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Abstract

In two-way contingency tables we sometimes find that frequencies along the
diagonal cells are relatively larger (or smaller) compared to off-diagonal cells, par-
ticularly in square tables with the common categories for the rows and the columns.
In this case the quasi-independence model with an additional parameter for each
of the diagonal cells is usually fitted to the data. A simpler model than the quasi-
independence model is to assume a common additional parameter for all the diag-
onal cells. We consider testing the goodness of fit of the common diagonal effect
by Markov chain Monte Carlo (MCMC) method. We derive an explicit form of a
Markov basis for performing the conditional test of the common diagonal effect.
Once a Markov basis is given, MCMC procedure can be easily implemented by
techniques of algebraic statistics. We illustrate the procedure with some real data
sets.

1 Introduction

In this paper we discuss a conditional test of a common effect for diagonal cells in two-
way contingency tables. Modeling diagonal effects arises mainly in analyzing contingency
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tables with common categories for the rows and the columns, although our approach is
applicable to general rectangular tables. Many models have been proposed for square
contingency tables. Tomizawa [2006] gives a comprehensive review of models for square
contingency tables. Gao and Kuriki [2006] discuss testing marginal homogeneity against
ordered alternatives.

Goodness of fit tests of these models are usually performed based on the large sample
approximation to the null distribution of test statistics. However when a model is ex-
pressed in a log-linear form of the cell probabilities, a conditional testing procedure (e.g.
the Fisher’s exact test for 2×2 contingency tables) can be used. Optimality of conditional
tests is a well-known classical fact [Lehmann and Romano, 2005, Chapter 4]. Also large
sample approximation may be poor when expected cell frequencies are small (Haberman
[1988]).

Sturmfels [1996] and Diaconis and Sturmfels [1998] developed an algebraic algorithm
for sampling from conditional distributions for a statistical model of discrete exponential
families. This algorithm is applied to conditional tests through the notion of Markov
bases. In the Markov chain Monte Carlo approach for testing statistical fitting of the
given model, a Markov basis is a set of moves connecting all contingency tables satisfying
the given margins. Since then many researchers have extensively studied the structure of
Markov bases for models in computational algebraic statistics (e.g. Hoşten and Sullivant
[2002], Dobra [2003], Dobra and Sullivant [2004], Geiger et al. [2006], Hara et al. [2007a]).

It has been well-known that for two-way contingency tables with fixed row sums and
column sums the set of square-free moves of degree two of the form

+1 −1
−1 +1

constitutes a Markov basis. However when we impose an additional constraint that the
sum of cell frequencies of a subtable S is also fixed, then these moves do not necessarily
form a Markov basis. In Hara et al. [2007b] we gave a necessary and sufficient condition on
S so that the set of square-free moves of degree two forms a Markov basis. We called this
problem a subtable sum problem. For the common diagonal effect model defined below
in (2) S is the set of diagonal cells. We call this problem a diagonal sum problem. By
the result of Hara et al. [2007b] we know that the set of square-free moves of degree two
does not form a Markov basis for the diagonal sum problem. In this paper we give an
explicit form of a Markov basis for the two-way diagonal sum problem. The Markov basis
contains moves of degree three and four.

When the sum of cell frequencies of a subtable S is fixed to zero, then the frequency
of each cell of S has to be zero and the subtable sum problem reduces to the structural
zero case. Contingency tables with structural zero cells are called incomplete contingency
tables ([Bishop et al., 1975, Chapter 5]). From the viewpoint of Markov bases, the subtable
sum problem is a generalization of the problem concerning structural zeros. Properties
of Markov bases for incomplete tables are studied in Aoki and Takemura [2005], Huber
et al. [2006], Rapallo [2006].

This paper is organized as follows; In Section 2, we introduce the common diagonal

2



effect model as a submodel of the quasi-independence model. In Section 3, we summarize
some preliminary facts on algebraic statistics and Markov bases. Section 4 shows a Markov
basis for contingency tables with fixed row sums, column sums, and the sum of diagonal
cells. Numerical examples with some real data sets are given in Section 5. We conclude
this paper with some remarks in Section 6.

2 Quasi-Independence model and the common diag-

onal effect model for two-way contingency tables

Consider an R × C two-way contingency table x = {xij}, i = 1, . . . , R, j = 1, . . . , C,
where frequencies along the diagonal cells are relatively larger compared to off-diagonal
cells. Table 1 [Agresti, 2002, Section 10.5] shows agreement between two pathologists in
their diagnoses of carcinoma. We naturally see the tendency that two pathologist agree

Table 1: Diagnoses of carcinoma
1 2 3 4

1 22 2 2 0
2 5 7 14 0
3 0 2 36 0
4 0 1 17 10

in their diagnoses. Usually the quasi-independence model is fitted to this type of data.
In the quasi-independence model, the cell probabilities {pij} are modeled as

log pij = μ + αi + βj + γiδij , (1)

where δij is Kronecker’s delta. In (1) each diagonal cell (i, i), i = 1, . . . , min(R, C), has
its own free parameter γi. This implies that in the maximum likelihood estimation each
diagonal cell is perfectly fitted:

p̂ii =
xii

n
,

where n =
∑R

i=1

∑C
j=1 xij is the total frequency.

As a simpler submodel of the quasi-independence model we consider the null hypothesis

H : γ = γi, i = 1, . . . , min(R, C), (2)

in the quasi-independence model. We call this model a common diagonal effect model
and abbreviate it as CDEM hereafter. In CDEM the tendency of the diagonal cells is
expressed by a single parameter, rather than perfect fits to diagonal cells. We present some
numerical examples of testing CDEM against the quasi-independence model in Section 5.
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Under CDEM the sufficient statistic consists of the row sums, column sums and the
sum of the diagonal frequencies:

xi+ =
C∑

j=1

xij , i = 1, . . . , R, x+j =
R∑

i=1

xij , j = 1, . . . , C, xS =

min(R,C)∑

i=1

xii.

We write the sufficient statistic as a column vector

t = (x1+, . . . , xR+, x+1, . . . , x+C , xS)′.

We also order the elements of x lexicographically and regard x as a column vector. Then
with an appropriate matrix AS consisting of 0’s and 1’s we can write

t = ASx.

3 Preliminaries on Markov bases

In this section we summarize some preliminary definitions and notations on Markov bases
(Diaconis and Sturmfels [1998]). By now Markov bases and their uses are discussed in
many papers. See Aoki and Takemura [2005] for example.

The set of contingency tables x sharing the same sufficient statistic

Ft = {x ≥ 0 | t = ASx}

is called a t-fiber. An integer table z is a move for AS if 0 = ASz. By adding a move z to
x ∈ Ft, we remain in the same fiber Ft provided that x + z does not contain a negative
cell. A finite set of moves B = {z1, . . . , zL} is a Markov basis, if for every t, Ft becomes
connected by B, i.e., we can move all over Ft by adding or subtracting the moves from B
to contingency tables in Ft.

If z is a move then −z is a move as well. For convenience we add −z to B whenever
z ∈ B and only consider sign-invariant Markov bases in this paper. A Markov basis B is
minimal, if every proper sign-invariant subset of B is no longer a Markov basis. A move
z is called indispensable if z has to belong to every Markov basis. Otherwise z is called
dispensable.

A move z has positive elements and negative elements. Separating these elements
we write z = z+ − z−, where (z+)ij = max(zij , 0) is the positive part and (z−)ij =
max(−zij , 0) is the negative part of z. z+ and z− belong to the same fiber.

We next discuss the notion of distance reduction by a move (Aoki and Takemura [2003],
Takemura and Aoki [2005], Hara et al. [2007b]). When x + z does not contain a negative
cell, we say that z is applicable to x. z is applicable to x if and only if z− ≤ x (inequality
for each element). Given two contingency tables x, y let |x− y| =

∑
i,j |xij − yij| denote

the L1-distance between x and y. For x and y in the same fiber, we say that z reduces
their distance if z or −z is applicable to x or y and the distance |x−y| is reduced by the
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application, e.g. |x + z − y| < |x− y|. A sufficient condition for z to reduce the distance
between x and y is that at least one of the following four conditions hold:

(i) z+ ≤ x, min(z−, y) �= 0, (ii) z+ ≤ y, min(z−, x) �= 0,

(iii) z− ≤ x, min(z+, y) �= 0, (iv) z− ≤ y, min(z+, x) �= 0,

where “min” denotes element-wise minimum. We can also think of reducing the distance
by a sequence of moves from B. Clearly a finite set of moves B is a Markov basis if for
every two tables x, y from every fiber, we can reduce the distance |x − y| by a move z
or a sequence of moves z1, . . . , zk from B. We use the argument of distance reduction for
proving Theorem 1 in the next section.

We end this section with a known fact for the structural zero problem. In order to
state it we introduce two types of moves. In these moves, the non-zero elements are
located in the complement SC of S, i.e., they are in the off-diagonal cells.

• Type I (basic moves in SC for max(R, C) ≥ 4):

j j′

i +1 −1
i′ −1 +1

where i, i′, j, j′ are all distinct.

• Type II (indispensable moves of degree 3 in SC for min(R, C) ≥ 3):

i i′ i′′

i 0 +1 −1
i′ −1 0 +1
i′′ +1 −1 0

where three zeros are on the diagonal.

Lemma 1. [Aoki and Takemura, 2005, Section 5] Moves of Type I and II form a min-
imal Markov basis for the structural zero problem along the diagonal, i.e., xii = 0,
i = 1, . . . , min(R, C).

4 A Markov basis for the common diagonal effect

model

In order to describe a Markov basis for the diagonal sum problem, we introduce three
additional types of moves.

• Type III (dispensable moves of degree 3 for min(R, C) ≥ 3):

i i′ i′′

i +1 0 −1
i′ 0 −1 +1
i′′ −1 +1 0
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Note that given three distinct indices i, i′, i′′, there are three moves in the same fiber:

+1 0 −1
0 −1 +1
−1 +1 0

+1 −1 0
−1 0 +1
0 +1 −1

0 −1 +1
−1 +1 0
+1 0 −1

Any two of these suffice for the connectivity of the fiber. Therefore we can choose
any two moves in this fiber for minimality of Markov basis.

• Type IV (indispensable moves of degree 4 which are non-square free):

j j′ j′′

i +1 +1 −2
i′ −1 −1 +2

where i = j and i′ = j′, i.e., two cells are on the diagonal. Note that we also include
the transpose of this type as Type IV moves.

• Type V: (square free indispensable move of degree 4 for max(R, C) ≥ 4):

j j′ j′′ j′′′′

i +1 +1 −1 −1
i′ −1 −1 +1 +1

where i = j and i′ = j′. Type V includes the transpose of this type.

We now present the main theorem of this paper.

Theorem 1. The above moves of Types I-V form a Markov basis for the diagonal sum
problem with min(R, C) ≥ 3 and max(R, C) ≥ 4.

Proof. Let X, Y be two tables in the same fiber. If

xii = yii, ∀i = 1, . . . , min(R, C),

then the problem reduces to the structural zero problem and we can use Lemma 1. There-
fore we only need to consider the difference

X − Y = Z = {zij},
where there exists at least one i such that zii �= 0. Note that in this case there are two
indices i �= i′ such that

zii > 0, zi′i′ < 0,

because the diagonal sum of Z is zero. Without loss of generality we let i = 1, i′ = 2. We
prove the theorem by exhausting various sign patterns of the differences in other cells and
confirming the distance reduction by the moves of Types I-V. We distinguish two cases:
z12z21 ≥ 0 and z12z21 < 0.
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Case 1 (z12z21 ≥ 0): In this case without loss of generality assume that z12 ≥ 0, z21 ≥ 0.
Let 0+ denote the cell with non-negative value of Z and let ∗ denote a cell with arbitrary
value of Z. Then Z looks like

+ 0+ ∗ · · ·
0+ − ∗ · · ·
∗ ∗ ∗ · · ·
...

...
...

. . .

Note that there has to be a negative cell on the first row and on the first column. Let
z31 < 0, z13 < 0, without loss of generality. Then Z looks like

+ 0+ − · · ·
0+ − ∗ · · ·
− ∗ ∗ · · ·
...

...
...

. . .

Now we can apply a Type III move to reduce the L1 distance. This takes care of the case
z12z21 ≥ 0.

Case 2 (z12z21 < 0): Without loss of generality assume that z12 > 0, z21 < 0. Then Z
looks like

+ + ∗ · · ·
− − ∗ · · ·
∗ ∗ ∗ · · ·
...

...
...

. . .

There has to be a negative cell on the first row and there has to be a positive cell on the
second row. Without loss of generality we can let z13 < 0 and at least one of z23, z24 is
positive. Therefore Z looks like

+ + − ∗ ∗ · · ·
− − ∗ + ∗ · · ·
∗ ∗ ∗ ∗ ∗ · · ·
...

...
...

...
...

. . .

or

+ + − ∗ · · ·
− − + ∗ · · ·
∗ ∗ ∗ ∗ · · ·
...

...
...

...
. . .

(3)

These two cases are not mutually exclusive. We look at Z as the left pattern whenever
possible. Namely, whenever we can find two different columns j, j′ ≥ 3, j �= j′ such that
z1jz2j′ < 0, then we consider Z to be of the left pattern. We first take care of the case
that Z does not look like the left pattern of (3), i.e., there are no j, j′ ≥ 3, j �= j′, such
that z1jz2j′ < 0.

Case 2-1 (Z does not look like the left pattern of (3)): If there exists some j ≥ 4 such
that z1j < 0, then in view of z23 > 0 we have z1jz23 < 0 and Z looks like the left pattern
of (3). Therefore we can assume

z1j ≥ 0, ∀j ≥ 4.
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Similarly
z2j ≤ 0, ∀j ≥ 4

and Z looks like
+ + − 0+ · · · 0+
− − + 0− · · · 0−
∗ ∗ ∗ ∗ · · · ∗
...

...
...

...
...

...

Because the first row and the second row sum to zero, we have

z13 ≤ −2, z23 ≥ 2.

However then we can apply Type IV move to reduce the L1 distance.

Case 2-2 (Z looks like the left pattern of (3)): Suppose that there exists some i ≥ 3 such
that zi3 > 0. If z33 > 0, then Z looks like

+ + − ∗ ∗ · · ·
− − ∗ + ∗ · · ·
∗ ∗ + ∗ ∗ · · ·
∗ ∗ ∗ ∗ ∗ · · ·
...

...
...

...
...

. . .

Then we can apply a type III move involving

z12 > 0, z13 < 0, z22 < 0, z24 > 0, z33 < 0, z34 : arbitrary

and reduce the L1 distance. On the other hand if zi3 > 0 for i ≥ 4, then Z looks like

+ + − ∗ ∗ · · ·
− − ∗ + ∗ · · ·
∗ ∗ ∗ ∗ ∗ · · ·
∗ ∗ + ∗ ∗ · · ·
∗ ∗ ∗ ∗ ∗ · · ·
...

...
...

...
...

. . .

Then we can apply a type III move involving

z11 > 0, z13 < 0, z21 < 0, z24 > 0, zi3 > 0, zii : arbitrary

and reduce the L1 distance. Therefore we only need to consider Z which looks like

+ + − ∗ ∗ · · ·
− − ∗ + ∗ · · ·
∗ ∗ 0− ∗ ∗ · · ·
...

...
...

...
... · · ·

∗ ∗ 0− ∗ ∗ · · ·
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Similar consideration for the fourth column of Z forces

+ + − ∗ ∗ · · ·
− − ∗ + ∗ · · ·
∗ ∗ 0− 0+ ∗ · · ·
...

...
...

...
... · · ·

∗ ∗ 0− 0+ ∗ · · ·
However then because the third column and the fourth column sum to zero, we have
z23 > 0 and z14 < 0 and Z looks like

+ + − − ∗ · · ·
− − + + ∗ · · ·
∗ ∗ 0− 0+ ∗ · · ·
...

...
...

...
... · · ·

∗ ∗ 0− 0+ ∗ · · ·
Then we apply Type V move to reduce the L1 distance.

Now we have exhausted all possible sign patterns of Z and shown that the L1 distance
can always be decreased by some move of Types I-V.

Since moves of Type I, II, IV and V are indispensable, we have the following corollary.

Corollary 1. A minimal Markov basis for the diagonal sum problem with min(R, C) ≥ 3
and max(R, C) ≥ 4 consists of moves of Types I, II, IV, V and two moves of Type III for
each given triple (i, i, i′′).

5 Numerical examples

In this section with the Markov basis computed in previous sections, we will experiment
via MCMC method. Particularly, we test the hypothesis of CDEM for a given data set.

Denote expected cell frequencies under the quasi-independence model and CDEM by

m̂QI
ij = np̂QI

ij , m̂S
ij = np̂S

ij,

respectively. These expected cell frequencies can be computed via the iterative propor-
tional fitting (IPF). IPF for the quasi-independence model is explained in Chapter 5 of
Bishop et al. [1975]. IPF for the common diagonal effect model is given as follows. The
superscript k denotes the step count.

1. Set mS,k
ij = mS,k−1

ij xi+/mS,k−1
i+ for all i, j and set k = k + 1. Then go to Step 2.

2. Set mS,k
ij = mS,k−1

ij xi+/mS,k−1
i+ for all i, j and set k = k + 1. Then go to Step 3.

3. Set mS,k
ii = mS,k−1

ii xS/mS,k−1
S for all i = 1, . . . , min(R, C) and mS,k

ij = mS,k−1
ij (n −

mS,k−1
S )/(n − xS) for all i �= j. Then set k = k + 1 and go to Step 1.
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After convergence we set
m̂S

ij = mS,k
ij for all i, j.

We can initialize mS,0 by
mS,0

ij = n/(R · C) for all i, j.

As the discrepancy measure from the hypothesis of the common diagonal model, we
calculate (2×) the log likelihood ratio statistic

G2 = 2
∑

i

∑

j

xij log
m̂QI

ij

m̂S
ij

.

for each sampled table x = {xij}.
In all experiments in this paper, we sampled 10,000 tables after 8,000 burn-in steps.

Example 1. The first example is from Table 1 of Section 2. The value of G2 for the
observed table in Table 1 is 13.5505 and the corresponding asymptotic p-value is 0.003585
from the asymptotic distribution χ2

3.
A histogram of sampled tables via MCMC with a Markov basis for Table 1 is in Figure

1. We estimated the p-value 0.0028 via MCMC with the Markov Basis computed in this
paper. Therefore CDEM model is rejected at the significance level of 5%.

log likelihoo ratio
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30

Figure 1: A histogram of sampled tables via MCMC with a Markov basis computed for
Table 1. The black line shows the asymptotic distribution χ2

3.

Example 2. The second example is Table 2.12 from Agresti [2002]. Table 2 summarizes
responses of 91 married couples in Arizona about how often sex is fun. Columns represent
wives’ responses and rows represent husbands’ responses.
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Table 2: Married couples in Arizona
never/occasionally fairly often very often almost always

never/occasionally 7 7 2 3
fairly often 2 8 3 7
very often 1 5 4 9

almost always 2 8 9 14

The value of G2 for the observed table in Table 2 is 6.18159 and the corresponding
asymptotic p-value is 0.1031 from the asymptotic distribution χ2

3.
A histogram of sampled tables via MCMC with a Markov basis for Table 2 is in Figure

2. We estimated the p-value 0.1203 via MCMC with the Markov Basis computed in this
paper. Therefore CDEM model is accepted at the significance level of 5%. We also see
that χ2

3 approximates well with this observed data.
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Figure 2: A histogram of sampled tables via MCMC with a Markov basis computed for
Table 2. The black line shows the asymptotic distribution χ2

3.

Example 3. The third example is Table 1 from Diaconis and Sturmfels [1998]. Table 3
shows data gathered to test the hypothesis of association between birth day and death day.
The table records the month of birth and death for 82 descendants of Queen Victoria. A
widely stated claim is that birthday-death day pairs are associated. Columns represent the
month of birth day and rows represent the month of death day. As discussed in Diaconis
and Sturmfels [1998], the Pearson’s χ2 statistic for the usual independence model is 115.6
with 121 degrees of freedom. Therefore the usual independence model is accepted for this

11



Table 3: Relationship between birthday and death day
Jan Feb March April May June July Aug Sep Oct Nov Dec

Jan 1 0 0 0 1 2 0 0 1 0 1 0
Feb 1 0 0 1 0 0 0 0 0 1 0 2

March 1 0 0 0 2 1 0 0 0 0 0 1
April 3 0 2 0 0 0 1 0 1 3 1 1
May 2 1 1 1 1 1 1 1 1 1 1 0
June 2 0 0 0 1 0 0 0 0 0 0 0
July 2 0 2 1 0 0 0 0 1 1 1 2
Aug 0 0 0 3 0 0 1 0 0 1 0 2
Sep 0 0 0 1 1 0 0 0 0 0 1 0
Oct 1 1 0 2 0 0 1 0 0 1 1 0
Nov 0 1 1 1 2 0 0 2 0 1 1 0
Dec 0 1 1 0 0 0 1 0 0 0 0 0

data. However, when CDEM is fitted, the Pearson’s χ2 becomes 111.5 with 120 degrees of
freedom. Therefore the fit of CDEM is better than the usual independence model.

We now test CDEM against the quasi-independence model. The value of G2 for the
observed table in Table 3 is 6.18839 and the corresponding asymptotic p-value is 0.860503
from the asymptotic distribution χ2

11.
A histogram of sampled tables via MCMC with a Markov basis for Table 3 is in Fig-

ure 3. We estimated the p-value 0.8934 via MCMC with the Markov Basis computed in
this paper. There exists a large discrepancy between the asymptotic distribution and the
distribution estimated by MCMC due to the sparsity of the table.

6 Concluding remarks

In this paper we derived an explicit form of a Markov basis for the diagonal sum problem.
With this Markov basis we showed that we can easily run the conditional test of the
common diagonal effect model.

In Hara et al. [2007b] we gave a necessary and sufficient condition on the subtable
S so that the set of square-free moves of degree two forms a Markov basis for S. For a
general S it seems to be difficult to explicitly describe a Markov basis. For the diagonal
S the Markov basis in Theorem 1 turned out to be relatively simple. It would be helpful
to consider some other special type of S in order to understand Markov bases for totally
general S.

We have stated Theorem 1 for the case that S contains all the diagonal elements (i, i),
i = 1, . . . , min(R, C). Actually our proof shows that our result can be generalized to S
which is a subset of the diagonal cells. Furthermore we can relabel the rows and the
columns. Therefore the essential condition for the result in this paper is that S contains
at most one cell in each row and each column of the R × C table.
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Figure 3: A histogram of sampled tables via MCMC with a Markov basis computed for
Table 3. The black line shows the asymptotic distribution χ2

11.

Theorem 1 was stated for the case min(R, C) ≥ 3 and max(R, C) ≥ 4. For smaller
tables, we just omit moves, which can not fit into small tables. For completeness we list
these cases and give a Markov basis for each case. For avoiding triviality, we assume
min(R, C) ≥ 2.

1. 2× 2 : CDEM is the same as the saturated model and no degrees of freedom is left
for the moves

2. 2 × 3 : Type IV moves form a Markov basis.

3. 2 × C, C ≥ 4: Moves of Type I, IV and V form a Markov basis.

4. 3 × 3: Moves of Type II, III and IV form a Markov basis.
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