity] for x ∈ B(M) and i, j ∈ N , compute the
value

ĉ(x, i, j) = max{η | η ∈ R, x + η(χi − χj) ∈ B(M)}.

2.2 Pipage Rounding Algorithm

The pipage rounding algorithm [2] for the problem (P) consists of the fol-
lowing three steps:

1. Define a relaxed problem (RP) of the original problem (P).
2. Compute an (approximately) optimal solution x∗ of the
relaxed problem (RP).
3. Round the fractional vector x∗ to obtain a {0, 1}-vector x̂.

We explain the details of each step below.
To define a relaxation (RP) of the problem (P), we use an extension

f̃ : [0, 1]N → R of f which is a nondecreasing concave function satisfying
f̃(χX) = f(X) (X ∈ 2N ). For example, the concave closure 1 f of f given
by

f(x) = max

{

∑

X⊆N

λXf(X)

∣

∣

∣

∣

∑

X⊆N

λX = 1, λX ≥ 0,
∑

X⊆N

λXχX = x

}

can be used as an extension of f . If the function f is given as f(x) =
∑m

k=1
fk(x) with a family of set functions fk : 2N → R (k = 1, 2, . . . ,m),

then we can also use the sum of the concave closures
∑m

k=1
fk(x) as an

extension of f .
In the second step, we compute an (approximately) optimal solution

x∗ of the relaxed problem (RP). We may assume that x∗ ∈ B(M), since
otherwise we can find x ∈ B(M) with f̃(x) ≥ f̃(x∗) by computing the
saturation capacity ĉ(x∗, i) at most n times.

In the third step, we round the fractional vector x∗ ∈ B(M) to a {0, 1}-
vector χX with X ∈ B by using a potential function F : [0, 1]N → R defined
by

F (x) =
∑

X⊆N

(

∏

j∈X

x(j)

)(

∏

j∈N\X

(1 − x(j))

)

f(X)

for x = (x(1), x(2), . . . , x(n)) ∈ [0, 1]N . Note that F (χX) = f(X) for any
X ∈ 2N . We assume that the function evaluation oracle for F (x) is available,
as in [2]. We note that the function value of F can be evaluated to any
desired accuracy in polynomial time by taking sufficiently many independent
samples (see [2]).

Rounding of a fractional vector is done by using the following procedure.

1The concave closure of f is denoted by f+ in [2].
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Procedure Rounding(x)
Input: a vector x ∈ B(M)
Output: a subset X ∈ B such that F (χX) ≥ F (x)
Step 1: If x ∈ {0, 1}N , then output the set X ∈ 2N with χX = x, and stop.
Step 2: Let Y be a minimal tight set (w.r.t. rM) with |Y ∩ {j ∈ N | 0 <
x(j) < 1}| > 0.
Step 3: Choose any distinct elements i, i′ in Y ∩ {j ∈ N | 0 < x(j) < 1}.
Step 4: Put x′ = x + ĉ(x, i, i′)(χi −χi′) and x′′ = x + ĉ(x, i′, i)(χi′ −χi). If
F (x′) ≥ F (x′′), then put x := x′; otherwise put x := x′′.
Step 5: Go to Step 1.

Theorem 2.1 ([2]). The procedure Rounding terminates in O(n2) iter-
ations. Given a function evaluation oracle for F and a membership oracle
for B(M), the procedure can be implemented to run in polynomial time.

The correctness of the procedure Rounding follows from the following
property of F .

Proposition 2.2 ([2]). For any x ∈ B(M) and distinct i, j ∈ N , the
function ϕ(η) = F (x + η(χi − χj)) is a convex function in the interval
η ∈ [−ĉ(x, j, i), ĉ(x, i, j)].

The quality of the solution obtained by the procedure Rounding de-
pends on the choice of the extension f̃ . We denote by OPT the optimal
value of the problem (P).

Theorem 2.3 (cf. [2]). Suppose that F (y) ≥ αf̃(y) holds for all y ∈ [0, 1]N .
Given a β-approximate solution x ∈ [0, 1]N of the problem (RP), the proce-
dure Rounding outputs a subset X ∈ 2N satisfying f(X) ≥ αβ OPT.

The following properties show that if we use the function f(x) (or
∑m

k=1
fk(x))

as an extension of f and we can solve the problem (RP) exactly (i.e., β = 1
in Theorem 2.3) in polynomial time, then the pipage rounding algorithm is
a (1 − 1/e)-approximation algorithm for the problem (P).

Theorem 2.4 ([2]). For any nondecreasing submodular function f : 2N →
R with f(∅) = 0, we have F (x) ≥ (1 − 1/e)f (x) (x ∈ [0, 1]N ).

Corollary 2.5 (cf. [2]). Suppose that the function f is given as f(X) =
∑m

k=1
fk(X) with a family of nondecreasing submodular functions fk : 2N →

R with fk(∅) = 0 (k = 1, 2, . . . ,m). Define f̃ : [0, 1]N → R by f̃(x) =
∑m

k=1
fk(x). Then, we have F (x) ≥ (1 − 1/e)f̃ (x).

2.3 M\-concave Functions

We review the definition of M\-concavity and show some fundamental prop-
erties.

A function h : Z
N → R ∪ {−∞} defined over the integer lattice is said

to be M\-concave if it satisfies the following property:
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∀x, y ∈ dom Zh, ∀i ∈ supp+(x − y), ∃j ∈ supp−(x − y) ∪ {0}:

h(x) + h(y) ≤ h(x − χi + χj) + h(y + χi − χj),

where dom Zh = {x ∈ Z
N | h(x) > −∞}, for a vector x ∈ R

N we define

supp+(x) = {i ∈ N | x(i) > 0}, supp−(x) = {i ∈ N | x(i) < 0},

and χ0 = 0 ∈ R
N . We note that for any M\-concave function h and any

p ∈ R
N , the function h(x) + p>x is also M\-concave in x.

The following property shows that M\-concave functions constitute a
subclass of submodular functions. For any vectors x, y ∈ R

N we define x ∨
y, x∧y ∈ R

N by (x∨y)(i) = max{x(i), y(i)} and (x∧y)(i) = min{x(i), y(i)}
for i ∈ N .

Theorem 2.6 ([14]). An M\-concave function h : Z
N → R ∪ {−∞} is a

submodular function, i.e., h(x) + h(y) ≥ h(x ∨ y) + h(x ∧ y) holds for any
x, y ∈ dom Zh.

M\-concavity for set functions can be naturally defined through the one-
to-one correspondence between set functions f : 2N → R and functions
h : Z

N → R ∪ {−∞} with dom Zh = {0, 1}N . That is, a set function
f : 2N → R ∪ {−∞} is said to be M\-concave if f satisfies the following
property:

∀X,Y ∈ 2N with f(X) > −∞, f(Y ) > −∞, ∀i ∈ X \Y , it holds
that

f(X) + f(Y ) ≤ max

[

f(X \ {i}) + f(Y ∪ {i}),

max
j∈Y \X

{

f((X \ {i}) ∪ {j}) + f((Y ∪ {i}) \ {j})

}]

.

Maximization of an M\-concave set function can be done efficiently.

Theorem 2.7 (cf. [14, 19]). Let f : 2N → R be an M\-concave set function.
Then, a maximizer of f can be obtained by evaluating the function value of
f at most n2 times.

We give a proof of Theorem 1.2 stating that any weighted rank function
is an M\-concave set function. As shown in Theorem 2.6, the class of M\-
concave set functions is (properly) contained in the class of submodular set
functions.

Proof of Theorem 1.2. Let f : 2N → R be a weighted rank function rep-
resented as (1) with a matroid M′ = (N,F ′) and a nonnegative vector
w ∈ R

N
+ . Define f1, f2 : 2N → R ∪ {−∞} by

f1(X) =

{

w(X) (X ∈ F ′),
−∞ (otherwise),

f2(X) = 0 (X ∈ 2N ).
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Then, both f1 and f2 are M\-concave functions. Moreover, we have

f(X) = max{f1(Y ) + f2(X \ Y ) | Y ∈ 2N , Y ⊆ X} (X ∈ 2N ),

which implies that f is M\-concave as well (see [14, Theorem 6.13]).

We give some other examples of M\-concave set functions.

Example 2.8 (laminar concave function). Let F ⊆ 2N be a laminar
family, i.e., for any X,Y ∈ F we have X \ Y = ∅, Y \X = ∅, or X ∩ Y = ∅.
For a family of univariate concave functions ϕY : Z → R (Y ∈ F), the
function f : 2N → R defined by

f(X) =
∑

Y ∈F

ϕY (|X ∩ Y |) (X ∈ 2N )

is an M\-concave function. In particular, f is nondecreasing if ϕY is nonde-
creasing for all Y ∈ F .

Example 2.9. Let G = (U, V ;E) be a complete bipartite graph with vertex
set U ∪V and edge set E, and let we ∈ R+ be the weight of edge e ∈ E. We
define a function f : 2U → R by

f(X) = max{
∑

e∈F

we | F : matching of G, {∂+e | e ∈ F} = X},

where ∂+e ∈ U denotes the end vertex of the edge e ∈ E contained in U .
Then, f is a nondecreasing M\-concave function.

We also consider M\-concavity for polyhedral concave functions. A poly-
hedral concave function h : R

N → R ∪ {−∞} is said to be M\-concave if it
satisfies the following property:

∀x, y ∈ dom Rh, ∀i ∈ supp+(x − y), ∃j ∈ supp−(x − y) ∪ {0},
∃η0 > 0:

h(x)+h(y) ≤ h(x−η(χi−χj))+h(y+η(χi−χj)) (∀η ∈ [0, η0]),

where dom Rh = {x ∈ R
N | h(x) > −∞}.

Theorem 2.10 ([14, 16]). For any M\-concave function h : Z
N → R ∪

{−∞} with bounded dom Zh, its concave closure h : R
N → R ∪ {−∞} is a

polyhedral M\-concave function.

A nonempty set S ⊆ R
N is called a g-polymatroid [5] if there exists a pair

of a submodular set function ρ : 2N → R ∪ {+∞} and a supermodular set
function µ : 2N → R∪{−∞} such that ρ(∅) = µ(∅) = 0, ρ(X)− ρ(X \Y ) ≥
µ(Y ) − µ(Y \ X) (X,Y ⊆ N), and

S = {x ∈ R
N | µ(X) ≤ x(X) ≤ ρ(X) (X ∈ 2N )}.
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Theorem 2.11 ([14, 16]). Let h : Z
N → R ∪ {−∞} be an M\-concave

function over the integer lattice, and let h : R
N → R∪ {−∞} be its concave

closure. For any p ∈ R
N , the set arg max{h(x) − p>x | x ∈ R

N} is an
integral g-polymatroid if it is not empty.

Finally, we explain the concept of L\-concavity, which is deeply related
to the concept of M\-concavity. A polyhedral concave function g : R

N →
R ∪ {−∞} is said to be L\-concave if it satisfies the following property:

g(p)+g(q) ≤ g((p−λ1)∨q)+g(p∧ (q +λ1)) (∀p, q ∈ R
N , ∀λ ∈ R+), (3)

where 1 ∈ Z
N is the vector with all components equal to one.

Theorem 2.12 ([14, 16]). Let h : Z
N → R ∪ {−∞} be an M\-concave

function with bounded dom Zh, and define a function h◦ : R
N → R by

h◦(p) = min{p>x − h(x) | x ∈ Z
N} (p ∈ R

N ). Then, h◦ is a polyhedral
L\-concave function.

L\-concavity is also defined for functions over the integer lattice. A
function g : Z

N → R ∪ {−∞} is said to be L\-concave if it satisfies (3),
where p, q ∈ Z

N and λ ∈ Z+. The maximization of an L\-concave function
over the integer lattice can be solved efficiently.

Theorem 2.13 ([14]). Let g : Z
N → R∪ {−∞} be an L\-concave function

with bounded dom Zg. Then, a maximizer of g can be computed in time
polynomial in n and Ψ, where Ψ = maxi∈N [log max{p(i) − q(i) | p, q ∈
dom Zg}].

3 Approximation Algorithms for Concave Closure

For a concave function h : R
N → R ∪ {−∞}, a vector p ∈ R

N is called a
subgradient of h at x if p satisfies h(y)−h(x) ≤ p>(y−x) (y ∈ R

N ), and the
set of subgradients of h at x is denoted by ∂h(x) (⊆ R

N ). In this section, we
show that for any nondecreasing M\-concave set function f , an approximate
subgradient of the concave closure f of f can be computed efficiently. Recall
the definition of Γ in (2).

Theorem 3.1. Let f : 2N → R be a nondecreasing M\-concave function
with f(∅) = 0.
(i) For any δ > 0, we can compute a vector p ∈ R

N and a real number α ∈ R

satisfying

f(y) − f(x) ≤ p>(y − x) + δ, f(x) ≤ α ≤ f(x) + δ (4)

in time polynomial in n, Γ, and log(1/δ).
(ii) Suppose f is an integer-valued function. Then, we can compute a sub-
gradient p ∈ ∂f(x) ∩ Z

N and the exact value of f(x) in time polynomial in
n and Γ.
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In the following, we give a sketch of the proof of Theorem 3.1.
Define a vector u ∈ R

N by u(i) = f({i}) (i ∈ N). We first show that for
any x ∈ [0, 1]N there exists a subgradient p of f at x such that 0 ≤ p ≤ u.

Lemma 3.2. For any x, y ∈ [0, 1]N with x ≥ y and for any i ∈ supp+(x−y),
there exists η0 > 0 such that f(x) + f(y) ≤ f(x − ηχi) + f(y + ηχi) (∀η ∈
[0, η0]).

Lemma 3.3. For any x ∈ {0, 1}N and i ∈ N with x(i) = 0, we have
f(x + ηχi) − f(x) = η{f(x + χi) − f(x)} (∀η ∈ [0, 1]).

Lemma 3.4. For any x ∈ [0, 1]N , there exists a subgradient p ∈ ∂f(x) such
that 0 ≤ p ≤ u.

Proof. Let x ∈ [0, 1]N . Then, there exists a subgradient p ∈ ∂f(x) such that
the set

S = {y ∈ [0, 1]N | f(y) − f(x) = p>(y − x)}

satisfies |S ∩ {0, 1}N | ≥ n + 1. We show that such a subgradient p satisfies
0 ≤ p ≤ u.

We note that S is a full-dimensional polytope. Let x0 ∈ [0, 1]N be a
vector in the interior of S. Then, there exists ε > 0 such that

ε′p(i) = f(x0+ε′χi)−f(x0) = f(x0)−f(x0−ε′χi) (∀i ∈ N, 0 ≤ ∀ε′ ≤ ε).
(5)

Since 0 < x0 < 1, Lemma 3.2 implies that

f(ε′χi) − f(0) ≥ f(x0) − f(x0 − ε′χi) (i ∈ N), (6)

f(x0 + ε′χi) − f(x0) ≥ f(1) − f(1 − ε′χi) (i ∈ N) (7)

for a sufficiently small ε′ > 0. By Lemma 3.3, we have

f(ε′χi) − f(0) = ε′{f(χi) − f(0)}

= ε′{f({i}) − f(∅)} = ε′u(i) (i ∈ N), (8)

f(1) − f(1− ε′χi) = ε′{f(1) − f(1 − χi)}

= ε′{f(N) − f(N \ {i})} ≥ 0 (i ∈ N), (9)

where the last inequality in (9) is due to the monotonicity of f . Combining
(5), (6), (7), (8), and (9), we obtain 0 ≤ p ≤ u.

By the definition of the concave closure and LP duality, we have

f(x) = min{p>x + γ | p>χX + γ ≥ f(X) (X ∈ 2N ), p ∈ R
N , γ ∈ R}

= min{p>x − f◦(p) | p ∈ R
N} (x ∈ [0, 1]N ),

where f ◦(p) = min{p>χX − f(X) | X ∈ 2N}. We also define g(p) =
f◦(p) − p>x (p ∈ R

N ). The following property, together with Lemma 3.4,
implies that finding a subgradient of f can be reduced to the maximization
of the function g over p ∈ [0, u].
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Theorem 3.5 ([14, 16]). For any x ∈ [0, 1]N , it holds that ∂f(x) =
arg max{g(p) | p ∈ R

N}. If f is an integer-valued function, then ∂f(x)
is an integral polyhedron.

Let p∗ ∈ R
N be a maximizer of g, and p ∈ R

N be any vector with
||p − p∗||∞ ≤ δ/n. We note that f(x) = −g(p∗). Since p∗ ∈ ∂f(x) by
Theorem 3.5, we have

f(y)− f(x) ≤ (p∗)>(y − x) = p>(y − x) + (p∗ − p)>(y − x) ≤ p>(y − x) + δ.

Since the function g is written as g(p) = min{p>(χX −x)−f(X) | X ∈ 2N},
we have g(p∗) − δ ≤ g(p) ≤ g(p∗). This shows that a vector p ∈ R

N with
||p − p∗||∞ ≤ δ/n and the real number α = −g(p) satisfy the condition (4).
To prove Theorem 3.1 (i), it suffices to show that such p can be computed
in polynomial time.

The function g is a polyhedral L\-concave function by Theorem 2.12, and
the function value of g can be computed in polynomial time by Theorem
2.7. Let δ′ = δ/n2, and define a function gZ : Z

N → R ∪ {−∞} by

gZ(p) =

{

g(δ′p) (if p ∈ Z
N and p(i) ∈ [0, u(i)/δ′ ] for all i ∈ N),

−∞ (otherwise).

Then, gZ is an L\-concave function over the integer lattice. The L-proximity
theorem in [14, Theorem 7.18] implies the following property, which states
that any maximizer of gZ is sufficiently close to a maximizer of g.

Theorem 3.6 ([11]). Let pZ ∈ Z
N be a maximizer of gZ. Then, there exists

a maximizer p∗ of g such that ||p∗ − δ′pZ||∞ ≤ nδ′ = δ/n.

By Theorem 2.13, a maximizer of gZ can be computed in time polynomial
in n and maxi∈N log(u(i)/δ′). This concludes the proof of Theorem 3.1
(i). We note that the algorithms in [14, Section 10.3] cannot be used for
computing a maximizer of g exactly since the function g is a polyhedral
L\-concave function and its maximizer can be an irrational vector.

In the case where f is integer-valued, Lemma 3.4 and Theorem 3.5 imply
that an optimal solution of the problem max{g(p) | p ∈ Z

N , p ∈ [0, u]} is
a subgradient of f at x, and such an optimal solution can be obtained in
polynomial time. Hence, Theorem 3.1 (ii) is proved.

4 Solving the Relaxed Problem

We prove Theorem 1.3 by giving a polynomial-time algorithm for the relaxed
problem (RP).

We first prove Theorem 1.3 (i). Let α∗ be the optimal value of the
problem (RP), i.e., α∗ = max{f̃(x) | x ∈ P (M)}. It suffices to show that
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for any ε > 0, we can find a vector x ∈ P (M) with f̃(x) ≥ α∗ − ε in time
polynomial in n, Γ, and log(1/ε). If we put ε = ε′f(X) for ε′ > 0 and an
arbitrarily chosen X ∈ F \ {∅} then we can obtain a (1 − ε′)-approximate
solution of (RP) since f̃(x)/α∗ ≤ f̃(x)/f(X) ≤ 1 − ε′.

For any α ∈ R, we define a set

L(α) = {(x, α) ∈ R
n × R | α ≤ α ≤ f̃(x)}.

Note that L(α) 6= ∅ if and only if α ≤ α∗. Given α, our algorithm described
below either asserts L(α) = ∅ or finds a point (x, α) such that α ≤ α ≤
f̃(x) + (ε/2). By combining this algorithm with binary search w.r.t. α, we
can find an approximate solution x of (RP) satisfying f̃(x) ≥ α∗ − ε.

Our algorithm for checking the nonemptyness of L(α) is based on the
ellipsoid method. Let δ > 0 be a constant. In each iteration of the algorithm,
we check whether the set L(α) approximately contains the point (xc, αc)
which is the center of the current ellipsoid, and computes a hyperplane
which almost separates the point (xc, αc) and the set L(α) in the following
way:

Case 1: If αc < α, then we output α ≥ α as a separating hyperplane.
Case 2: If xc 6∈ P (M), we compute a separating hyperplane for P (M) and
xc and output it.
Case 3: Suppose that αc ≥ α and xc ∈ P (M). For each k = 1, 2, . . . ,m, we
compute a real number βk satisfying fk(xc) ≤ βk ≤ fk(xc)+δ (see Theorem
3.1 (i)) and put β =

∑m
k=1

βk.
Case 3-1: If αc ≤ β, then we output the point (xc, αc) and stop.
Case 3-2: Suppose that αc > β. For each k = 1, 2, . . . ,m, we compute a

vector pk ∈ R
N satisfying fk(x)−f(xc) ≤ p>k (x−xc)+δ for all x ∈ [0, 1]N (see

Theorem 3.1 (i)), and put p =
∑m

k=1
pk. We output α−β ≤ p>(x−xc)+2mδ

as a separating hyperplane.

We note that the separating hyperplane obtained in Case 3-2 is satisfied
by all (x, α) ∈ L(α). After a finite number of iterations, we can find a point
(xc, αc) with α ≤ α ≤ f(x) + mδ or assert that the set L(α) is empty, and
the number of iteration is bounded by n, m, Γ, and log(1/δ) (see, e.g., [8]).
Therefore, we obtain a desired algorithm for L(α) by putting δ = ε/2m.

We then prove Theorem 1.3 (ii). When each fk is integer-valued, we use
the ellipsoid method in a different way, and apply it to find a vector in the
set S∗ = arg max{f̃(x) | x ∈ B(M)}. For the correctness and polynomial-
time termination of the ellipsoid method, it suffices to prove the following
(see [8]):

(a) S∗ is a rational polytope such that the encoding length of
each facet is bounded by a polynomial in the input size,
(b) a separating hyperplane for the set S∗ and a given point
x ∈ [0, 1]N can be computed in time polynomial in the input
size.
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For any k = 1, 2, . . . ,m and any p ∈ R
N , the set arg max{fk(x) − p>x |

x ∈ [0, 1]N} is an integral g-polymatroid by Theorem 2.11. Hence, S∗ is
given as the intersection of m integral g-polymatroids and a base polytope
of a matroid. Therefore, S∗ is represented by the inequalities of the form
x(X) ≤ γX or x(X) ≥ γX with X ∈ 2N and an integer γX ∈ {0, 1, . . . , n}.
This fact shows that S∗ is a rational polytope such that the encoding length
of each facet is bounded by a polynomial in n.

We then explain how to compute a separating hyperplane for S∗ and x.
We first check whether x ∈ B(M) or not. If x 6∈ B(M), then we compute a
separating hyperplane for B(M) and x, and output it. If x ∈ B(M), then
we compute a subgradient pk ∈ ∂fk(x) in polynomial time, as shown in
Theorem 3.1. Since f̃ =

∑m
k=1

fk, the vector p =
∑m

k=1
pk is a subgradient

of f̃ at x. Therefore, we have 0 ≤ f̃(x∗)− f̃ (x) ≤ p>(x∗−x) for any x∗ ∈ S∗,
i.e., p>x∗ ≤ p>x is a separating hyperplane for S∗ and x. This concludes
the proof of Theorem 1.3 (ii).

Remark Our result in this paper can be extended to functions defined over
the integer lattice. Let v ∈ Z

N
+ , and consider a function h : [0, v]∩Z

N → R.
If h is a submodular function given as the sum of nondecreasing M\-concave
functions hk : [0, v] ∩ Z

N → R (k = 1, 2, . . . ,m) with hk(0) = 0, then we
can compute a (1 − 1/e)-approximate solution of the problem max{h(x) |
x ∈ B ∩ Z

N} in polynomial time, where B is an integral base polytope (of
a submodular system) such that B ⊆ [0, v]. We omit the details.
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