
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

A Weighted Kt,t-Free t-Factor Algorithm
for Bipartite Graphs

Kenjiro TAKAZAWA

(Communicated by Kazuo MUROTA)

METR 2008–07 February 2008

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

A Weighted Kt,t-Free t-Factor Algorithm

for Bipartite Graphs

Kenjiro TAKAZAWA∗†

February, 2008

Abstract

For a simple bipartite graph and an integer t ≥ 2, we consider
the problem of finding a minimum-weight t-factor under the restric-
tion that it contains no complete bipartite graph Kt,t as a subgraph.
When t = 2, this problem amounts to the minimum-weight square-free
2-factor problem in a bipartite graph, which is NP-hard. We propose,
however, a strongly polynomial algorithm for a certain case where the
weight vector is vertex-induced on any subgraph isomorphic to Kt,t.
The algorithm adapts the unweighted algorithms of Hartvigsen and
Pap, and a primal-dual approach to the minimum-cost flow problem.
The algorithm is fully combinatorial, and thus provides a dual inte-
grality theorem, which is tantamount to Makai’s theorem dealing with
maximum-weight restricted t-matchings.

1 Introduction

Let G = (V,E) be a simple undirected graph, that is, G has neither parallel
edges nor self-loops. Throughout this paper, we assume that the given
graphs are simple. For a vector b ∈ ZV

+, an edge set M ⊆ E is said to be
a b-matching if every vertex v ∈ V is incident to at most b(v) edges in M ,
and a b-factor if every vertex v ∈ V is incident to exactly b(v) edges in M .
If b(v) = t for every v ∈ V , we simply refer to b-matchings/factors as t-
matchings/factors. For instance, a 2-matching is a vertex-disjoint collection
of cycles and paths, and a 2-factor is a vertex-disjoint collection of cycles
that cover all vertices in V . If a b-factor exists in a graph, it is a maximum
b-matching.

∗Department of Mathematical Informatics, Graduate School of Information Science
and Technology, University of Tokyo, Tokyo 113-8656, Japan, and Research Insti-
tute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan. E-mail:
takazawa@misojiro.t.u-tokyo.ac.jp.

†Supported by Grant-in-Aid for JSPS Fellows.

1

Let us denote a cycle of length k by Ck. For a b-matching/factor M with
b(v) ≤ 2 for each v ∈ V , we say that M is Ck-free if M contains no cycles of
length k or less. The Ck-free 2-factor problem is to find a Ck-free 2-factor
in a given graph. Note that the case where k ≤ 2 is exactly the classical
simple 2-factor problem, which can be solved efficiently.

One important aspect of the Ck-free 2-factor problem is that it is a
relaxation of the Hamilton cycle problem. From this point of view, it is easily
seen that this problem is NP-hard when |V |/2 ≤ k ≤ |V | − 1. Moreover,
Papadimitriou showed that the problem is NP-hard when k ≥ 5 (see [1]).
On the other hand, for the case where k = 3, an augmenting path algorithm
is given by Hartvigsen [11]. The C4-free 2-factor problem is left open.

The weighted Ck-free 2-factor problem is to find a Ck-free 2-factor that
minimizes the total weight of its edges for a given weighted graph. The
problem is NP-hard when k ≥ 5, which follows from the NP-hardness of the
unweighted problem, and so is the case where k = 4 [23]. The weighted C3-
free 2-factor problem is unsettled. Polyhedral structures of Ck-free 2-factors
are studied in Cunningham and Wang [3]. Related works also appear in
[2, 14, 20].

We now focus on bipartite graphs. Note that it suffices to consider
the cases where k is even. While the C6-free 2-factor problem in bipartite
graphs is NP-hard [10], C4-free 2-factors in bipartite graphs are tractable
and studied actively. We remark that a C4-free 2-matching/factor in a
bipartite graph, which is a 2-matching/factor that does not contain C4, is
often referred to as a square-free 2-matching/factor. Since the complement
of an (n − 3)-connected bipartite graph is a square-free 2-matching, the
theory of square-free 2-matching can be applied to the vertex-connectivity
augmentation problem.

The first result on square-free 2-matchings was due to Hartvigsen [12],
who proposed a characterization of graphs that admit square-free 2-factors
and a combinatorial algorithm for finding one. This was followed by a min-
max formula by Z. Király [15]. Then Hartivgsen [13], the journal version of
[12], presented a full description of the algorithm and a constructive proof
for the min-max formula.

As for the weighted Ck-free 2-factor problem in bipartite graphs, the
NP-hardness when k ≥ 6 follows from that of the unweighted problem.
Moreover, Z. Király proved that the weighted square-free 2-factor problem
is also NP-hard (see [6]).

An attractive generalization of the square-free 2-factor problem is the
Kt,t-free t-factor problem, proposed by Frank [6]. In a bipartite graph, t-
matching/factor is said to be Kt,t-free if it contains no Kt,t as a subgraph.
Note that the case where t = 2 is exactly the square-free 2-factor problem.
Using a general framework of Frank and Jordán [7] on covering crossing
bi-supermodular functions on pairs of sets, Frank [6] provided a min-max
formula for Kt,t-free t-matchings, which extends Z. Király’s formula [15]

2

for the spacial case of t = 2. Through this approach, one can compute
the size of the maximum Kt,t-free t-matching in polynomial time by the
ellipsoid method or a combinatorial method by Fleiner [5]. Moreover, one
can find a maximum Kt,t-free t-matching combinatorially by applying Végh
and Benczúr’s algorithm for covering pairs of sets [22]. A direct approach to
this problem was done by Pap [17, 18, 19]. He gave a combinatorial proof
for Frank’s min-max formula, which implies a polynomial-time algorithm.
We remark that applying Pap’s algorithm to the case when t = 2 results in
an algorithm different from Hartvigsen’s algorithm.

The weighted Kt,t-free t-factor problem in bipartite graphs has also been
considered. As mentioned, this problem is NP-hard when t = 2. However,
Makai [16] showed a linear programming description of maximum weight
Kt,t-free t-matchings and proved its dual integrality for a certain class of
weight vectors called vertex-induced. For a weight vector w ∈ RE and a
subgraph H of G, w is said to be vertex-induced on H if there exists a func-
tion πH : V (H) → R such that w(uv) = πH(u)+πH(v) for every uv ∈ E(H).
Here, V (H) and E(H) denote the vertex set and edge set of H, respectively,
and uv denotes an edge connecting u, v ∈ V (H). The class considered by
Makai [16] is that w is vertex-induced on any subgraph isomorphic to Kt,t.
Applying the ellipsoid method to Makai’s description, one obtains a poly-
nomial algorithm for this class of weighted bipartite graphs, which could be
made strongly polynomial by Frank and Tardos’ method [8].

This paper presents a combinatorial primal-dual algorithm to find a
minimum-weight Kt,t-free t-factor in a weighted bipartite graph whose weight
vector is vertex-induced on any subgraph isomorphic to Kt,t. The primal
part of the algorithm is a variant of Hartvigsen’s and Pap’s algorithms, while
the dual part is based on the framework of a primal-dual approach to the
minimum-cost flow problem [4, 21]. The algorithm is fully combinatorial, so
the output of the algorithm is integer if the weight vector is integer. Thus,
the algorithm implies a theorem on dual integrality of an LP-formulation
for the problem, which is tantamount to Makai’s one [16]. The complexity
of the algorithm is O(tn2D), where n is the number of vertices and D is the
time to execute a shortest path algorithm with nonnegative length. Incor-
porating Fredman and Tarjan’s implementation of Dijkstra’s algorithm [9],
we get a strongly polynomial complexity O(tn2m + tn3 log n), where m is
the number of edges.

This paper is organized as follows. Section 2 describes a maximum-
cardinality square-free 2-matching algorithm, and Section 3 extends it to a
minimum-weight square-free 2-factor algorithm. Section 4 provides a fur-
ther extension of the algorithm to the weighted Kt,t-free t-factor problem.
Finally, Section 5 discusses the relation between minimum-weight Kt,t-free
t-factors and maximum-weight Kt,t-free t-matchings.

Before closing this section, let us prepare some notations and definitions

3

used in the following sections. Let G = (V,E) be an undirected graph with
vertex set V and edge set E. An edge connecting u, v ∈ V is denoted by uv.
For a vertex v ∈ V , δv ⊆ E denotes the set of edges incident to v. For Z ⊆ V ,
the subgraph induced by Z is denoted by G[Z] = (Z,E[Z]), that is, E[Z] =
{uv | u, v ∈ Z, uv ∈ E}. For a subgraph H of G, V (H) and E(H) denote the
vertex set and edge set of H, respectively, i.e., H = (V (H), E(H)). A cycle
is a subgraph ({v1, . . . , vk}, {e1, . . . , ek}) where vi 6= vj if i 6= j, ei = vivi+1

for i = 1, . . . , k − 1 and ek = vkv1. A cycle consisting of k edges is denoted
by Ck.

When we denote a graph by G = (U, V ; E), we mean that G is bipartite,
that is, the vertex set and edge set of G are U ∪ V and E, respectively, and
E[U] and E[V] are empty. For subgraph H of G, U(H) (resp. V (H)) denotes
the set of vertices in U (resp. V) that belong to H. A complete bipartite
graph Ks,t is a simple bipartite graph (U, V ; E) with |U | = s, |V | = t and
E = {uv | u ∈ U , v ∈ V }. Recall that K2,2 is isomorphic to C4, and is often
called a square. For a subgraph H of G, a component in H isomorphic to
K2,2 is called a square-component and the number of square-components in
H is denoted by c(H). For a bipartite graph G, let St denote the family of
all its subgraphs isomorphic to Kt,t. We often abbreviate S2 as S.

For a directed graph G = (V,A) with vertex set V and edge set A, we
denote an edge e from u to v by uv, as far as it causes no confusion whether e
is directed or undirected. For e = uv ∈ A, the initial and terminal vertex of
e are denoted by ∂+e and ∂−e, respectively, that is, ∂+e = u and ∂−e = v.
A path is a subgraph ({v1, . . . , vk}, {e1, . . . , ek−1}) where vi 6= vj if i 6= j
and ei = vivi+1 for i = 1, . . . , k − 1.

For two sets F1, F2 ⊆ E, the symmetric difference (F1 \ F2) ∪ (F2 \ F1)
is denoted by F14F2. For a vector x ∈ RE and F ⊆ E, define x(F) =∑

e∈F x(e).

2 A Maximum Square-Free 2-Matching Algorithm

This section describes an algorithm to find a maximum square-free 2-matching
in bipartite graphs. The algorithm is based on algorithms of Hartvigsen [12,
13] and Pap [17, 18, 19], but different from both. Our algorithm uses the
shortest augmenting path, whereas Pap’s one does not involve the length
of augmenting paths. Using the shortest path yields some simplicity, espe-
cially in the shrinking procedure, which makes the algorithm suitable for a
weighted extension.

Let G = (U, V ; E) be a bipartite graph and M ⊆ E be a square-free 2-
matching in G. First, construct an auxiliary directed graph GM = (U, V ; A)
in the following manner. Define the directed edge set A by

A = {uv | u ∈ U , v ∈ V , uv ∈ E \ M} ∪ {vu | v ∈ V , u ∈ U , uv ∈ M}.

4

u1 v1

v2 u2

uS vS

P

Figure 1: Shrinking of a square (bold line : M -edge).

Where it causes no confusion, we identify the undirected edge uv in G and
the directed edge uv (or vu) in GM . We also define two distinguished sub-
sets U◦ ⊆ U and V ◦ ⊆ V by

U◦ = {u | u ∈ U , |δu ∩ M | < 2}, V ◦ = {v | v ∈ V , |δv ∩ M | < 2}.

Then, find a shortest path P from U◦ to V ◦ and consider the edge
set M ′ = M4E(P). Observe that M ′ is a 2-matching with |M ′| = |M |+ 1.
Hence, if M ′ is square-free, then M ′ is a larger square-free 2-matching. We
refer to the procedure to obtain M ′ as an augmentation.

What if, however, M ′ contains squares? Suppose M4E(P) contains a
square S. Since P is the shortest U◦-V ◦ path, we have that |M ∩E(S)| = 3,
a detailed discussion of which will appear in Proposition 2.1. Denote U(S) =
{u1, u2}, V (S) = {v1, v2} and {u1v1} = E(P) ∩ E(S) (see Figure 1). Then,
what we do is to “shrink” S. Identify u1 and u2 to obtain a new vertex uS ,
and v1 and v2 to obtain a new vertex vS . Then, delete all edges in E(S)
and connect uS and vS by an M -edge. If an edge in E \ E(S) had been
incident to u1 or u2 (resp. v1 or v2), the edge is incident to uS (resp. vS)
in the resulting graph. We allow parallel edges to appear in this procedure.
If an edge had belonged to M , it also belongs to M in the new graph, and
otherwise it does not. We denote the resulting graph by G̃ = (Ũ , Ṽ ; Ẽ) and
refer to the new M -edge uSvS as a shrunk square. Note that it follows from
|M ∩ E(S)| = 3 that the number of M -edges in the parallel edges incident
to uS (or vS) is at most one, so M remains simple whereas G̃ may not. In
addition, the new M is a 2-matching in G̃ and may contain a square that
includes shrunk squares.

If more than one square appears in M4E(P), we shrink the square
which is “closest” to U◦. That is, we shrink the square whose non-M -edge
appears the first in P . We refer to the procedure to obtain a new graph and
2-matching as Shrink(M,P).

Then, we recursively execute the above procedures. Here, we have to
take care that the U◦-V ◦ path does not contain shrunk squares. In order to
achieve this, we search a U◦-V ◦ path in a subgraph G̃′

M of G̃M obtained by

5

uS vS

v2 u2

u1 v1

Figure 2: Expanding of a square (bold line : M -edge).

deleting all the shrunk squares. Then, set b ∈ {1, 2}Ũ∪Ṽ by

b(v) =

{
1 (v is an end vertex of a shrunk square deleted from G̃M),
2 (otherwise),

(1)

and modify the definition of U◦ and V ◦ by

U◦ = {u | u ∈ Ũ , |δu ∩ M | < b(u)}, V ◦ = {v | v ∈ Ṽ , |δv ∩ M | < b(v)}.
(2)

This means that what we deal with is a square-free b-matching M in G̃′
M .

Thus, one would see that the shrunk squares get neither incident to each
other nor nested.

After an augmentation, we expand every shrunk squares to obtain the
original bipartite graph G. Let uSvS be a shrunk square that is obtained by
shrinking S with U(S) = {u1, u2} and V (S) = {v1, v2}. Now, replace the
vertices uS , vS and edge uSvS by K2,2 induced by U(S) ∪ V (S). An edge
incident to uS or vS is connected to a vertex in U(S) ∪ V (S) to which the
edge had been incident before shrinking S. Next, determine M -edges. An
M -edge before expanding S also belongs to M . Then, pick up three edges
in E(S) to be in M so that M forms a 2-matching. Figure 2 illustrates an
example of expanding a shrunk square. By expanding every shrunk square,
we obtain the original bipartite graph G and a new square-free 2-matching M
of one larger size.

The procedures are summarized below.

Algorithm Maximum Square-Free 2-Matching

Step 0: Set M = ∅ and G̃ = G.

Step 1: If |M | = 2min{|U |, |V |}, then halt. (M is a square-free 2-factor.)

Step 2: Construct an auxiliary directed graph G̃′
M . In G̃′

M , define b by (1)
and search for a shortest path from U◦ to each vertex. Let R ⊆ Ũ ∪ Ṽ
be the set of the reachable vertices from U◦. If V ◦ ∩ R = ∅, then
expand each shrunk square and halt. (M is a maximum square-free
2-matching.)

Step 3: Let P be the shortest path from U◦ to V ◦. If M4Ẽ(P) contains
a square in G̃′

M , then execute Shrink(M,P) and go to Step 2.

6

Step 4: Replace M by M4Ẽ(P) and expand every shrunk square. Then,
go to Step 1.

Here, we show that if M4Ẽ(P) contains a square S then |M∩Ẽ(S)| = 3.

Proposition 2.1. Let S be a square in G̃′
M that appears in M4Ẽ(P).

Then, it holds that |M ∩ Ẽ(S)| = 3.

Proof. Since Ẽ(S) ⊆ M4Ẽ(P), the edges in Ẽ(S) can be partitioned into
two parts, ẼM = M∩Ẽ(S) and ẼP = Ẽ(P)∩Ẽ(S). We prove that |ẼP | = 1.

As M is square-free in G̃′
M , we have that |ẼP | ≥ 1. As P visits each

vertex at most once and the edges of M and E \M lie alternately in P , we
have that |ẼP | ≤ 2. Hence, it suffices to show that |ẼP | 6= 2.

Denote U(S) = {u1, u2} and V (S) = {v1, v2}. To the contrary we as-
sume, without loss of generality, that ẼP = {u1v1, u2v2} and u1v1 appears
earlier than u2v2 in P . Let us denote the subpath of P which is from the
initial vertex of P to v1 by P1, and which is from u2 to the terminal vertex of
P by P2. Here, connecting P1, u2v1 and P2, we obtain another U◦-V ◦ path,
which is shorter than P . This contradicts that P is the shortest U◦-V ◦ path
in G̃′

M .

Now, what is left is to prove that M is maximum when the algorithm
halts in Step 2. The following is a min-max formula for square-free b-
matchings.

Theorem 2.2 (Z. Király [15]). Let G = (U, V ; E) be a bipartite graph and
b ∈ {0, 1, 2}U∪V . Then, the size of the maximum square-free b-matching in
G is equal to

min
Z⊆U∪V

{b(U ∪ V \ Z) + |E[Z]| − c(G[Z])}.

Let us view the weak duality and equality conditions for the formula.
For G = (U, V ; E) and b ∈ {0, 1, 2}U∪V , define a function fG,b : 2U∪V → R
by

fG,b(Z) = b(U ∪ V \ Z) + |E[Z]| − c(G[Z]).

Let M be a square-free b-matching and Z ⊆ U ∪V . For Z, partition M into
three sets M1,M2,M3, where

M1 = M ∩ E[Z], M2 = M ∩ E[(U ∪ V) \ Z], M3 = M \ (M1 ∪ M2).

Then, it follows that

|M1| ≤ |E[Z]| − c(G[Z]), 2|M2| + |M3| ≤ b(U ∪ V \ Z). (3)

Hence, it holds that

|M | ≤ |M1| + 2|M2| + |M3| ≤ fG,b(Z). (4)

By (3), we have the following conditions for (4) to hold with equality.

7

uS vS

vSuS

e

uS′′ vS′′

Figure 3: Reachability of uS (bold line : M -edge).

Condition (a). In G[Z], every edge except for one edge in each square-
component belongs to M .

Condition (b). M2 = ∅.

Condition (c). ∀v ∈ (U ∪ V) \ Z, |M3 ∪ δv| = b(v).

In what follows, we abbreviate fG,b as fG, since b is always defined by (1).
We prove that there exists Z ⊆ U∪V such that |M | = fG(Z), which yields a
verification of our algorithms and an alternative proof for Theorem 2.2. The
argument below is an adaptation of the combinatorial proof for Theorem 2.2
of Pap [17, 18, 19] to our algorithm.

The following is a key observation to our verification.

Proposition 2.3. Let S ′ = {S | S ∈ S, S is shrunk into uSvS in G̃ }. Then,
for uS of S ∈ S ′, G̃′

M has a path from U◦ to uS consisting of edges that was
in a shortest path used in shrinking a square S′ ∈ S ′ and closer to U◦ than
uS′.

Proof. The proof is by induction on the number of shrinkings. The state-
ment is obvious immediately after shrinking S.

Now, suppose P is a path from U◦ to uS that satisfies the condition in
the statement and consider subsequent shrinkings. A shrinking that does
not delete any edge in Ẽ(P) does not matter. If a shrinking deletes an
edge e ∈ Ẽ(P), then it holds that e ∈ M . For, if e 6∈ M , a square Se appears
when e turns to be an M -edge by Proposition 2.1, which contradicts that e
had been in a shortest path used in shrinking S′ ∈ S ′ and closer to U◦ than
uS′ . Let e ∈ M ∩ Ẽ(P) be deleted in a subsequent shrinking (an example is
shown in Fig. 3). Here, ∂−e ∈ Ũ is shrunk into uS′′ , which is reachable from
U◦. On the other hand, uS is reachable from uS′′ by tracing the subpath of
P that had connected ∂−e and uS . Therefore, the statement is maintained
in shrinking S′′.

Suppose no U◦-V ◦ path is found in Step 2 and denote the current
graph G̃′

M by G0 = (U0, V0; E0). Recall that we deleted all the shrunk

8

squares from G̃M to obtain G̃′
M . Let R ⊆ U0 ∪ V0 be the set of vertices

reachable from U◦ in G̃′
M , and define Z0 = (U0 ∩ R) ∪ (V0 \ R). For Z0,

partition M into three sets M1,M2,M3, where

M1 = M ∩ E[Z0], M2 = M ∩ E[(U0 ∪ V0) \ Z0], M3 = M \ (M1 ∪ M2).

Then, by the definition of Z0, it holds that

|M1| = |E[Z0]|, |M2| = 0, M3 = b(U0 ∪ V0 \ Z0), c(G[Z0]) = 0,

and hence |M | = fG0(Z0). By (4), it follows that M is the maximum square-
free b-matching in G0 and Z0 minimizes fG0 .

Next, consider to expand a shrunk square. Let Z∗
0 ⊆ U0∪V0 be a minimal

minimizer of fG0 . That is, f(Z∗
0) < f(Z ′) holds for all Z ′ (Z∗

0 . Let uSvS be
a shrunk square in G0 and denote the bipartite graph obtained by expanding
uSvS by G1 = (U1, V1; E1). Consider whether uS , vS ∈ Z∗

0 or not.
By Proposition 2.3, G0 has a path P from U◦ to uS which consists of

edges that was in a shortest path used in shrinking a square and closer
to U◦ than the square. Denote the initial vertex of P by u0. Since u0 ∈
U◦, Condition (c) implies that u0 ∈ Z∗

0 . Moreover, carefully looking at
Conditions (a) and (b), we have that U0(P) ⊆ Z∗

0 and V0(P) ⊆ (U0∪V0)\Z∗
0 ,

which implies that uS ∈ Z∗
0 .

Therefore, we have two cases: vS ∈ Z∗
0 or not.

Case 1 (vS ∈ Z∗
0). Define Z1 ⊆ U1 ∪ V1 by Z1 = (Z∗

0 \ {uS , vS}) ∪ U(S) ∪
V (S). Then, it is easily seen that

b((U1 ∪ V1) \ Z1) = b((U0 ∪ V0) \ Z∗
0), E1[Z1] = E0[Z∗

0] + 4.

Moreover, it holds that c(G1[Z1]) = c(G0[Z∗
0]) + 1. For, by Condi-

tion (a) no edge in E[Z∗
0] is incident to uS , and if an edge in E0[Z∗

0]
is incident to vS then Z∗

0 \ {vS} also satisfies Conditions (a)–(c) and
minimizes fG0 , which contradicts the minimality of Z∗

0 . Hence, the
subgraph induced by U1(S) ∪ V1(S) is a square-component in G1[Z1],
which implies that c(G1[Z1]) = c(G0[Z∗

0]) + 1.
Therefore, we have that fG1(Z1) = fG0(Z

∗
0) + 3. Since the size of

M increases by three in expanding a shrunk square, it holds that
|M | = fG1(Z1). Thus, it follows from (4) that M is a maximum
square-free b-matching in G1 and Z1 is a minimizer of fG1 .

Case 2 (vS 6∈ Z∗
0). Define Z1 ⊆ U1∪V1 by Z1 = (Z∗

0 \{uS})∪U(S). Then,
it holds that

b((U1 ∪ V1) \ Z1) = b((U0 ∪ V0) \ Z∗
0) + 3,

E1[Z1] = E0[Z∗
0], c(G1[Z1]) = c(G0[Z∗

0]),

and hence |M | = fG1(Z1). Then, by (4), we have that M is a maximum
square-free b-matching in G1 and Z1 is a minimizer of fG1 .

9

Applying the above argument repeatedly, we obtain a square-free 2-
matching M in the original graph G and Z ⊆ U ∪V such that |M | = fG(Z).

3 A Weighted Square-Free 2-Factor Algorithm

This section deals with the weighted square-free 2-factor problem. Let (G,w)
be a weighted bipartite graph with G = (U, V ; E) and w ∈ RE

+. Throughout
this section, we assume that |U | = |V |. We also assume that w is vertex-
induced on any square. That is, we assume that, for any square S with
U(S) = {u1, u2} and V (S) = {v1, v2}, there exists a potential function πS :
U(S)∪ V (S) → R such that w(uivj) = πS(ui) + πS(vj) for any i, j ∈ {1, 2}.
In other words, it holds that w(u1v1) + w(u2v2) = w(u1v2) + w(u2v1). We
propose an algorithm to find a square-free 2-factor M that minimizes w(M)
if exists, or otherwise determine that no square-free 2-factor exists in G.
The algorithm, based on the primal-dual framework of the minimum-cost
flow algorithm [4, 21], extends Algorithm Maximum Square-Free 2-
Matching.

Let x ∈ RE . The following is a linear programming relaxation of an
integer program for the minimum-weight square-free 2-factor problem:

(P) minimize wx

subject to x(δv) = 2 (∀v ∈ U ∪ V),
x(E(S)) ≤ 3 (∀S ∈ S),
0 ≤ x(e) ≤ 1 (∀e ∈ E).

One would see that the incidence vector of a square-free 2-factor is a feasible
solution for (P). In what follows, we often identify an edge set M and its
incidence vector x.

Consider the dual problem of (P). Let p ∈ RU∪V , q ∈ RE and r ∈ RS .
The dual problem is given by

(D) maximize 2(p(U) − p(V)) − q(E) − 3r(S)

subject to p(u) − p(v) − q(e) −
∑

S : e∈E(S)

r(S) ≤ w(e) (∀e = uv ∈ E),

q, r ≥ 0.

The complementary slackness conditions of (P) and (D) are

x(e) > 0 ⇒ p(u) − p(v) − q(e) −
∑

S : e∈E(S)

r(S) = w(e), (6)

q(e) > 0 ⇒ x(e) = 1, (7)
r(S) > 0 ⇒ x(E(S)) = 3. (8)

10

In what follows, we present an algorithm to find feasible solutions for
(P) and (D) which satisfy (6)–(8) by extending Algorithm Maximum
Square-Free 2-Matching. Roughly speaking, we maintain a square-
free 2-matching M , construct an auxiliary directed graph G̃M , search for a
U◦-V ◦ path P in its subgraph G̃′

M , and then augment M by substituting
M4Ẽ(P) for M or shrink a square. In these procedures, we also take dual
solutions into account. In particular, a significant difference from Algo-
rithm Maximum Square-Free 2-Matching is that we do not expand a
shrunk square uSvS after an augmentation if r(S) > 0, and such a shrunk
square is used in the subsequent searching for a U◦-V ◦ path.

Now, let us consider the details. Let G̃M = (Ũ , Ṽ ; A) be an auxiliary
directed graph, which may have resulted from repeated shrinking and ex-
panding of squares. Recall that the M -edges (including all shrunk squares)
are oriented in the direction from Ṽ to Ũ , and other edges in the opposite
direction. For G̃M , a length function l : A → R is defined by

l(e) =

w(e) − p(u) + p(v) (e 6∈ M and corresponds to uv ∈ E),
−w(e) + p(u) − p(v) (e ∈ M and corresponds to uv ∈ E),
r(S) (e is a shrunk square uSvS).

Remark that p is defined on U ∪ V , the vertex set of the original bipartite
graph G, while l is defined on A, the edge set of G̃M .

In the auxiliary graph G̃M , we establish the following optimality crite-
rion.

Theorem 3.1. Let M be a 2-factor in G̃M such that each square in M
contains shrunk squares, and let p ∈ RU∪V and r ∈ RS . If the following
(9)–(11) hold, then we can expand M to obtain a minimum-weight square-
free 2-factor in (G,w) and determine q so that (p, q, r) forms an optimal
solution for (D):

r ≥ 0 and r(S) > 0 only if S is shrunk; (9)
∀e ∈ A, l(e) ≥ 0; (10)
∀shrunk square uSvS, ∀e = uv ∈ E(S), p(u) − p(v) − r(S) = w(e). (11)

Proof. We prove the theorem by showing how to construct feasible solutions
for (P) and (D) that satisfy (6)–(8).

Let e = uv ∈ E be an edge not shrunk in G̃M . If e 6∈ M , then by (10)
we have that l(e) = w(e) − p(u) + p(v) ≥ 0. Now, set q(e) = 0 to have (6)
and (7) hold in e. If e ∈ M , then l(e) = −w(e) + p(u) − p(v) ≥ 0 by (10).
Set q(e) = l(e), which gets (6) and (7) to hold in e.

Let e = uv ∈ E belong to E(S) of a shrunk square uSvS in G̃M . For
such e, set q(e) = 0. Then, by (11), we have that (6) and (7) hold in e
regardless whether x(e) = 0 or x(e) = 1 after expanding S.

11

Now we have determined q(e) on every e ∈ E. From the above construc-
tion, one would appreciate the feasibility of (p, q, r) for (D). Moreover, by
expanding all shrunk squares in G̃M , we obtain a square-free 2-factor in G, a
feasible solution for (P). For this pair of solutions for (P) and (D), it follows
from (9) that (8) holds. Therefore, (6)–(8) hold for this pair of solutions for
(P) and (D).

Now, let us describe the minimum-weight square-free 2-factor algorithm.
The algorithm keeps a square-free 2-matching M and a dual solution (p, r)
that satisfy (9)–(11), and increases |M | until it attains the maximum.

Algorithm Minimum-Weight Square-Free 2-Factor

Step 0: Set M = ∅, p = 0, r = 0 and G̃ = G.

Step 1: If |M | = 2|Ũ |, then expand every shrunk square and halt. (M is a
minimum-weight square-free 2-factor.)

Step 2: Construct an auxiliary directed graph G̃M = (Ũ , Ṽ ; A) and delete
shrunk squares that are created after the latest augmentation to obtain
a new graph G̃′

M . Then, in G̃′
M , define b by (1) and search for a shortest

path with respect to (w.r.t.) l from U◦ to each vertex. Let R ⊆ Ũ ∪ Ṽ
be the set of the reachable vertices from U◦ and define d : Ũ ∪ Ṽ → R
by

d(v) =

{
distance from U◦ to v w.r.t. l (v ∈ R),
max{d(v) | v ∈ R} (otherwise).

If V ◦ ∩ R = ∅, then halt. (No square-free 2-factor exists.)

Step 3: Let P be the shortest path (w.r.t l) from U◦ to V ◦. If more than
one shortest path exists, select a path with the minimum number of
edges. If P contains a shrunk square, apply Dual-Update (described
below), expand every shrunk square in P , and then go to Step 2.

Step 4: If M4Ẽ(P) contains a square without shrunk squares, apply Dual-
Update, execute Dual-Shrink(M,P) (described below), and then go to
Step 2.

Step 5: Apply Dual-Update, replace M by M4Ẽ(P), and expand every
shrunk square S with r(S) = 0. Then, go to Step 1.

We remark that a shrunk square uSvS with r(S) > 0 is not expanded in
Step 5, and belongs to G̃′

M after the augmentation.

12

In the procedure Dual-Update, we change the dual solution as follows:

p(v) := p(v) − d(v) (v ∈ U ∪ V),

r(S) :=

{
r(S) − d(uS) + d(vS) (S is shrunk),
r(S) (otherwise),

where d(v) for a vertex v ∈ (U ∪V)\ (Ũ ∪ Ṽ) that is shrunk into vS ∈ Ũ ∪ Ṽ
is defined by d(vS).

The procedure Dual-Shrink(M,P) is twofold: update of p in two ver-
tices; and Shrink(M,P). We have that M4Ẽ(P) contains squares in G̃′

M .
For such a square S, it holds that |M ∩ Ẽ(S)| = 3, which is proven later
(Proposition 3.2). Let S be the nearest one from U◦ among the squares in
M4Ẽ(P), and denote Ũ(S) = {u1, u2} and Ṽ (S) = {v1, v2}. Without loss
of generality, we assume u1v1 ∈ Ẽ(P) \ M . Then, update the values p(u2)
and p(v2) by

p(u2) := p(u2) − l(u2v1), p(v2) := p(v2) + l(u1v2),

and call Shrink(M,P).
Now, let us confirm the validity of the algorithm. Note that (9)–(11)

hold at the beginning of the algorithm. We prove that the conditions are
maintained throughout the algorithm.

Proposition 3.2. Throughout the algorithm, the following (i) and (ii) hold:

(i) l(e) ≥ 0 for each edge e in G̃′
M ,

(ii) if a square S without shrunk squares appears in M4Ẽ(P), it holds
that |M ∩ Ẽ(S)| = 3.

Proof. We prove that (ii) holds under the assumption of (i), and (i) is main-
tained when (ii) holds. Then, since (i) holds at the beginning of the algo-
rithm, (i) and (ii) inductively hold throughout the algorithm.

Let S be a square without shrunk squares such that Ẽ(S) ⊆ M4Ẽ(P).
Denote Ũ(S) = {u1, u2}, Ṽ (S) = {v1, v2}, and ẼP = Ẽ(P) ∩ Ẽ(S). By the
argument in the proof for Proposition 2.1, it suffices to show that |ẼP | 6= 2
in order to prove (ii).

Assume to the contrary that ẼP = {u1v1, u2v2} and u1v1 appears earlier
than u2v2 in P . Then, it holds that

∑
e∈Ẽ(S) l(e) = 0 since w is vertex-

induced on S. Hence, it follows from (i) that l(e) = 0 for all e ∈ Ẽ(S).
Now, as is described in the proof for Proposition 2.1, we have another U◦-
V ◦ path P ′, which is obtained by taking v1u2 as a shortcut for P . It follows
from (i) and l(v1u2) = 0 that P ′, which has fewer edges than P , is no longer
than P w.r.t. l. This contradicts the choice of P .

Next, we prove that (i) is maintained under the assumption of (ii). Con-
sider Dual-Update. Pick up a directed edge e ∈ A. By the definition of d, it

13

holds that d(∂−e) ≤ d(∂+e) + l(e). If e = uv is in the direction from Ũ to
Ṽ , the shift of l(e) in Dual-Update is −(−d(u))− d(v) = d(∂+e)− d(∂−e) ≥
−l(e). If e = vu is not shrunk and in the direction of Ṽ to Ũ , i.e., e ∈ M ,
then the shift of l(e) is −d(u) − (−d(v)) = −d(∂−e) + d(∂+e) ≥ −l(e). Fi-
nally, if e = vSuS is a shrunk square, the shift of l(e) is −d(uS) + d(vS) =
−d(∂−e) + d(∂+e) ≥ −l(e). Therefore, in any case we have that l(e) ≥ 0
after Dual-Update. Moreover, for a shortest U◦-V ◦ path P , the above in-
equalities hold with equality for each e ∈ Ẽ(P) and hence l(e) = 0 after
Dual-Update. Thus, in an augmentation using P , in which l(e) changes to
−l(e) for e ∈ Ẽ(P), (i) is maintained.

Consider Dual-Shrink(M,P). Since (ii) holds, the procedure Dual-Shrink(M,P)
is valid. In Dual-Shrink(M,P), l changes only on the edges in δu2∪δv2. One
would easily see that l(u1v2) and l(u2v1) become zero by the update of p(u2)
and p(v2). As we have applied Dual-Update just before Dual-Shrink(M,P),
we have l(u1v1) = 0. Moreover, since w is vertex-induced on S, it holds
that l(u2v2) − l(u1v1) = l(u1v2) + l(u2v1), which implies that l(u2v2) also
becomes zero. Meanwhile, for an edge e ∈ (δu2 ∪ δv2) \ E(S), we have that
e 6∈ M . Hence, the shift of l(e) is equal to l(u2v1) for e ∈ δu2 and equal to
l(u1v2) for e ∈ δv2. Therefore, l(e) ≥ 0 is kept for every edge in δu2 ∪ δv2 in
Dual-Shrink(M,P).

The above argument induces the following corollaries.

Corollary 3.3. After Dual-Update, l(e) = 0 for every edge e ∈ Ẽ(P).

Corollary 3.4. When we shrink a square S, l(e) = 0 for every e ∈ Ẽ(S).

It follows from Corollary 3.4 that (11) holds for S when we shrink S,
which is the purpose of the update of p(u2) and p(v2) in Dual-Shrink(M,P).

Proposition 3.5. Let uSvS be a shrunk square created after the latest aug-
mentation. Then, d(uS) = 0 until the next augmentation.

Proof. It follows from Proposition 2.3 that uS is reachable from U◦ in G̃′
M by

traversing edges that had been in a shortest U◦-V ◦ path. By Corollary 3.3,
such an edge e has its length l(e) = 0 in Dual-Update executed when e ∈
Ẽ(P), and l(e) remains to be zero until the next augmentation.

Proposition 3.6. Throughout the algorithm, (9)–(11) hold.

Proof. Condition (9). Since we change r(S) only if S is shrunk and ex-
pand uSvS only if r(S) = 0, it holds that r(S) = 0 for every non-shrunk
square S. Moreover, we have seen in the proof for Proposition 3.2
that r(S) = l(uSvS) ≥ 0 for every shrunk square uSvS in G̃′

M . As
for a shrunk square not in G̃′

M , in other words created after the latest
shrunk, d(uS) = 0 by Proposition 3.5, which implies r(S) ≥ 0 after
a Dual-Update. In Dual-Shrink(M,P), r(S) is not changed since Dual-
Shrink(M,P) is executed for a square containing no shrunk square.

14

Condition (10). Already proved.

Condition (11). By Corollary 3.4, (11) holds when S is shrunk. Consider
the shift of p(u)− p(v)− r(S) in subsequent Dual-Update for e = uv ∈
E(S). The variables are changed as follows:

p(u) := p(u) − d(uS), p(v) := p(v) − d(vS),
r(S) := r(S) − d(uS) + d(vS).

Then, p(u) − p(v) − r(S) does not change in Dual-Update. In Dual-
Shrink(M,P), the variables concerned are not changed.

By Theorem 3.1 and Proposition 3.6, if the algorithm halts in Step 1,
then we have a minimum-weight square-free 2-factor M and a dual optimal
solution. If the algorithm halts in Step 2, G has no square-free 2-factor.
This is shown by a similar argument to that in Section 2.

Let us discuss the complexity of the algorithm. Recall that |U ∪ V | = n
and |E| = m. The following is an easy observation, but plays a key role in
analyzing the complexity.

Proposition 3.7. A shrunk square created in Step 4 is not expanded until
the next augmentation.

Proof. We search a U◦-V ◦ path P in G̃′
M , which does not contain shrunk

squares created after the latest augmentation, and a shrunk square expanded
by the next augmentation is contained in P .

The bottleneck part of the algorithm lies in Step 2, determining the
distance from U◦ to every vertex. It follows from Proposition 3.2 that this
can be computed by a shortest path algorithm with nonnegative length. By
Proposition 3.7, we apply a shortest path algorithm O(n) times between
augmentations. Since augmentations happen at most n times throughout
the algorithm, the total complexity of the algorithm is O(n2D), where D
is the time to execute a shortest path algorithm with nonnegative length.
Among a number of implementations of such an algorithm, incorporating
Fredman and Tarjan’s version of Dijkstra’s algorithm [9], we get a strongly
polynomial complexity O(n2m + n3 log n).

Theorem 3.8. Algorithm Minimum-Weight Square-Free 2-Factor
runs in O(n2m + n3 log n) time.

We should remark here that Algorithm Minimum-Weight Square-
Free 2-Factor is fully combinatorial, that is, it consists of only addition,
subtraction, and comparison. Thus, the algorithm leads to the following
integrality theorem.

15

Theorem 3.9. Let (G,w) be a weighted bipartite graph such that G admits a
square-free 2-factor and w ∈ RE

+ is integer and vertex-induced on any square.
Then, the linear program (P) has an integral optimal solution. Moreover,
the dual problem (D) also has an integral optimal solution (p, q, r) such that
the elements in {S | S ∈ S, r(S) > 0} are pairwise disjoint.

4 Extension to Kt,t-Free t-Factors

We can naturally extend Algorithm Minimum-Weight Square-Free
2-Factor to the minimum-weight Kt,t-free t-factor problem. Let (G, w) be
a weighted bipartite graph with G = (U, V ; E) and w ∈ RE

+. Assume that
|U | = |V | and w is vertex-induced on any Kt,t in G.

Let x ∈ RE , p ∈ RU∪V , q ∈ RE and r ∈ RSt . The following is a linear
programming relaxation of an integer program for the minimum-weight Kt,t-
free t-factor problem:

(Pt) minimize wx

subject to x(δv) = t (∀v ∈ U ∪ V),

x(E(S)) ≤ t2 − 1 (∀S ∈ St),
0 ≤ x(e) ≤ 1 (∀e ∈ E).

The dual problem of (Pt) is

(Dt) maximize t(p(U) − p(V)) − q(E) − (t2 − 1)r(St)

subject to p(u) − p(v) − q(e) −
∑

S : e∈E(S)

r(S) ≤ w(e) (∀e = uv ∈ E),

q, r ≥ 0.

We describe an algorithm for the minimum-weight Kt,t-free t-factor prob-
lem by mentioning the differences from Algorithm Minimum-Weight
Square-Free 2-Factor. First, let us remark Dual-Shrink(M,P). As an
extension of Proposition 3.2, we have the following.

Proposition 4.1. Throughout the algorithm, the following (i) and (ii) hold:

(i) l(e) ≥ 0 for each edge e in G̃′
M ,

(ii) if a Kt,t, denoted by S, appears in M4Ẽ(P), then |M∩Ẽ(S)| = t2−1.

Let S be a Kt,t in M4Ẽ(P) closest from U◦. Denote Ũ(S) = {u1, . . . , ut}
and Ṽ (S) = {v1, . . . , vt}, and suppose u1v1 6∈ M . We update the dual
valuable as follows:

p(ui) := p(ui) − l(uiv1), p(vi) := p(vi) + l(u1vi) (i = 2, . . . , t).

16

Since w is vertex-induced on S, we have l(e) = 0 for every e ∈ Ẽ(S) by this
update.

Then, we shrink S in the following manner. Identify the vertices Ũ(S)
to obtain a new vertex uS , and Ṽ (S) to obtain a new vertex vS . Delete all
edges in Ẽ(S) and connect uS and vS by an M -edge. If an edge in Ẽ \ Ẽ(S)
had been incident to Ũ(S) (resp. Ṽ (S)), the edge is incident to uS (resp.
vS) in the resulting graph. If an edge had belonged to M , it also belongs
to M in the new graph, and otherwise it does not. We refer to the new
M -edge uSvS as a shrunk Kt,t.

Next, in an auxiliary directed graph G̃′
M , the vector b is defined by

b(v) =

1 (v is an end vertex of a shrunk Kt,t deleted from G̃M),
2 (v is an end vertex of a shrunk Kt,t in G̃′

M),
t (otherwise).

(12)

Then, U◦ and V ◦ are determined by (2) according to (12).
Now, we are ready to present a full description of an algorithm to find a

minimum-weight Kt,t-free t-factor.

Algorithm Minimum-Weight Kt,t-Free t-Factor

Step 0: Set M = ∅, p = 0, r = 0 and G̃ = G.

Step 1: Let k be the number of shrunk Kt,t in G̃. If |M | = 2k + t(|Ũ | − k),
then expand every shrunk Kt,t and halt. (M is a minimum-weight
Kt,t-free t-factor.)

Step 2: Construct an auxiliary directed graph G̃M = (Ũ , Ṽ ; A). In G̃M ,
delete every shrunk Kt,t that is created after the latest augmentation
to obtain a new graph G̃′

M . Then, in G̃′
M , define b by (12) and search

for a shortest path w.r.t. l from U◦ to each vertex. Let R ⊆ Ũ ∪ Ṽ be
the set of the reachable vertices from U◦ and define d : Ũ ∪ Ṽ → R+

by

d(v) =

{
distance from U◦ to v w.r.t. l (v ∈ R),
max{d(v) | v ∈ R} (otherwise).

If V ◦ ∩ R = ∅, then halt. (No Kt,t-free t-factor exists.)

Step 3: Let P be the shortest path (w.r.t l) from U◦ to V ◦. If more than
one shortest path exists, select a path with the minimum number of
edges. If P contains a shrunk Kt,t, apply Dual-Update, expand every
shrunk Kt,t in P , and then go to Step 2.

Step 4: If M4Ẽ(P) contains a Kt,t without a shrunk Kt,t, apply Dual-
Update, execute Dual-Shrink(M,P), and go to Step 2.

17

Step 5: Apply Dual-Update, replace M by M4Ẽ(P) and expand every
shrunk S ∈ St with r(S) = 0. Then, go to Step 1.

Let us discuss the complexity. Recall that n = |U ∪V |, m = |E| and D is
the time for a shortest paths algorithm with nonnegative length. In Step 4,
we check whether M4Ẽ(P) contains a Kt,t, which takes O(m) time, smaller
than the complexity of a shortest path algorithm. Hence, it takes O(nD)
time between augmentations. Since augmentations happen at most tn/2
times, the total complexity is O(tn2D), which gets to O(tn2m + tn3 log n)
by employing D = O(m + n log n) [9].

Theorem 4.2. Algorithm Minimum-Weight Kt,t-Free t-Factor runs
in O(tn2m + tn3 log n) time.

As was true for Algorithm Minimum-Weight Square-Free 2-Factor,
Algorithm Minimum-Weight Kt,t-Free t-Factor is fully combinato-
rial, and thus implies the following integrality theorem.

Theorem 4.3. Let (G,w) be a weighted bipartite graph such that G admits
a Kt,t-free t-factor and w ∈ RE

+ is integer and vertex-induced on any Kt,t.
Then, the linear program (Pt) has an integral optimal solution. Moreover,
the dual problem (Dt) also has an integral optimal solution (p, q, r) such that
the elements in {S | S ∈ St, r(S) > 0} are pairwise disjoint.

5 Concluding Remarks

This paper has dealt with the minimum-weight Kt,t-free t-factor problem in
bipartite graphs, whereas Makai [16] considered the maximum-weight Kt,t-
free t-matching problem. Let us close this paper by mentioning that these
two problems are equivalent.

In fact, the two problems are polynomially reducible to each other. Given
an instance (G, w) of the minimum-weight Kt,t-free t-factor problem such
that G = (U, V ;E) and w is vertex-induced on any Kt,t, consider a weight
vector w′ ∈ RE defined by w′(e) = L − w(e), where L is a sufficiently
large number. Note that w′ is vertex-induced on any Kt,t in G. Then, a
maximum-weight Kt,t-free t-matching in (G,w′) is a maximum cardinality
Kt,t-free t-matching and hence gives a solution of the minimum-weight Kt,t-
free t-factor problem in (G,w).

Conversely, let us given an instance (G, w) of the maximum-weight Kt,t-
free t-matching problem, where G = (U, V ; E) and w is vertex-induced on
any Kt,t. We also assume that |U | ≥ t and |V | ≥ t, as is to be expected.
Then, construct a new weighted graph (G′, w′) as follows. If |U | 6= |V |, add
isolated dummy vertices to have |U | = |V |. For any pair of vertices u ∈ U
and v ∈ V , add 2t + 2 vertices u0, u1, . . . , ut, v0, v1, . . . vt and edges

{uv0, u0v} ∪ ({uivj | i ∈ {0, 1, . . . , t}, j ∈ {0, 1, . . . , t}} \ {u0v0}) .

18

Then, define a new weight vector w′ by

w′(e) =

{
L − w(e) (e ∈ E),
L (e : new edge),

where L is a sufficiently large number. Now, observe that w′ is vertex-
induced on any Kt,t in G′ and G′ admits a Kt,t-free t-factor. Moreover, for
a minimum-weight Kt,t-free t-factor M in (G′, w′), M ∩ E is a maximum-
weight Kt,t-free t-matching in (G,w).

Acknowledgements

The author is grateful to Satoru Iwata for discussions on this topic.

References

[1] Cornuéjols, G., and Pulleyblank, W.: A matching problem with side
conditions, Discrete Mathematics, 29 (1980), 135–159.

[2] Cunningham, W. H.: Matching, matroids, and extensions, Mathemati-
cal Programming, 91 (2002), 515–542.

[3] Cunningham, W. H., and Wang, Y.: Restricted 2-factor polytopes,
Mathematical Programming, 87 (2000), 87–111.

[4] Edmonds, J., and Karp, R. M.: Theoretical improvements in algo-
rithmic efficiency for network flow problems, Journal of the ACM, 19
(1972), 248–264.

[5] Fleiner, T.: Uncrossing a family of set-pairs, Combinatorica, 21 (2001),
145–150.

[6] Frank, A.: Restricted t-matchings in bipartite graphs, Discrete Applied
Mathematics, 131 (2003), 337–346.

[7] Frank, A., and Jordán, T.: Minimal edge-coverings of pairs of sets,
Journal of Combinatorial Theory, Series B, 65 (1995), 73–110.

[8] Frank, A., and Tardos, E.: An application of simultaneous diophantine
approximation in combinatorial optimization, Combinatorica, 7 (1987),
49–65.

[9] Fredman, M. L., and Tarjan, R. E.: Fibonacci heaps and their uses
in improved network optimization algorithms, Journal of the ACM, 34
(1987), 596–615.

19

[10] Geelen, J. F.: The C6-free 2-factor problem in bipartite graphs is NP-
complete, unpublished, 1999.

[11] Hartvigsen, D.: Extensions of Matching Theory, Ph.D. thesis, Carnegie
Mellon University, 1984.

[12] Hartvigsen, D.: The square-free 2-factor problem in bipartite graphs,
in Cornuéjols, G., Burkard, R. E., and Woeginger, G. J., eds., Inte-
ger Programming and Combinatorial Optimization: Proceedings of the
7th International IPCO Conference, LNCS 1610, Springer-Verlag, 1999,
234–241.

[13] Hartvigsen, D.: Finding maximum square-free 2-matchings in bipartite
graphs, Journal of Combinatorial Theory, Series B, 96 (2006), 693–705.

[14] Hell, P., Kirkpatrick, D., Kratochv́ıl, J., and Kr̆́ız̆, I.: On restricted two-
factors, SIAM Journal on Discrete Mathematics, 1 (1988), 472–484.

[15] Király, Z.: C4-free 2-factors in bipartite graphs, Technical report, TR-
2001-13, Egerváry Research Group, 1999.

[16] Makai, M.: On maximum cost Kt,t-free t-matchings of bipartite graphs,
SIAM Journal on Discrete Mathematics, 21 (2007), 349–360.

[17] Pap, G.: Alternating paths revisited II: restricted b-matchings in bipar-
tite graphs, Technical report, TR-2005-13, Egerváry Research Group,
2005.

[18] Pap, G.: A Constructive Approach to Matching and Its Generalizations,
Ph.D. thesis, Eötvös Loránd University, 2006.

[19] Pap, G.: Combinatorial algorithms for matchings, even factors and
square-free 2-factors, Mathematical Programming, 110 (2007), 57–69.

[20] Russell, M.: Restricted Two-Factors, Master’s thesis, University of Wa-
terloo, 2001.

[21] Tomizawa, N.: On some techniques useful for solution of transportation
network problems, Networks, 1 (1971), 173–194.

[22] Végh, L. A., and Benczúr, A. A.: Primal-dual approach for directed
vertex connectivity augmentation and generalizations, in Proceedings of
the 16th ACM-SIAM Symposium on Discrete Algorithms, ACM-SIAM,
2005, 186–194.

[23] Vornberger, O.: Easy and hard cycle covers, Preprint, Universität
Paderborn, 1980.

20

