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Abstract

This paper discusses an optimization-based technique for determining the stability of
a given equilibrium point of the unilaterally constrained structural system, which is
subjected to the static load. We deal with the three problems in mechanics sharing
the common mathematical properties: (i) structures containing no-compression cables;
(ii) frictionless contacts; (iii) elastic-plastic trusses with nonnegative hardening. It is
shown that the stability of a given equilibrium point of these structures can be deter-
mined by solving a maximization problem of a convex function over a convex set. Based
on the difference of convex functions (DC) optimization, we propose an algorithm to
solve the stability determination problem, at each iteration of which a second-order cone
programming (SOCP) problem is to be solved. The problems presented are solved for
various structures to determine the stability of given equilibrium points.
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1 Introduction

This paper discusses a numerical technique for stability determination of a given equilibrium point
of a statically-loaded finite-dimensional mechanical system, when the displacements and/or stresses
are subjected to unilateral constraints. The stability of the static equilibrium point is a radically
important issue of nonlinear mechanics in civil, mechanical and aeronautical engineering [11]. There-
fore, various criteria on the stability of equilibrium points have been proposed for elastic-inelastic
structures [11, 25, 32].

It is known that various classes of structural systems are governed by the unilateral constraints on
displacements and/or stresses; see, e.g. Duvaut and Lions [9]. In this paper, we propose a numerical
method for the stability determination of the following three problems in nonsmooth mechanics that
share the common mathematical formulations:

(i) Structures containing no-compression cables;

(ii) Frictionless contacts;

(iii) elastic-plastic trusses with nonnegative hardening.

A cable member cannot transmit compression force. This property is referred to as the stress
unilateral behavior , which was studied by Panagiotopoulos [24] by means of the variational inequality.
Later, the existence and uniqueness of static equilibrium points of cable networks were investigated
in [5, 15, 36]. In this paper, we deal with the structures containing some cable members, and
investigate the stability determination problem of such a structure.

For frictionless contacts, finding the equilibrium paths of an elastic beam which possibly contact
with rigid obstacles is classical but still receives much attention [14, 35, 37]. A unilaterally con-
strained elastic plate have also been studied widely [8]. Mathematically, these problems are regarded
as a tracing problem of a continuation of solutions of the family of variational inequalities [10, 20].
Besides these numerical path-tracing methods, the stability in frictionless contacts was investigated
theoretically by Klarbring [17] and the references therein. Tschöpe et al. [33] proposed a numerical
method for finding limit points in large-deformation frictionless contacts. We attempt in this paper
to determine the stability of an equilibrium point which is given a priori. Note that our aim is
neither to find bifurcation points nor to compute equilibrium paths.

Elastic-plastic analysis can be regarded as a problem in which stresses are subjected to the
unilateral constraints [29], if infinitesimal displacements are considered. Hill [13] derived a sufficient
condition for stability of a given equilibrium point of elastic-plastic structures. In this paper, for
elastic-plastic problems, we restrict ourselves to truss structures for simplicity.

In this paper, we aim at proposing a numerical method to determine the stability of the given
equilibrium point of a structures subjected to unilateral constraints. It is emphasized that the
method should be applicable to large-scale problems, particularly, problems with a large number
of unilateral constraints. We achieve this aim by using numerical optimization. For frictional
contact problems, a mathematical programming approach was proposed to find the directionally
unstable points by Pinto da Costa et al. [26], which is based on the enumeration of solutions to the
complementarity problem. Casciaro and Mancusi [7] performed the imperfection sensitivity analysis
numerically by solving a nonconvex quadratic programming problem.
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We give some explanations regarding the perspective of a combinatorial property of stability
analysis that we are interested in, by using an example of (i). Consider an elastic beam illustrated
in Figure 1 (which is assumed to be discretized into some finite elements, if necessary). The axial
force is applied to the beam so that the buckling may possibly occur. The beam is supported by 11
cables, which can transmit only tensile forces and are in their natural (unstressed) lengths at the
pre-buckling state. Observe that not all cables are in tensile states at the post-buckling state: some
cables (referred to as active cables) stretch with nonzero tensile forces, whereas the other cables
(referred to as inactive cables) slacken without any forces. The inactive cables can be neglected for
the sake of the stability analysis. If we know the ‘correct’ set of all active cables, then the tangent
stiffness matrix can be evaluated immediately by neglecting inactive cables. The stability of an
equilibrium point is determined as usual from the sign of the minimal eigenvalue of the tangent
stiffness matrix.

It should be emphasized that the difficulty of our problem arises from the fact that we cannot
know the set of active cables a priori . It is essentially a combinatorial problem to choose the ‘correct’
sets of active and inactive cables which are compatible to the minimal incremental potential energy.
Similarly, in the case of (ii), we cannot know the set of nodes which remain in contact a priori; in
the case of (iii), the set of loading members cannot be known a priori. The details of these specific
problems are discussed in sections 3–5. To the authors’ knowledge, no efficient methods have ever
been proposed to resolve this combinatorial property in stability analyses of unilaterally constrained
mechanical systems.

We present a unified perspective, as well as general formulations, for the stability determination
of the structural systems (i)–(iii). Provided that the equilibrium point is given, we shall show that
the directional stability of structural systems belonging to these three classes can be determined by
solving an optimization problem, specifically, the maximization problem of a convex quadratic func-
tion over a convex homogeneous quadratic inequality and some linear inequalities. This is regarded
as the first contribution of the paper. This claim is also regarded as an expository introduction of
stability analyses to the community working on mathematical programs. Indeed, we recognize that
stability analyses can be a natural application of some classes of nonconvex quadratic programming
problems.

As the second contribution, we next propose a solution technique for the stability determination
problem presented. Since the problem is nonconvex, the conventional local method may converge
to a local solution, which implies that the stability cannot be determined correctly. On the other
hand, any global optimization method seems to be too expensive for mechanical engineers from the
view point of computational cost. It should be noted that, when the equilibrium-path following
method is carried out, one may wish to employ the stability determination at each equilibrium
point obtained. Moreover, in designing process of structures, stability under a given load should
be checked repeatedly for different designs of a structure. Consequently, from a practical point of
view, it seems that a global optimization approach is not suitable for stability analysis. Hence, in
this paper, we choose a local method, which quite often converges to the global optimal solution.

We show that the stability determination problem presented can be embedded into the form
of the DC (difference of convex functions) program [4]. The DC programming problem is the
minimization of the difference of two convex functions. The DC algorithm was proposed as a local
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Figure 1: Finitely discretized elastic structure containing 11 cable members.

method solving the DC programming problem, and has been examined by various kinds of DC
programming problems; see the review paper [4] and the references therein. It has been observed
that the DC algorithm quite often converges to global optimal solution, in spite of the fact that the
convergence to the global solution is not guaranteed theoretically.

With the aid of DC algorithm, we propose an algorithm for the stability determination problem,
which is not limited to toy-size problems. Indeed, it is speculated through our numerical experiments
that the algorithm finds global solutions successfully. At each iteration of the algorithm, we solve
a second-order cone programming (SOCP) problem [1], which can be solved efficiently by using the
primal-dial interior-point method.

This paper is organized as follows. The notation used in this paper is prepared in section 1.1.
In section 2, we introduce the optimization problem that we are interested in, and an algorithm
is proposed. Three specific problems in mechanics (i)–(iii) are investigated in sections 3–5, respec-
tively. In section 3, we consider the structures including some cable members. The frictionless
contact problem, which might be the most typical example of the mechanical systems subjected to
unilateral constraints, is investigated in section 4. In section 5, we consider elastic-plastic trusses.
Numerical experiments are presented in section 6 for various structures investigated in the three
sections precedent. Our results are summarized in section 7. All proofs appear in section 8.

1.1 Notation

All vectors are assumed to be column vectors in this paper. The (m+n)-dimensional column vector
(uT,vT)T consisting of u ∈ R

m and v ∈ R
n is often written simply as (u,v). The Lp-norm of

the vector v = (vi) ∈ R
n is defined by ‖v‖p =

∑n
i=1 (|vi|p)1/p. Particularly, the L2-norm (or the

standard Euclidean norm) is written simply as ‖v‖ = (vTv)1/2.
We denote by R

n
+ ⊂ R

n and R
n
++ ⊂ R

n the nonnegative and positive orthants, respectively, i.e.

R
n
+ = {x ∈ R

n | x ≥ 0} ,

R
n
++ = {x = (xi) ∈ R

n | xi > 0 (i = 1, . . . , n)} .

We write v ≥ 0 and v ≥ w, respectively, if v ∈ R
n
+ and v − w ≥ 0. The set of all n × n real

symmetric matrices is denoted by Sn ⊂ R
n×n. Let Sn

+ ⊂ Sn and Sn
++ ⊂ Sn denote the sets of all

4



positive semidefinite matrices and all positive definite matrices, respectively. We write P � O and
P � Q, respectively, if P ∈ Sn

+ and P −Q � O.
The cardinality of the set A is denoted by |A|. The inner product vTw of the vectors v ∈ R

n

and w ∈ R
n is also written as 〈v,w〉. The identity matrix with an appropriate size is denoted by I.

2 General framework for stability analysis

2.1 Stability criterion

Consider a finite-dimensional structure in two- or three-dimensional space. The structure is sub-
jected to static nodal loads. Let ξ0 ∈ R

k denote the vector of state variables describing the static
equilibrium point, which consists of the total nodal displacement vector and the generalized stress
vector. Suppose that we are given the equilibrium point ξ0 under the specified external load. The
vector of infinitesimal incremental displacements from ξ0 is denoted by u ∈ R

nd
, where nd is the

number of degrees of freedom. We denote by A(ξ0) ⊆ R
nd

the set of all admissible incremental
displacements u satisfying the boundary conditions.

2.1.1 Stability condition for elastic structures

For elastic structures subjected to unilateral stress and/or displacement constraints, the total po-
tential energy Π(u) is defined for admissible incremental displacements vector u ∈ A(ξ0). By
application of Liapunov’s direct method [18], a sufficient condition of stability is given as follows.

Definition 2.1 (stability of an elastic system). The equilibrium point ξ0 is said to be stable if
Π : u 	→ Π(u) is continuously differentiable at any u ∈ A(ξ0) and if Π has an isolated minimum at
u = 0.

We denote the tangential stiffness matrix by K(u; ξ0) ∈ Snd
, which, in general, is a matrix-

valued function K(·; ξ0) : u 	→ K(u; ξ0). Let v(u) denote the (twice of) second-order term of the
increment of the potential energy corresponding to u at ξ0, which can be written as

v(u) = uTK(u, ξ0)u. (1)

Define v∗ ∈ R by

v∗ := min
�

{
v(u) | u ∈ A(ξ0), ‖u‖p = 1

}
. (2)

Note that we shall put p = 2 in our numerical method for stability analysis. However, the discussions
in the remainder of this section are valid for any p ∈ [1,∞].

The sufficient conditions for stability and instability are then written as follows.

Definition 2.2 (sufficient conditions for stability and instability of an elastic system). The
equilibrium point ξ0 is said to be stable (resp. unstable) if v∗ > 0 (resp. v∗ < 0).

Roughly speaking, the equilibrium point ξ0 is stable, if v(u) > 0 for any u ∈ R
nd \ {0} which is

kinematically admissible.
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2.1.2 Stability condition for elastic-plastic structures

For elastic-plastic structures, the total potential energy cannot be defined, because the incremental
work is path-dependent. Therefore, we employ directional instability [6, 13, 25] which is defined by
using v∗, introduced in (2), as follows.

Definition 2.3 (sufficient conditions for directional stability of an elastic-plastic system).
The equilibrium point ξ0 is said to be directionally stable (resp. directionally unstable) if v∗ > 0
(resp. v∗ < 0). The equilibrium point is unstable if it is directionally unstable.

Note that the directional stability is a necessary condition for the stability of an elastic-plastic
structure. In fact, a directionally stable structure may be unstable if indirect paths are considered.

However, we restrict ourselves to the directional stability of elastic-plastic structure. In the
remainder of the paper, we omit the term directional as far as no confusion is possible.

2.1.3 Stability determination problem

It follows from sections 2.1.1 and 2.1.2 that the stability of both elastic and elastic-plastic systems
are determined by finding a global optimal solution of the problem (2). Unfortunately, (2) is a
nonconvex optimization problem, since the constraint ‖u‖p = 1 in (2) is nonconvex. Furthermore,
we focus on the cases in which the matrix K(u; ξ0) is indefinite (even for the fixed u).

Remark 2.4. As the simplest particular case of (2) with p = 2, suppose that K(u; ξ0) does not
depend on u and the constraint u ∈ A(ξ0) of (2) does not exist. Then the global optimal solution
of (2) can be obtained easily. More precisely, suppose that

A(ξ0) = R
nd

, (3)

K(u; ξ0) = K0(ξ0), ∀u ∈ A(ξ0), (4)

where K0(ξ0) ∈ Snd
is a constant (but generically indefinite) matrix. Then v∗ defined by (2)

coincides with the minimum eigenvalue of K0(ξ0), although (2) is still nonconvex. Certainly, we
are interested in the cases in which at least one of (3) and (4) does not hold. Practical situations
of such cases are discussed specifically in sections 3.1, 4.1, and 5.1. Gander et al. [12] investigated
a particular case of the problem (2), referred to as the constrained eigenvalue problem, in which
the condition (4) holds and A(ξ0) is represented by some linear equalities. In order to solve this
problem, a DC algorithm was proposed by Tao and An [31]. Note that we are interested in the case
in which A(ξ0) is expressed by some linear inequalities, and thus our problem is different from the
constrained eigenvalue problem proposed in [12].

Remark 2.5. An interesting problem related to the constrained eigenvalue problem discussed in
Remark 2.4 arises for the case in which K0(ξ0) is indefinite and p =∞. In this case, the problem (2)
is NP-hard even if the conditions (3) and (4) are satisfied. Thus, in contrast to the case of p = 2,
it is difficult to obtain the global optimal solution of (2) with p = ∞. Nesterov [21] proposed an
approximation algorithm for this problem with the theoretically guaranteed approximation ratio.
An important application of the problem (2) is the trust-region subproblem [22, section 18.5]. Thus,
in spite of its simplicity in formulation, the problem (2) still receives much attention from the both
view points of algorithms and applications, while in this paper we concentrate on the stability
analysis, based on Definition 2.3, arising from various structural engineering applications.
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2.2 Reduction to feasibility problem

Hereinafter, we simply put p = 2 in the stability determination problem (2). We write ‖p‖ instead
of ‖p‖2 for simplicity.

In sections 3–5, we show that the second-order term of the incremental potential energy is written
as

v(u,z) = uTQ0u + zTQ1z

by introducing some auxiliary variables z ∈ R
m. We also show that v∗ defined by (2) can be obtained

as the optimal value of an optimization problem in the form of

v∗ = min
�,�

{
uTQ0u + zTQ1z | (u,z) ∈ F , ‖u‖2 = 1

}
. (5)

See Proposition 3.2, the problem (43), and Proposition 5.2 for the detail of each specific problem.
Note that Q0 ∈ Snd

and Q1 ∈ Sm
++ are constant in (5). Furthermore, F ⊆ R

nd × R
m is a convex

set that can be represented in the form of

F =
{

(u,z) ∈ R
nd × R

m | Auu + Azz ≥ 0
}

, (6)

where Au and Az are constant matrices with appropriate sizes. We assume throughout the paper
that the problem (5) is feasible. The stability of ξ0 is determined by solving (5) instead of (2).
Notice here that v∗ is positive if Q0 is positive definite. Therefore, we focus on the case in which
Q0 is indefinite.

Choose a constant, λ̃ ∈ R++, so that the condition

Q0 + λ̃I ∈ Sn
++ (7)

is satisfied, i.e. λ̃ is greater than the absolute value of the smallest eigenvalue of Q0. Define Q̃0 ∈ Snd

++

by

Q̃0 = Q0 + λ̃I. (8)

For simplicity, we use the following notations:

x :=

(
u

z

)
, f̃(u,z) = uTQ̃0u + zTQ1z, g(u,z) = ‖u‖2 − 1. (9)

Consider the following problem, which defines ṽ:

ṽ = min
�

{
f̃(x) | x ∈ F , g(x) ≥ 0

}
= min

�,�

{
uTQ̃0u + zTQ1z | (u,z) ∈ F , ‖u‖2 − 1 ≥ 0

}
. (10)

The following proposition implies that any optimal solution of (5) is also optimal for (10), and
vice versa.

Proposition 2.6 (relation between (5) and (10)). The problems (5) and (10) share the same
set of optimal solutions. Moreover, ṽ = v∗ + λ̃ holds.
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Note that all proofs for this section appear in section 8.1.
The following is an immediate corollary of Definition 2.3 and Proposition 2.6:

Corollary 2.7 (stability determination based on (10)). The equilibrium point ξ0 is stable (resp.
unstable) if ṽ > λ̃ (resp. ṽ < λ̃).

Proposition 2.6 implies that we can obtain an optimal solution of (5) by solving the problem (10).
From Corollary 2.7 we see that it is important for structural engineering whether the optimal value
of (10) satisfies ṽ > λ̃ or not. This motivates us to propose an algorithm for (10) which for most
cases converges to the global optimal solution within the computational time acceptable for real
engineering applications. We need further reformulation of (10) to a tractable form.

By exchanging the objective function and the nonconvex constraint of the problem (10), we
consider the following family of problems with respect to a parameter λ:

g∗(λ) := max
�

{
g(x) | x ∈ F , f̃(x) ≤ λ

}
, (11)

which defines the function g∗ : R++ → R. Note that (11) is a maximization of the convex function
over the convex set.

Proposition 2.8 (relation between (10) and (11)). For any λ ∈ R++,

(i) ṽ ≥ λ implies g∗(λ) ≤ 0.

(ii) g∗(λ) ≤ 0 implies ṽ ≥ λ.

The relation investigated in Proposition 2.8 is sometimes called duality between the objective
and constraint functions [34]. The following is the key result of this paper, which implies that the
stability can be determined by solving the problem (11) instead of the problem (10).

Theorem 2.9 (stability determination based on (11)). The equilibrium point ξ0 is

(i) stable if g∗(λ̃) < 0;

(ii) unstable if g∗(λ̃) > 0.

Furthermore,

(iii) ṽ = λ if and only if g∗(λ) = 0.

Corollary 2.10 (optimality condition of (10)). A feasible solution x of the problem (10) is op-
timal if and only if g∗(f̃(x)) = 0.

It is clear that a feasible solution x of (10) is optimal if and only if f̃(x) = ṽ. Consequently,
Corollary 2.10 follows Theorem 2.9 (iii) immediately.

2.3 Sequential convex optimization algorithm

We have seen in Theorem 2.9 that the stability of the given equilibrium point is determined by
solving the problem (11). In this section we first propose an algorithm for (11), at each iteration of
which a convex programming problem is solved.

8



We first show that the problem (11) can be reformulated as a DC (difference of convex functions)
programming problem [4]. We denote by I

�F (·;λ) : R
nd ×R

m → (−∞,+∞] the indicator function of
the feasible set of (11), i.e.,

I
�F (x;λ) =

⎧⎨⎩0, if x ∈ F , f̃(x) ≤ λ,

+∞, otherwise.

Let ρ ∈ R++ be a constant. Define h1 : R
nd × R

m → R and h2 : R
nd × R

m → (−∞,+∞] by

h1(x) =
ρ

2
‖x‖2 + g(x), (12)

h2(x;λ) = I
�F (x;λ) +

ρ

2
‖x‖2. (13)

Note that h1 and h2 are strictly convex. Then the problem (11) is equivalently rewritten as

max
�

{
h1(x)− h2(x;λ) | x ∈ R

nd × R
m
}

, (14)

which is a DC programming problem. The dual problem of (14) is written as

max
�

{
h∗

2(y;λ)− h∗
1(y) | y ∈ R

nd × R
m
}

, (15)

where h∗
1 and h∗

2 denote the conjugate functions of h1 and h2, respectively.

Remark 2.11. The choice of the pair of functions h1 and h2 in (12) and (13) is not unique. Indeed,
it is known that there exist infinitely many pairs of strictly convex functions h1 and h2 such that
(14) becomes equivalent to (11). See [4] for more details. Certainly, for example, we may choose
any ρ ∈ R++ in (12) and (13), while the convergence property of the algorithm presented below may
depend on the choice of ρ. In our numerical examples, we choose ρ = 0.1; see section 6.

The DC algorithm generates two sequences {xk} and {yk} by defining xk+1 and yk, respectively,
as the solutions to the convex problems [4]

max
�∈�nd×�m

{[
(yk)T(x− xk) + h1(xk)

]
− h2(x;λ)

}
, (16)

max
�∈�nd×�m

{[
(xk)T(y − yk−1) + h∗

2(y
k−1;λ)

]
− h∗

1(y)
}

. (17)

Observe that (16) (resp. (17)) is defined from (14) (resp. (15)) by replacing h1 (resp. h2(·;λ)) by
its affine approximation. The DC algorithm yields the update scheme

yk ∈ ∂h1(xk), (18)

xk+1 ∈ ∂h∗
2(y

k;λ). (19)

Then it is known that the sequences {h1(xk)− h2(xk;λ)} and {h∗
2(y

k;λ)− h∗
1(y

k)} of the objective
functions of (14) and (15) generated by the DC algorithm increase monotonically [4].

From the definition (12) of h1, the update scheme (18) of y is explicitly written as

yk := ρxk +∇g(xk), (20)
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because h1 is continuously differentiable. Substitution of (20) into (16) yields

max
�

{
(ρxk +∇g(xk))T(x− xk) +

(ρ

2
‖xk‖2 + g(xk)

)
− ρ

2
‖x‖2 | x ∈ F , f̃(x) ≤ λ

}
. (21)

By multiplying a constant 2/ρ and eliminating the constant terms, the objective function of (21) is
simplified without changing the optimal solution as

max
�,�

{
−
∥∥∥u− (1 + (2/ρ))uk

∥∥∥2
−
∥∥∥z − zk

∥∥∥2
| (u,z) ∈ F , f̃(u,z) ≤ λ

}
. (22)

The following algorithm solves a convex problem (22) sequentially to obtain a solution of (11).

Algorithm 2.12 (sequential convex optimization method for (11)).

Step 0: Choose (u0,z0) ∈ R
nd × R

m, ρ > 0, and the tolerance ε > 0. Set k := 0.

Step 1: Find the optimal solution (uk+1,zk+1) of (22).

Step 2: If ‖(uk+1,zk+1)− (uk,zk)‖ ≤ ε, then stop. Otherwise, set k ← k + 1, and go to Step 1.

Algorithm 2.12 is guaranteed to be well-defined by the following proposition in the sense that
the subproblem (22) solved at each iteration has the unique solution.

Proposition 2.13 (property of the subproblem). The convex problem (22) has the unique op-
timal solution.

The proof is easy, and hence is omitted. The following corollary follows Theorem 2.9.

Corollary 2.14 (sufficient condition for instability). Put λ := λ̃ in the problem (11), and let
x∗ = (u∗,z∗) be an accumulation point of a sequence {xk} generated by Algorithm 2.12. If g(x∗) > 0,
then the equilibrium point ξ0 is unstable.

Since Algorithm 2.12 is based on a local optimality condition of the problem (11), it cannot
guarantee the global optimality of a solution obtained. However, it has been observed (see, e.g.
[4]) that the DC algorithm very often converges to global optimal solutions of various nonconvex
optimization problems in practice. Therefore, from Theorem 2.9 and the fact that Algorithm 2.12
with λ := λ̃ provides a lower bound of g∗(λ̃), the equilibrium point is stable for most cases if
g(x∗) < 0.

Note that, from Theorem 2.9, it is sufficient to compute g∗(λ̃) in order to determine the stability.
On the contrary, when we want to know the incremental displacement corresponding to the minimum
increment of potential energy, the problem (10) is to be solved. It follows from Corollary 2.10 that
(10) can be solved by using a bi-section method, in which we solve (11) several times with various
values of λ. Provided that Algorithm 2.12 converges to the global optimal solution of (11), the
following algorithm computes the global optimal solution of (10):

Algorithm 2.15 (bisection method for (10)).

Step 0: Choose λ0 and λ
0 satisfying 0 < λ0 ≤ λ∗ ≤ λ

0, and the tolerance ε > 0. Set k := 0.

Step 1: If λ
k − λk ≤ ε, then stop. Otherwise, set λ := (λk + λ

k)/2.
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Step 2: Find an optimal solution (u∗,z∗) of the problem (11) by using Algorithm 2.12.

Step 3: If g(x∗) < 0, then set λk+1 := λ and λ
k+1 := λ

k. Otherwise, set λ
k+1 := λ and λk+1 := λk.

Step 4: Set k := k + 1, and go to Step 1.

Remark 2.16. If the global optimal solution of (11) is found successfully at Step 2 of each iteration,
Algorithm 2.15 converges to the global optimal solution of (10). Before the algorithm terminates,
exactly �log2((λ

0 − λ0)/ε)� iterations are required, where �p� denotes the minimum integer that is
not smaller than p ∈ R. Note that the optimal solution of (11) obtained in the previous iteration
can be used as an initial solution for Algorithm 2.12 at Step 2 of the next iteration. Numerical
experiments demonstrate that the usage of the previous solution as the initial solution drastically
reduces the number of iterations required by Algorithm 2.12; see section 6.

3 Structures containing no-compression cables

Consider an elastic finite dimensional structure containing cable members that cannot transmit
compressive forces; i.e. the cable member is assumed to consist of no-compression material. An
example of such structures is illustrated in Figure 1. The structure undergoes large deformation.

Let nm and nd, respectively, denote the number of members and the number of degrees of
freedom of displacements. The equilibrium point ξ0 is defined by the total displacement vector in
this section. The incremental elongation of the jth member is denoted by cj . The compatibility
condition at ξ0 between cj (j = 1, . . . , nm) and the incremental displacements u is written as

c(u) = B(ξ0)Tu, (23)

where B(ξ0) ∈ R
nd×nm

is a constant matrix.

3.1 Stability of structures with cables

We pay particular attention to a cable member j, the stiffnesses of which depends on the sign of the
incremental elongation cj . Let J ⊆ {1, . . . , nm} denote the set of all indices of cable members with
vanishing elongations at ξ0.

For each j ∈ J , let kc
j(cj) denote the elongation stiffness at ξ0, which is written as

kc
j(cj) =

⎧⎨⎩dj, if cj ≥ 0,

0, if cj < 0,
(24)

where dj ∈ R++ is constant. The dependence (24) of stiffness of the jth cable (j ∈ J ) on the sign
of cj essentially gives the stability determination problem the combinatorial complexity.

Consider the structure obtained by neglecting the cable members belonging to J . The tangential
stiffness matrix of the obtained structure is denoted by K+(ξ0) ∈ Snd

, which is a constant matrix
at the given ξ0. Note that the slack cables at ξ0 do not contribute to K+, while the contributions
of tense cables are included in K+. We are interested in a case in which the smallest eigenvalue of
K+ is negative due to the geometrical nonlinearity.
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From (24) and the definition of K+, the definition (1) of v can be reduced to

v(u) = uTK+(ξ0)u +
∑
j∈J

kc
j(cj) [cj(u)]2 . (25)

The stability determination problem (2) is formulated as

v∗ = min
�

{
v(u) | ‖u‖2 = 1

}
, (26)

where the subsidiary conditions (23) and (24) should be satisfied. For cj ∈ R, consider the opti-
mization problem in the variable zj ∈ R

wc
j(cj) := min

zj

{
djz

2
j | zj ≥ cj

}
. (27)

The following proposition prepares a reformulation of the problem (26) into the form of (5):

Proposition 3.1. Let zj denote the (unique) optimal solution of the problem (27). Then, cj and
zj satisfy

zj =

⎧⎨⎩cj , if cj ≥ 0,

0, if cj < 0.
(28)

Furthermore, the optimal value of (27) satisfies

wc
j(cj) = kc

j(cj)c2
j . (29)

Proof. See section 8.2.1.

Define the vector zJ ∈ R
|J | by

zJ = (zj | j ∈ J ) , (30)

which is the sub-vector of z composed of zj indexed by the set J . Furthermore, let BJ ∈ R
nd×|J |

denote the sub-matrix of B composed of the rows indexed by J . Similarly, we denote by dJ ∈ R
|J |

the vector composed of dj indexed by J . Let DJ = Diag(dJ ) ∈ S |J |
++. Consider the following

problem in the variables (u,zJ ) ∈ R
nd ×R

|J |:

min
�,�J

{
uTK+u + zT

J DJ zJ | zJ ≥ BT
J u, ‖u‖2 = 1

}
. (31)

Proposition 3.2. The optimal value of (31) coincides with v∗ defined by (26). Furthermore, u is
an optimal solution of the problem (26) if and only if (u,zJ ) satisfying (28) with

cJ = BT
J u (32)

is an optimal solution of the problem (31).

Proof. See section 8.2.2

Proposition 3.2 implies that the stability determination problem (26) is reformulated into (31),
which can be embedded into the form of (5).
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3.2 Feasibility of problem (31)

Introducing a parameter λ̃ so that K+ + λ̃I is positive semidefinite in accordance with (7), define
K̃ by

K̃ = K+ + λ̃I. (33)

From the problem (31) and (33), the perturbed problem (10) defining ṽ is explicitly obtained as

ṽ = min
�,�J

{
uTK̃u + zT

J DJ zJ | zJ −BT
J u ≥ 0, ‖u‖2 − 1 ≥ 0

}
. (34)

Proposition 2.6 verifies to solve (34), instead of (31), in order to determine the stability. The explicit
form of (11), which defines g∗, is given as

g∗(λ) = max
�,�J

{
‖u‖2 − 1 | zJ −BJ u ≥ 0, uTK̃u + zT

J DJ zJ ≤ λ
}

. (35)

In association with Theorem 2.9, we solve the problem (35) with λ := λ̃ by using Algorithm 2.12
in order to determine stability of the given equilibrium point ξ0. The incremental displacement
associated with the minimum increment of the total potential energy can be obtained by solving
(34) by using Algorithm 2.15. In Algorithm 2.15, λ in (35) plays a role of the parameter for a
bisection method.

3.3 SOCP formulation of subproblem

We conclude this section by investigating an explicit formulation of the subproblem (22) solved at
Step 1 of Algorithm 2.12. According to (12) and (13), define h1 and h2(·;λ) by

h1(u,zJ ) =
ρ

2
(‖u‖2 + ‖zJ ‖2

)
+ ‖u‖2 − 1,

h2(u,zJ ;λ) =

⎧⎨⎩
ρ

2
(‖u‖2 + ‖zJ ‖2

)
, if zJ −BJ u ≥ 0, uTK̃u + zT

J DJ zJ ≤ λ,

+∞, otherwise.

Then the problem (35) is embedded into (14) with m := |J |, on which Algorithm 2.12 works.
Consequently, the subproblem (22) of Algorithm 2.12 is explicitly obtained as

max
�,�J

{
−
∥∥∥u− (1 + (2/ρ))uk

∥∥∥2
−
∥∥∥zJ − zk

J
∥∥∥2
∣∣∣∣ zJ −BJ u ≥ 0, uTK̃u + zT

J DJ zJ ≤ λ

}
. (36)

The following proposition prepares the reformulation of the problem (36) into the standard form
of SOCP problem.

Proposition 3.3. Let A ∈ R
n×n be a constant matrix. Then, x ∈ R

n and y ∈ R satisfy y ≥
xT(ATA)x if and only if

y + (1/4) ≥
∥∥∥∥∥
(

y − (1/4)
Ax

)∥∥∥∥∥
is satisfied.
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Since K̃ is not singular from its definition (33), there exists a matrix Ru ∈ R
nd×nd

satisfying

RT
u Ru = K̃. (37)

For instance, we may choose the Cholesky factor of K̃ as Ru. Similarly, we denote by Rz ∈ R
|J |×|J |

a constant matrix satisfying

RT
z Rz = DJ .

By introducing an auxiliary variable t ∈ R and utilizing Proposition 3.3, the problem (36) is em-
bedded into the dual standard form of SOCP as

min
�,�J ,t

t

s.t. zJ −BT
J u ≥ 0,

λ +
1
4
≥

∥∥∥∥∥∥∥
⎛⎜⎝λ− (1/4)

Ruu

RzzJ

⎞⎟⎠
∥∥∥∥∥∥∥ ,

t +
1
4
≥

∥∥∥∥∥∥∥
⎛⎜⎝ t− (1/4)

u− (1 + (2/ρ))uk

zJ − zk
J

⎞⎟⎠
∥∥∥∥∥∥∥ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(38)

We solve (38) by using the primal-dual interior-point method at Step 1 of Algorithm 2.12.

4 Frictionless unilateral contact

Letting dim ∈ {2, 3}, consider a finite-element discretization of an elastic structure in the R
dim

space, which possibly contact with fixed rigid obstacles without friction. The configuration of the
structure is described by ξ ∈ R

nd
, which is the position vector of the nodes with respect to the global

coordinate system. Some nodes are supposed to be subjected to the unilateral contact constraints,
where we denote by PC the set of indices of contact candidate nodes. In this section we follow the
standard notation and assumptions of contact mechanics [19, 26].

4.1 Stability of frictionless contact

Let xp ∈ R
dim denote the position vector of the pth node with respect to an appropriately defined

reference frame. For each p ∈ PC, the surface of the corresponding obstacle is identified as{
x ∈ R

dim | φp(x) = 0
}

,

where φp : R
dim → R is assumed to be twice continuously differentiable. Suppose that φ satisfies

∇φp(x) �= 0 at the points on or sufficiently close to the surface of the obstacles. The admissible
region of the position vector is written as{

ξ ∈ R
nd | φp(xp(ξ)) ≤ 0 (p ∈ PC)

}
. (39)

On each point of the surface, define the vector np(x) ∈ R
dim by

np(x) =
∇φp(x)
‖∇φp(x)‖ ,

14



x

node p

φ (x)=0p

obstacale
np

t p

1

x2

Figure 2: Rigid obstacle and definition of the normal vector np in a two-dimensional case.

which is the unit inner normal vector of the surface; see Figure 2. The reaction at the pth node,
rp
n ∈ R, is restricted to be in the direction opposite to np. For each p ∈ PC, the unilateral contact

condition is written as

φp(xp(ξ)) ≤ 0, rp
n ≤ 0, φp(xp(ξ))rp

n = 0. (40)

Define a partition Pf , P0, and Pr of the set PC as

Pf(ξ) = {p ∈ PC | Φp(ξ) < 0} , [currently not in contact (free)],

P0(ξ) = {p ∈ PC | Φp(ξ) = 0, rp
n = 0} , [currently in contact without reaction],

Pr(ξ) = {p ∈ PC | Φp(ξ) = 0, rp
n < 0} , [currently in contact with reaction].

We next investigate the kinematic conditions on the incremental displacements at the given ξ.
Let u ∈ R

nd
denote the infinitesimal incremental displacement vector defined with respect to the

global coordinate system. For each p ∈ PC we denote by up
n the projection of the incremental

nodal displacement of the pth node onto the direction of np. Define the vector-valued function
gp

n : R
nd → R

nd
by

gp
n(ξ) =

[
∂xp

∂ξ
(ξ)
]T

np(xp(ξ)),

where

∂xp

∂ξ
(ξ) =

(
∂xp

∂ξj
(ξ) | j = 1, . . . , nd

)
.

Then the relation between up
n and u is written as

up
n = gp

n(ξ)Tu. (41)

See, e.g. [19], for more details.
Suppose that the equilibrium point is given as ξ = ξ0. Define the matrices T 0 and T r by

T T
0 =

(
gp

n(ξ
0) | p ∈ P0(ξ0)

)
,

T T
r =

(
gp

n(ξ
0) | p ∈ Pr(ξ0)

)
.
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From (39), (40), and (41) it follows that the admissible set of the infinitesimal incremental displace-
ments vector u is written as

A(ξ0) =
{

u ∈ R
nd | T 0u ≤ 0, T ru = 0

}
. (42)

At the given equilibrium configuration ξ0, let K ∈ Snd
denote the tangential stiffness matrix

obtained by neglecting the contact conditions. Note that K depends on the curvature of the obstacle
surface [16]. Because of the geometrical nonlinearity, K is indefinite in general. It follows from (42)
that the stability determination problem (2) for frictionless contact problems is formulated as

v∗ = min
�

{
uTKu | u ∈ A(ξ0), ‖u‖2 = 1

}
. (43)

Explicit SOCP formulations that are to be solved in our algorithm can be obtained in a manner
similar to section 3.3. Details of the reduction of those formulations appear in Appendix A.

5 Elastic-plastic trusses

Consider an elastic-plastic truss in the two- or three-dimensional space. Let nm and nd, respectively,
denote the number of members and the number of degrees of freedom of displacements. We denote
by qj the axial force of the jth member. At the given equilibrium point ξ0, the yield function
of the jth member is dented by φj(·; ξ0) : R → R, where we assume an associated yielding law
for simplicity. Note that ξ0 consist of the current nodal coordinates and yield stresses that are
path-dependent. At ξ0, each member satisfies

φj(qj; ξ0) ≤ 0.

The compatibility relation between the incremental elongation cj (j = 1, . . . , nm) and the incremental
displacements u is written by (23). Define νj as

νj =
dφj(qj; ξ0)

dqj
.

At the yielding state φj(qj ; ξ0) = 0 loading and unloading are characterized by νjcj > 0 and νjcj <

0, respectively, for the given cj . Note that φj(·; ξ0) is not necessarily continuously differentiable
function. We assume only that φj(·; ξ0) is continuously differentiable at qj satisfying φj(qj ; ξ0) = 0
(as is usual with an yielding law).

The large deformation is considered in general. The tangential stiffness is defined as the sum of
the linear and the geometrical stiffness matrices.

5.1 Directional stability of elastic-plastic trusses

Let q0
j denote the axial force at the given equilibrium point. Define the partition J and J of the

set of member indices, {1, . . . , nm}, by

J =
{
j ∈ {1, . . . , nm} | φj(q0

j ; ξ
0) = 0

}
,

J =
{
j ∈ {1, . . . , nm} | φj(q0

j ; ξ
0) < 0

}
,
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Figure 3: Constitutive relation between the axial force qj and the incremental elongation cj in the
case of νj > 0.

i.e. j ∈ J implies that the j-th member is at yielding. Let kj(cj) denote the tangential elongation
stiffness at ξ0, which is written in the form of

kj(cj ; q0
j ) =

⎧⎨⎩dp
j , if νjcj ≥ 0,

de
j , if νjcj < 0,

(44)

where de
j ∈ R++ and dp

j ∈ R++ are the constants. Figure 3 depicts the relation between cj and qj for
tensile state (44). The case of elastic-perfectly plastic behavior, dp

j = 0, is discussed in Remark B.1.
Thus, the elongation stiffness of the jth member (j ∈ J ) depends on the sign of the incremental
elongation, which essentially gives a stability determination problem combinatorial complexity.

Consider the truss obtained by neglecting the linear stiffnesses of members belonging to J . The
tangential stiffness matrix of the obtained structure is denoted by Ke(ξ0) ∈ Snd

, which is a constant
matrix at the given ξ0. Note that Ke incorporates the contributions from the linear stiffnesses of
members J as well as the geometrical stiffnesses of members J ∪J . Certainly, we are interested in
the case in which the smallest eigenvalue of Ke is negative due to the geometrical nonlinearity.

From (44) and the definition of Ke, we see that v defined by (1) can be written as

v(u) = uTKe(ξ0)u +
∑
j∈J

kj(cj ; q0
j )cj(u)2. (45)

Then the stability determination problem, (2), is formulated as

v∗ = min
�

{
v(u) | ‖u‖2 = 1

}
, (46)

where the subsidiary conditions (23) and (44) should be satisfied.
For cj ∈ R, consider the optimization problem in the variables zej ∈ R and zpj ∈ R

wj(cj ; q0
j ) := min

zej ,zpj

{
de

jz
2
ej + dp

j z2
pj | νjzej ≤ νjcj , νjzpj ≥ νjcj

}
. (47)

The following proposition prepares a reformulation of the stability determination problem (46) into
the form of (5).
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Proposition 5.1. Let (zej, zpj) denote the optimal solution of (47). Then, (zej, zpj) is given by

(zej , zpj) =

⎧⎨⎩(0, cj), if νjcj ≥ 0,

(cj , 0), if νjcj < 0.
(48)

Furthermore, the optimal value of the problem (47) satisfies

wj(cj ; q0
j ) = kj(cj ; q0

j )c
2
j (49)

for any q0
j �= 0.

The proof appears in section 8.3.
In a manner similar to (30) in section 3.1, define the vectors cJ ∈ R

|J |, zeJ ∈ R
|J |, and

zpJ ∈ R
|J |. Let

De
J = Diag(de

J ), Dp
J = Diag(dp

J ), NJ = Diag(νJ )

for de
J ∈ R

|J |, dp
J ∈ R

|J |, and νJ ∈ R
|J |, respectively. Consider the following problem in the

variables (u,zeJ ,zpJ ) ∈ R
nd × R

|J | × R
|J |:

min
�,�eJ ,�pJ

uTKeu + zT
eJ De

J zeJ + zT
pJ Dp

J zpJ

s.t. NJ zeJ ≤NJ BT
J u,

NJ zpJ ≥NJ BT
J u,

‖u‖2 = 1.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (50)

The following relation between the problems (46) and (50) can be shown in a manner similar to
Proposition 3.2, and hence the proof is omitted:

Proposition 5.2. The optimal value of (50) coincides with v∗ defined by (46). Furthermore, u

is an optimal solution of (46) if and only if (u,zeJ ,zpJ ) satisfying (48) with (32) is an optimal
solution of (50).

Proposition 3.2 implies that the stability determination problem (46) is reformulated into (50),
which can be embedded into the form of (5).

A feasibility problem for the problem (50) as well as SOCP formulations that are to be solved
can be obtained in a manner analogous to sections 3.2 and 3.3. All details appear in appendix B.

6 Numerical experiments

The stability determination problems (10) and (11) are solved for various structures by using Algo-
rithms 2.15 and 2.12, respectively. We reformulate the subproblem (22) as an SOCP problem, and
solve it by using SeDuMi Ver. 1.1 [27, 30], which implements the primal-dual interior-point method
for the linear programming problem over symmetric cones. Computation has been carried out on
Pentium M (1.2 GHz with 1.0 GB memory) with MATLAB Ver. 7.0.1 [38].

In sections 6.1, 6.2, and 6.3, respectively, we solve numerical examples of the problems inves-
tigated in sections 3, 4, and 5. In each example, the elastic modulus of structures is 200 GPa;
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an initial solution (u0,z0
J ) for Algorithm 2.12 is generated randomly by using MATLAB built-in-

function ‘rand ’ so that ‖(u0,z0
J )‖∞ ≤ 0.5 is satisfied. At Step 2 of Algorithm 2.15, the optimal

solution obtained in the previous iteration is used as an initial solution for Algorithm 2.12 as dis-
cussed in Remark 2.16. The termination tolerance is chosen as ε = 10−3 at Step 0 of Algorithm 2.12.
At Step 0 of Algorithm 2.15, we choose ε = 10−4λ̃, λ

0 = 2λ̃, and λ0 = 0. The parameter ρ introduced
in (12) and (13) is chosen as ρ = 0.1 for all examples.

6.1 Cable-strut system

Consider a plane cable-strut system illustrated in Figure 4, where W = 1.0 m, H = 1.0 m, nd = 70,
and nm = 82. The nodes (a1)–(a5), (c1)–(c7), and (d1)–(d7) are pin-supported. The displacements
of the nodes (b1)–(b5) are constrained in the y-direction. The stability determination problems for
the cable-strut structures have been investigated in section 3.

The members in the x-direction are struts modeled as truss members, while the members in
the y-direction are cables that do not transmit compressive forces. The cross-sectional areas of
struts and cables are 5 × 10−3 m2 and 0.32 × 10−3 m2, respectively. As for the external force,
1.5 MN is applied in the negative direction of the x-axis at nodes (b1)–(b5). Note that Figure 4
illustrates the deformed equilibrium configuration corresponding to the applied load, i.e. the initial
unstressed length of each cable member is equal to H. Therefore, the elongation of each cable
member vanishes at the given equilibrium point, and hence |J | = 42. Accordingly, the number of
possible combinations in the formulation of the tangential stiffness matrix is 242.

At the equilibrium point, the smallest eigenvalue of the tangential stiffness matrix K+ obtained
by neglecting all the cable members is λ1 = −5.772. Hence, we choose λ̃ = 6.060 (i.e. λ̃ = 1.05|λ1|)
in (33). For the sake of the stability determination, the problem (35) is solved with λ := λ̃ by using
Algorithm 2.12 to obtain g∗(λ̃) = 1.831 × 10−3. Hence, from Corollary 2.14 we can conclude that
the equilibrium point is unstable. The CPU time required by Algorithm 2.12 is 8.61 seconds, and
48 SOCP problems are solved.

We next solve (34) in order to obtain the incremental displacements corresponding to the
minimal incremental total potential energy. By using Algorithm 2.15, we obtain ṽ = 6.049 and
v∗ = −1.147 × 10−2 defined in (26). This result verifies that the equilibrium point is unstable in
association with Definition 2.3. Figure 5 illustrates the optimal solution obtained, where the slack-
ening cable members have been removed. Algorithm 2.15 requires 15 iterations and 12.8 seconds
of the CPU time. In total, 71 SOCP problems are solved, and the average CPU time for solving
one SOCP problem is 0.18 seconds. Note that 48 SOCP problems are solved in the first iteration of
Algorithm 2.15, while 1.64 SOCP problems in average are required for the remaining iterative steps.
This is because the optimal solution of (11) obtained in the previous iteration is used as an initial
solution of the next iteration; see Remark 2.16. Notice again that it is sufficient to solve (35) with
λ := λ̃ in order to determine the stability of the given equilibrium point.

As an alternative case, we choose a slightly larger cross-sectional area 0.33 × 10−3 m2 for each
cable member. The optimal value of (35) with λ := λ̃ is computed by using Algorithm 2.12 as
g∗(λ̃) = −2.459×10−2. Provided that the obtained solution is globally optimal, Theorem 2.9 implies
that the equilibrium point of this case is stable. The problem (34) is solved by using Algorithm 2.15
to obtain ṽ = 6.213 and v∗ = 1.528 × 10−3. Thus, the cable-strut system is stabilized by slightly
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Figure 4: A cable-strut system.

Figure 5: Optimum solution of (34) for the cable-strut system.
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Figure 6: An elastic truss with the two rigid obstacles.

Figure 7: Optimum solution of (72) for the truss with the obstacles.

increasing the cross-sectional areas of cables. Moreover, from these two results, we may conjecture
that the global optimal solutions of (34) are successfully found.

6.2 Frictionless contact with rigid obstacles

Consider a plane truss with the rigid obstacles illustrated in Figure 6, where W = 1.0 m, H = 1.0 m,
nd = 60, and nm = 59. The nodes (a1)–(a5) are pin-supported. The displacements of the nodes
(b1)–(b5) are constrained in the y-direction. The stability determination problems for the frictionless
contact have been investigated in section 4.

The cross-sectional areas of members in the x- and y-directions, respectively, are 8.0× 10−3 m2

and 1.0 × 10−3 m2. The external force 8.0 MN is applied in the negative direction of the x-
axis at nodes (b1)–(b5). Note that Figure 6 illustrates the deformed equilibrium configuration
corresponding to the applied forces. The members in the y-direction have vanishing axial forces at
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the given equilibrium point.
The nodes (c1)–(c6) and (d1)–(d6) are supposed to be contact candidates, which contact with

the obstacles without reactions at the given equilibrium point, i.e. P0 consists of nodes (c1)–(c6) and
(d1)–(d6), |P0| = 12, and Pr = ∅. Thus, there exist 212 possible combinations of contact conditions.

At the given equilibrium point, the smallest eigenvalue of K in (43) is λ1 = −30.42. Hence,
we choose λ̃ = 31.94 (i.e. λ̃ = 1.05|λ1|) in (71). For the stability determination, the problem (73)
with λ := λ̃ is solved by using Algorithm 2.12 to obtain g∗(λ̃) = −3.844× 10−2. Accordingly, from
Theorem 2.9 we see that the given equilibrium point is stable, provided that the solution obtained is
globally optimal. The CPU time required by Algorithm 2.12 is 6.25 seconds, and 65 SOCP problems
are solved.

We next solve (72) in order to obtain the incremental displacements with the minimal incremental
total potential energy. By using Algorithm 2.15, we obtain ṽ = 33.21 and v∗ = 1.277 defined in
(43). This result and Definition 2.3 verify that the given equilibrium point is stable. The optimal
solution is shown in Figure 7. Algorithm 2.15 requires 15 iterations and 9.59 seconds of the CPU
time.

In order to verify the convergence to the global optimal solution, we solve a slightly modified
case, in which the cross-sectional areas of members in the y-direction are 0.93 × 10−3 m2. In this
case, we obtain g∗(λ̃) = 1.402× 10−2, ṽ = 31.49, and v∗ = −4.425 × 10−1. From Corollary 2.14 we
can conclude that this equilibrium point is unstable. The obtained values of v∗ (and also the values
of g∗(λ̃)) of these two cases are very close, and hence it seems that the global optimal solutions are
successfully found.

6.3 Elastic-plastic truss

Consider an elastic-plastic plane truss illustrated in Figure 8, where W = 1.0 m, H = 1.5 m, nd = 38,
and nm = 56. The nodes (a1) and (a2) are pin-supported. At the equilibrium point some members
are supposed to be in plastic range. The stability determination problems for the elastic-plastic
trusses have been investigated in section 5. The ratio between the elastic and the plastic moduli is
given as dp

j /de
j = 0.2 in (44).

The cross-sectional areas of members in the y-direction are 2.25 × 10−3 m2. The remaining
members have 0.15 × 10−3 m2. Letting p ∈ R+ be a load parameter, the external force 4p MN is
applied in the negative direction of the y-axis at the nodes (b1) and (b3), while 5p MN is applied
at the node (b2). In the following examples we assume that the deformation is infinitesimal and
that the load parameter p is supposed to be monotonically increased to the specified value. In this
case, the state variables such as stresses and straits are not path-dependent, and the equilibrium
point is found by using the linear stiffness matrix, because it is known that the effect of pre-buckling
deformation is negligibly small for this kind of slender structures. The tangential stiffness at the
equilibrium point is defined as the sum of the linear stiffness matrix and the geometrical stiffness
matrix.

As for the distribution of the members in plastic range, we consider the two cases: the members
in the plastic range are depicted by thick lines in Figure 9 (a) and Figure 10 (a), respectively, for
the cases (A) and (B). Note that |J | = 16 for both cases.

We first consider the symmetric case (A). The external load is given by putting p = 0.560. At
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Figure 8: An elastic/plastic tower-type truss.

(a) yielding members (b) optimal solution (c) unloading members (d) loading members

Figure 9: Optimal solution of the tower-type truss: case (A).
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(a) yielding members (b) optimal solution (c) unloading members (d) loading members

Figure 10: Optimal solution of the tower-type truss: case (B).

the given equilibrium point, the smallest eigenvalue of Ke in (45) is λ1 = −2.901. Hence, we choose
λ̃ = 3.046 (i.e. λ̃ = 1.05|λ1|) in (77). For the stability determination, Problem (79) with λ := λ̃

is solved by using Algorithm 2.12 to obtain g∗(λ̃) = −1.202 × 10−4. Hence, from Theorem 2.9
we see that the given equilibrium point is stable, provided that the solution obtained is globally
optimal. The CPU time required by Algorithm 2.12 is 8.11 seconds, and 40 SOCP problems are
solved. If we assume that all members at yielding are unloading, then the minimum eigenvalue of
the tangential stiffness matrix is 1.379×10−1 . Conversely, if we assume that all members at yielding
are loading, then the minimum eigenvalue of the tangential stiffness matrix is −2.081× 10−1. From
Hill’s sufficient condition for the uniqueness of the equilibrium state, it follows that there exists a
bifurcation point before reaching this equilibrium point.

We examine a slightly larger load p = 0.565. At the corresponding equilibrium point, the smallest
eigenvalue of Ke is λ1 = −2.930, and we choose λ̃ = 3.076. The optimal value of Problem (79)
with λ := λ̃ is found as g∗(λ̃) = 2.251 × 10−4. Hence, Corollary 2.14 implies that this equilibrium
point is unstable. Next Problem (78) is solved in order to obtain the incremental displacements
corresponding to the minimal incremental total potential energy. By using Algorithm 2.15, we obtain
ṽ = 3.076 and v∗ = −5.633×10−4, where v∗ has been defined in (46). This result and Definition 2.3
verify that the given equilibrium point is unstable. The optimal incremental displacements obtained
is shown in Figure 9 (b). Algorithm 2.15 requires 15 iterations and 8.39 seconds of the CPU time.
In total, 43 SOCP problems are solved. At the optimal solution, unloading and loading members
are depicted by thick lines in Figure 9 (c) and (d), respectively.

For the case (B) defined by Figure 10 (a), it is difficult to estimate loading or unloading member
intuitively. First, we choose p = 0.620. At the corresponding equilibrium point, the smallest
eigenvalue of Ke is λ1 = −9.511 × 10−1. Hence, we choose λ̃ = 9.987 × 10−1 (i.e. λ̃ = 1.05|λ1|)
in (77). For the stability determination, (79) with λ := λ̃ is solved by using Algorithm 2.12 to
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obtain g∗(λ̃) = −8.601× 10−4, from which and Theorem 2.9 we see that the given equilibrium point
is stable, provided that the solution obtained is globally optimal. If we assume that all members
in plastic range are unloading, then the minimum eigenvalue of the tangential stiffness matrix is
1.255× 10−1. Conversely, assuming that all members in the plastic range are loading, the minimum
eigenvalue of the tangential stiffness matrix is −6.976× 10−2. Hence, from Hill’s sufficient condition
for uniqueness, the truss undergoes bifurcation before reaching this equilibrium point.

We next consider a slightly larger load p = 0.625. At the corresponding equilibrium point, the
smallest eigenvalue of Ke is λ1 = −9.627×10−1, and we choose λ̃ = 1.011 (= 1.05|λ1|). The optimal
value of (79) with λ := λ̃ is found as g∗(λ̃) = 5.453 × 10−4, which implies that implies that this
equilibrium point is unstable from Corollary 2.14 . The CPU time required by Algorithm 2.12 is
2.094 seconds, and 11 SOCP problems are solved. The problem (78) is solved in order to obtain
the incremental displacements corresponding to the minimal incremental total potential energy. By
using Algorithm 2.15, we obtain ṽ = 1.010 and v∗ = −5.553 × 10−4, where v∗ has been defined in
(46). This result and Definition 2.3 verify that the given equilibrium point is unstable. The optimal
solution obtained is shown in Figure 10 (b).
refalgalg.bisection requires 15 iterations and 6.19 seconds of the CPU time. In total, 33 SOCP
problems are solved. The unloading and loading members in the optimal incremental displacement
are depicted by thick lines in Figure 10 (c) and (d), respectively. If we assume that all members
at yielding are unloading, then the tangent stiffness matrix is positive definite, and the minimum
eigenvalue is 1.245× 10−1.

7 Conclusions

In this paper, we have proposed a numerical technique for determining the stability of the given
equilibrium point of structures subjected to the unilateral constraints. As for situations of unilateral
constraints, we have investigated three typical problems in nonsmooth mechanics: cable structures,
frictionless contact, and plasticity. For these problems which possess combinatorial complexity
essentially, we have provided the unified formulations and methodology for stability analysis which
is applicable to large-scale problems.

We have introduced a nonconvex quadratic programming problem whose optimal value deter-
mines the stability of the given equilibrium point. In association with the feasibility of this problem,
we have proposed another formulation for the stability determination, which is a maximization
problem of a convex quadratic function over a convex homogeneous quadratic inequality and some
linear inequalities. It is shown that the stability is determined by the sign of the optimal value of
this problem. Thus, we have shown that the stability analysis is one of important applications of
the convex maximization over the convex set, which has been studied extensively in computational
optimization.

In order to solve the proposed nonconvex optimization problem, we embed it to a DC (difference
of convex functions) programming problem, and the obtained problem is solved by using the so-called
DC algorithm. The DC algorithm is one of a few algorithms based on a local approach which has been
successfully applied to large-scale DC programming problems, and quite often converges to the global
optimal solution. The explicit formulations of the subproblem to be solved are presented for cable
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systems, contact problem, and elastic-plastic trusses. In each case, it is shown that the subproblem
is reduced to the second-order cone programming problem, which can be solved efficiently by using
the primal-dual interior-point method.

It has been shown in the numerical examples of various structures subjected to the unilateral
constraints that the algorithm presented can find if the given equilibrium point is directionally stable
or not. For nonconvex programming problems, there is no practicable global optimal conditions in
general, which makes it difficult to check the global optimality of solutions obtained by the proposed
algorithm. However, throughout parametric studies it has been shown that the solutions obtained
seem to be globally optimal for our numerical examples.

Regarding the elastic-plastic problem, we have investigated only truss structures in this paper.
It is of interest to note that yielding laws for various structures can be written as convex inequalities
typically. This observation implies that the stability determination problem proposed in this paper
may inherit some important properties if it is applied to structures other than trusses, i.e. the
stability determination problem may be written in the form of the maximization problem of a convex
function over a convex set for various classes of structures. This intuitive observation suggests that
a sequential convex programming approach developed in this paper can be extended to various
structures, which remains as our promising future work.

8 Proofs of rechnical results

8.1 For section 2

8.1.1 Proof of Proposition 2.6

We start with the claim that the problem (10) can be rewritten equivalently as

min
�,�

{
uTQ̃0u + zTQ1z | (u,z) ∈ F , ‖u‖2 = 1

}
, (51)

i.e. the inequality constraint ‖u‖2 ≥ 1 can be replaced with the equality constraint ‖u‖2 = 1,
without changing both the optimal value and the optimal solution (more precisely, the set of optimal
solutions does not change, if the optimal solution of (10) is not unique). In order to see the
contradiction, assume that (u,z) satisfying

‖u‖2 > 1

is an optimal solution of (10). It follows from the definition (6) of F that

(u/‖u‖2,z/‖u‖2) ∈ F

is satisfied. Hence, we see that (u/‖u‖2,z/‖u‖2) is a feasible solution of (10), at which the objective
function of (10) satisfies

f̃(u/‖u‖2,z/‖u‖2) =
1
‖u‖2 f̃(u,z) < f̃(u,z). (52)

Note that f̃(u,z) > 0 because Q̃0 and Q1 in (9) are positive definite. The inequality of (52)
contradicts with the assumption that (u,z) is optimum, which implies that the problems (10)
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and (51) share the same optimal value and the same set of optimal solutions. It follows from the
definition (8) of Q̃0 that the condition

uTQ̃0u = uTQ0u + λ̃

holds for any u satisfying

‖u‖2 = 1.

Finally, observe that the problems (5) and (10) share the same feasible set and have the objective
functions with the difference of constant λ̃, which concludes the proof.

8.1.2 Proof of Proposition 2.8

In order to show Proposition 2.8, we first prepare the following lemma:

Lemma 8.1. For any λ ∈ R++,

lim
ε→+0

inf
�

{
f̃(x) | x ∈ F , g(x) ≥ ε

}
= ṽ < +∞, (53)

lim
λ′→λ−0

g∗(λ′) = g∗(λ) > −∞. (54)

Proof. We show this lemma by using the result of Lemma 4.1 in Tuy [34]. In order to prove (53),
it suffices to show (i) ṽ < +∞ and (ii) 0 is not a local maximum of g over F . Recall that we
have assumed that the problem (5) has a feasible solution, which guarantees the condition (i) is
satisfied. Provided that x1 denotes a feasible solution of (10), we easily see that µx1 is also feasible
for any µ ∈ R++. Hence, max{g(x) | x ∈ F} is unbounded above and has no local maximum, which
implies that the condition (ii) is satisfied. Similarly, the assertion (54) can be proved by showing
(iii) g∗(λ) > −∞ and (iv) λ is not a local minimum of f̃ over F . To see (iii), observe that f̃(0) = 0
holds from the definition (9) of f̃ . Furthermore, the definition (6) of F implies 0 ∈ F . Hence, x = 0

is feasible for the problem (11), and thus the condition (iii) is verified. Recall that Q̃0 and Q1 in
(9) are positive definite. Hence, the convex quadratic minimization min{f̃(x) | x ∈ F} = 0 has no
local minimum, which guarantees that the condition (iv) is satisfied.

Proof of Proposition 2.8 If ṽ defined by (10) satisfies ṽ ≥ λ, then the set{
x ∈ F | g(x) ≥ 0, f̃(x) ≤ λ′

}
is empty for any λ′ satisfying λ′ < λ. Hence, for any λ′ < λ, we see that the inequality

g∗(λ′) = max
�

{
g(x) | x ∈ F , f̃(x) ≤ λ′

}
≤ 0

holds, from which and Lemma 8.1 we obtain g∗(λ) ≤ 0. Similarly, if g∗ defined by (11) satisfies
g∗(λ) ≤ 0, then the set {

x ∈ F | f̃(x) ≤ λ, g(x) > ε
}

is empty for any ε > 0. Hence, for any ε > 0, the inequality

min
�

{
f̃(x) | x ∈ F , g(x) ≥ ε

}
≥ λ

holds, from which and Lemma 8.1 we obtain ṽ ≥ λ.
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8.1.3 Proof of Theorem 2.9

From Corollary 2.7 we obtain the assertions (i) and (ii), respectively, by showing that (a) g∗(λ) < 0
implies ṽ > λ; (b) g∗(λ) > 0 implies ṽ < λ. Furthermore, the assertion (a) follows (iii) and
Proposition 2.8 (ii); the assertion (b) follows (iii) and the fact that (c) g∗(λ) ≥ 0 implies ṽ ≤ λ;
Thus, it suffices to show the assertions (iii) and (c). We start with showing (c). Observe that
g∗(λ) ≥ 0 implies that there exists a feasible solution x′ of (11) satisfying g(x′) ≥ 0. Then, we easily
see that x′ is also feasible for the problem (10) satisfying f̃(x′) ≤ λ, which yields the assertion (c).
We next show the assertion (iii). Note that ‘if’ part of (iii) follows (c) and Proposition 2.8 (ii). Hence,
suppose ṽ = λ. Then there exists a feasible solution x′′ of (10) satisfying f̃(x′′) = λ. Since x′′ is also
feasible for the problem (11), g(x′′) ≥ 0 implies g∗(λ) ≥ 0. On the other hand, Proposition 2.8 (i)
and the condition ṽ = λ imply g∗(λ) ≤ 0. Thus, we obtain g∗(λ) = 0.

8.1.4 Proof of Proposition 2.13

Observe that f̃ defined by (9) is strongly convex, because Q̃0 and Q1 are positive semidefinite.
Hence, the set {

(u,z) ∈ R
nd × R

nm | f̃(u,z) ≤ λ
}

is nonempty, bounded, and convex. Accordingly, (22) is the minimization of the strongly convex
function over the nonempty bounded convex set, which implies that the optimal solution of (22)
exists uniquely.

8.2 For section 3

8.2.1 Proof of Proposition 3.1

Since (29) immediately follows (27) and (28), it suffices to show that (28) holds. Observing that
Problem (27) is a convex quadratic optimization problem, we see that zj is an optimal solution if
and only if it satisfies the KKT conditions

2djzj − σj = 0, (55)

zj ≥ cj, (56)

σj ≥ 0, (57)

σj(zj − cj) = 0, (58)

where σj is the Lagrange multiplier. By substituting σj in (55) into (58) and using dj > 0, we obtain
zj(zj − cj) = 0, i.e.

zj ∈ {0, cj}. (59)

Firstly, suppose cj ≥ 0. Then (56) and (59) imply

zj = cj .

Alternatively, suppose cj < 0. By using (55) and (57), we see

zj ≥ 0,

from which and (59) we conclude zj = 0.
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8.2.2 Proof of Proposition 3.2

Clearly, u is an optimal solution of (26) if and only if (u, cJ ) satisfying (32) is an optimal solution
of the problem

min
�,�J

⎧⎨⎩uTK+u +
∑
j∈J

kc
j(cj)c2

j

∣∣∣∣∣∣ cJ = BT
J u, ‖u‖2 = 1

⎫⎬⎭ . (60)

From Proposition 3.1 it follows that (60) is equivalently rewritten as

min
�,�J

⎧⎨⎩uTK+u +
∑
j∈J

min
zj

{
djz

2
j | zj ≥ cj

} ∣∣∣∣∣∣ cJ = BT
J u, ‖u‖2 = 1

⎫⎬⎭ , (61)

without changing the optimal value and the set of optimal solutions, where (28) holds at an optimal
solution of (61). Observe that, in (61), only the objective function includes zJ , which justifies that
(61) is equivalently rewritten as

min
�,�J ,�J

uTK+u +
∑
j∈J

djz
2
j

s.t. zj ≥ cj , j ∈ J ,

cJ = BT
J u,

‖u‖2 = 1,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(62)

without changing the optimal value and the set of optimal solutions. Elimination of cJ from (62)
results in (31), which concludes the proof.

8.3 For section 5

8.3.1 Proof of Proposition 5.1

Since (49) immediately follows (47) and (48), it suffices to show that (48) holds. Observing that
Problem (47) is a convex quadratic optimization problem, we see that (zej , zpj) is an optimal solution
if and only if it satisfies the KKT condition

2de
jzej + νjσ1j = 0, (63)

2dp
j zpj − νjσ2j = 0, (64)

νjzej ≤ νjcj , σ1j ≥ 0, (65)

νjzpj ≥ νjcj , σ2j ≥ 0, (66)

σ1jνj(zej − cj) = 0, (67)

σ2jνj(zpj − cj) = 0, (68)

where σ1j and σ2j are the Lagrange multipliers. By substituting (63) and (64) into (67) and (68),
respectively, we obtain

zej(zej − cj) = 0,

zpj(zpj − cj) = 0,
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i.e.

zej ∈ {0, cj}, (69)

zpj ∈ {0, cj}. (70)

In the remainder of the proof, we assume νj > 0 for simplicity. The case of νj < 0 can be shown
similarly. First, suppose cj < 0. Then, the first inequality of (65) and νjcj < 0 imply

νjzej < 0,

from which and (69) we obtain zej = cj. Alternatively, suppose cj ≥ 0. The second inequality of
(65) and νj > 0 imply

νjσ1j ≥ 0,

from which and (63) it follows that zej ≤ 0 should be satisfied. Accordingly, from (69) and cj ≥ 0
we obtain zej = 0. Similarly, we can show that zpj satisfies

zpj =

⎧⎨⎩cj , if cj ≥ 0,

0, if cj < 0,

for νj > 0, which concludes the proof.
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A Explicit formulations for contact problems

Explicit formulations of problems relevant to (43) in section 4 are investigated.
Introducing λ̃ so that K + λ̃I is positive semidefinite in accordance with (8), define K̃ by

K̃ = K + λ̃I. (71)

The perturbed problem (10) defining ṽ is explicitly formulated as

ṽ = min
�

{
uTK̃u | T 0u ≤ 0, T ru = 0, ‖u‖2 − 1 ≥ 0

}
. (72)

Accordingly, the problem (11) defining g∗ is obtained as

g∗(λ) = max
�

{
‖u‖2 − 1 | T 0u ≤ 0, T ru = 0, uTK̃u ≤ λ

}
, (73)

which is to be solved by using Algorithm 2.12. The subproblem (22) in Step 1 of Algorithm 2.12 is
formulated as

max
�

{
−
∥∥∥∥u− (1 +

2
ρ
)uk

∥∥∥∥2

| T 0u ≤ 0, T ru = 0, uTK̃u ≤ λ

}
. (74)

In a manner similar to section 3.3, we solve (74) by embedding it into the dual standard form of
the SOCP problem. We start with observing the fact that the problem (74) is equivalently rewritten
as

max
�,t

−t

s.t. T 0u ≤ 0,

T ru = 0,

uTK̃u ≤ λ,

−t ≤ −
∥∥∥∥u− (1 +

2
ρ
)uk

∥∥∥∥2

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(75)

where t ∈ R is an auxiliary variable. Let Ru ∈ R
nd×nd

denote a constant matrix satisfying (37). It
follows from Proposition 3.3 that (75) is equivalently rewritten as

max
�,t

−t

s.t. Tu ≤ 0,

λ +
1
4
≥
∥∥∥∥∥
(

λ− (1/4)
Ruu

)∥∥∥∥∥ ,

t +
1
4
≥
∥∥∥∥∥
(

t− (1/4)
u− (1 + (2/ρ))uk

)∥∥∥∥∥ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(76)

which is a dual-standard form of SOCP.
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B Explicit formulations for elastic-plastic problems

B.1 Feasibility problem

The feasibility problem for the problem (50) associated with the elastic-plastic trusses in section 5
is investigated. By introducing a parameter λ̃ satisfying

K̃ := Ke + λ̃I ∈ Snd

++, (77)

the perturbed problem defining ṽ is explicitly obtained as

ṽ = min
�,�eJ ,�pJ

{
uTK̃u + zT

eJDe
J zeJ + zT

pJ Dp
J zpJ |

NJ (BT
J u− zeJ ) ≥ 0, NJ (zpJ −BT

J u) ≥ 0, ‖u‖2 − 1 ≥ 0
}

. (78)

Observe that (78) is embedded into the form of the problem (10). It follows from Proposition 2.6
that we solve (78) instead of (50) for stability determination. The explicit form of (11), which
defines g∗, is obtained as

g∗(λ) = max
�,�eJ ,�pJ

{
‖u‖2 − 1 |NJ (BT

J u− zeJ ) ≥ 0, NJ (zpJ −BT
J u) ≥ 0,

uTKeu + zT
eJ De

J zeJ + zT
pJ Dp

J zpJ ≤ λ
}

. (79)

Remark B.1. As a particular case, suppose that dp
j = 0 (j ∈ J ) which implies elastic-perfectly

plastic truss. Then the stability determination problem, (50), can be simplified as the following
problem in the variables (u,zeJ ) ∈ R

nd × R
|J |:

min
�,�eJ

{
uTKeu + zT

eJ De
J zeJ |NJ zeJ ≤NJ BT

J u, ‖u‖2 = 1
}

. (80)

The optimal value of the problem (80) coincides with v∗ defined by (46) with dp := 0. Furthermore,
u is an optimal solution of (46) with dp := 0 if and only if (u,zeJ ) satisfying (32) and (48) is an
optimal solution of (50). The proof is analogous to Proposition 3.1 and Proposition 3.2, and thus is
omitted. As a consequence, we see that the problem (78) is simplified as

ṽ = min
�,�eJ

{
uTK̃u + zT

eJDe
J zeJ |NJ (BT

J u− zeJ ) ≥ 0, ‖u‖2 − 1 ≥ 0
}

; (81)

and, accordingly, the problem (79) is obtained as

g∗(λ) = max
�,�eJ

{‖u‖2 − 1 |NJ (BT
J u− zeJ ) ≥ 0, uTKeu + zT

eJ De
J zeJ ≤ λ

}
. (82)

B.2 SOCP formulation of subproblem

In a manner similar to section 3.3, we shall see that the subproblem (22) of Algorithm 2.12 solving
(79) can be formulated as an SOCP problem.

Analogously to (36), the subproblem (22) of Algorithm 2.12 solving (79) is obtained as

max
�,�eJ ,�pJ

−
∥∥∥u− (1 + (2/ρ))uk

∥∥∥2
−
∥∥∥zJ − zk

eJ
∥∥∥2
−
∥∥∥zJ − zk

pJ
∥∥∥2

s.t. NJ (BT
J u− zeJ ) ≥ 0,

NJ (zpJ −BT
J u) ≥ 0,

uTK̃u + zT
eJ De

J zeJ + zT
pJ Dp

J zpJ ≤ λ,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(83)
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because the function h1 in (12) is defined as

h1(u,zeJ ,zpJ ) =
ρ

2
(‖u‖2 + ‖zeJ ‖2 + ‖zpJ ‖2

)
+ ‖u‖2 − 1.

Let Ru ∈ R
nd×nd

, Re
z ∈ R

|J |×|J |, and Rp
z ∈ R

|J |×|J |, respectively, denote constant matrices satis-
fying (37) and

(Re
z)TRe

z = De
J ,

(Rp
z)TRp

z = Dp
J .

In a manner similar to (38), by introducing an auxiliary variable t ∈ R and utilizing Proposition 3.3,
the problem (83) can be embedded into the dual-standard form of SOCP as

min
�,�eJ ,�pJ ,t

t

s.t. NJ (BT
J u− zeJ ) ≥ 0,

NJ (zpJ −BT
J u) ≥ 0,

λ +
1
4
≥

∥∥∥∥∥∥∥∥∥∥

⎛⎜⎜⎜⎜⎝
λ− (1/4)

Ruu

Re
zzeJ

Rp
zzpJ

⎞⎟⎟⎟⎟⎠
∥∥∥∥∥∥∥∥∥∥

,

t +
1
4
≥

∥∥∥∥∥∥∥∥∥∥

⎛⎜⎜⎜⎜⎝
t− (1/4)

u− (1 + (2/ρ))uk

zeJ − zk
eJ

zpJ − zk
pJ

⎞⎟⎟⎟⎟⎠
∥∥∥∥∥∥∥∥∥∥

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(84)

which can be solved efficiently by using the primal-dual interior-point method.
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