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Abstract

M-convex and L-convex functions in continuous variables consti-
tute subclasses of convex functions with nice combinatorial properties.
In this note we give proofs of the fundamental facts that closed proper
M-convex and L-convex functions are continuous on their effective do-
mains.

1 Introduction

Two kinds of convexity concepts, called M-convexity and L-convexity, play
primary roles in the theory of discrete convex analysis [6]. They are origi-
nally introduced for functions in integer variables by Murota [4, 5], and then
for functions in continuous variables by Murota–Shioura [8, 10].

M-convex and L-convex functions in continuous variables constitute sub-
classes of convex functions with additional combinatorial properties such as
submodularity and diagonal dominance (see, e.g., [6, 7, 8, 9, 10, 11]). Fun-
damental properties of M-convex and L-convex functions are investigated
in [9], such as equivalent axioms, subgradients, directional derivatives, etc.
Conjugacy relationship between M-convex and L-convex functions under the
Legendre-Fenchel transformation is shown in [10]. Subclasses of M-convex
and L-convex functions are investigated in [8] (polyhedral M-convex and L-
convex functions) and in [11] (quadratic M-convex and L-convex functions).
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As variants of M-convex and L-convex functions, the concepts of M\-convex
and L\-convex functions are also introduced by Murota–Shioura [8, 10].

M-convex and L-convex functions in continuous variables appear nat-
urally in various research areas. In inventory theory, a recent paper of
Zipkin [13] sheds a new light on some classical results of Karlin–Scarf [2]
and Morton [3] by pointing out that the optimal-cost function possesses
L\-convexity. Quadratic L\-convex functions are exactly the same as the
(finite dimensional case of) Dirichlet forms used in probability theory [1].
It is shown in [7, Section 14.8] that for (the finite dimensional distribution
of) stochastic processes such as Gaussian processes and additive processes,
cumulant generating functions and rate functions are M\-convex and L\-
convex, respectively. The energy consumed in a nonlinear electrical network
is an L\-convex function when expressed as a function in terminal voltages,
and is an M\-convex function as a function in terminal currents [6, Section
2.2].

In this note, we discuss continuity issues of M-convex and L-convex func-
tions in continuous variables. Although continuity is one of the most fun-
damental properties of functions, discussion on continuity is missing in the
literature of M-convex and L-convex functions. The aim of this note is to
give proofs of the facts that closed proper M-convex and L-convex functions
are continuous on their effective domains. The main results of this note
are summarized as follows, where the precise definitions of closed proper
M-convex and L-convex functions are given in Section 2.1.

Theorem 1.1. Let f : R
n → R ∪ {+∞}.

(i) If f is closed proper M-convex, then it is continuous on dom f .
(ii) If f is closed proper M\-convex, then it is continuous on dom f .

Theorem 1.2. Let g : R
n → R ∪ {+∞}.

(i) If g is closed proper L-convex, then it is continuous on dom g.
(ii) If g is closed proper L\-convex, then it is continuous on dom g.

It may be mentioned that our proof of Theorem 1.2 shows that an L-
convex (L\-convex) function is upper semi-continuous even if it is not closed.

2 Preliminaries

2.1 M-convex and L-convex Functions

A function f : R
n → R ∪ {+∞} is said to be M-convex if it is convex and

satisfies (M-EXC):

(M-EXC) ∀x, y ∈ dom f , ∀i ∈ supp+(x−y), ∃j ∈ supp−(x−y),
∃α0 > 0 satisfying

f(x)+f(y) ≥ f(x−α(χi−χj))+f(y+α(χi−χj)) (∀α∈[0, α0]),
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where χi ∈ {0, 1}n denotes the characteristic vector of i ∈ N = {1, 2, . . . , n},
and

dom f = {x ∈ R
n | f(x) < +∞},

supp+(x − y) = {i ∈ N | x(i) > y(i)},

supp−(x − y) = {i ∈ N | x(i) < y(i)}.

We call a function f : R
n → R∪ {+∞} M\-convex if the function f̂ : R

bN →
R ∪ {+∞} defined by

f̂(x0, x) =

{
f(x) ((x0, x) ∈ R

bN , x0 = −x(N)),
+∞ (otherwise)

(2.1)

is M-convex, where N̂ = {0} ∪ N and x(N) =
∑

i∈N x(i). An M-convex
(resp., M\-convex) function is said to be closed proper M-convex (resp., closed
proper M\-convex) if it is closed and proper, in addition.

A function g : R
n → R∪{+∞} is said to be L-convex if it is convex and

satisfies (LF1) and (LF2):

(LF1) g(p) + g(q) ≥ g(p ∧ q) + g(p ∨ q) (∀p, q ∈ dom g),
(LF2) ∃r ∈ R: g(p + α1) = g(p) + αr (∀p ∈ dom g, ∀α ∈ R),

where p ∧ q, p ∨ q ∈ R
n are given by

(p ∧ q)(i) = min{p(i), q(i)}, (p ∨ q)(i) = max{p(i), q(i)} (i ∈ N).

We call a function g : R
n → R ∪ {+∞} L\-convex if the function ĝ : R

bN →
R ∪ {+∞} defined by

ĝ(p0, p) = g(p − p01) ((p0, p) ∈ R
bN )

is L-convex, where N̂ = {0} ∪ N . An L-convex (resp., L\-convex) function
is said to be closed proper L-convex (resp., closed proper L\-convex) if it is
closed and proper, in addition.

2.2 Basic Facts from Convex Analysis

As technical preliminaries we describe some facts known in convex analysis.
This also serves to illustrate the present issue.

Theorem 2.1 ([12, Theorem 10.1]). Any convex function is continuous
on the relative interior of the effective domain.

Theorem 2.1 implies, in particular, that a convex function is continuous on
the effective domain if the effective domain is an open set.

On the other hand, a convex function is not necessarily continuous at
relative boundary points of the effective domain, even if it is closed proper
convex, as shown in the following example.
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Example 2.2 ([12, Section 10]). Let f : R
2 → R ∪ {+∞} be a function

defined by

f(x, y) =





y2

2x
(x > 0),

0 (x = y = 0),
+∞ (otherwise),

which is closed proper convex since its epigraph {(x, y, z) ∈ R
3 | z ≥ f(x, y)}

is a closed convex set. It is easy to see that f is continuous at every point
of dom f , except at the origin (x, y) = (0, 0). For any positive number α, we
have

lim
y↓0

f
( y2

2α
, y

)
= lim

y↓0
α = α 6= 0 = f(0, 0),

which shows that f is not continuous at the origin.

A sufficient condition for a closed proper convex function to be continu-
ous on the effective domain is given in terms of “locally simplicial” sets. A
subset S of R

n is said to be locally simplicial if for each x ∈ S there exists
a finite collection of simplices T1, T2, . . . , Tm contained in S such that

U ∩ (T1 ∪ T2 ∪ · · · ∪ Tm) = U ∩ S

for some neighborhood U of x. The class of locally simplicial sets includes
line segments, polyhedra, and relatively open convex sets.

Theorem 2.3 ([12, Theorem 10.2]). Let f : R
n → R∪{+∞} be a closed

proper convex function. For a locally simplicial set S ⊆ dom f , the function
f is continuous on S. In particular, f is continuous on dom f if dom f is
locally simplicial.

3 Continuity of Closed Proper M-/L-convex Func-
tions

We now consider the continuity of closed proper M-/L-convex functions.
The effective domains of closed proper M-/L-convex functions are “es-

sentially polyhedral” in the sense that the closure of the effective domains
are polyhedra (see Theorems 3.2 and 3.3 below). Hence, the continuity of
closed proper M-/L-convex functions follows from Theorem 2.3 when the
effective domains are closed sets. The effective domains of closed proper
M-/L-convex functions, however, are not necessarily closed, as shown in the
following example.

Example 3.1. Let ϕ : R → R ∪ {+∞} be a function defined by

ϕ(x) =

{ 1

x
(0 < x ≤ 1)

+∞ (otherwise).

4



Then, ϕ is a closed proper convex function such that the effective domain
domϕ is an interval {x ∈ R | 0 < x ≤ 1}, which is neither a closed set nor
a relatively open set.

Using ϕ we define functions f, g : R
2 → R ∪ {+∞} as follows:

f(x, y) =

{
ϕ(x) (x + y = 0),
+∞ (x + y 6= 0),

((x, y) ∈ R
2),

g(x, y) = ϕ(x − y) ((x, y) ∈ R
2).

Then, f and g are closed proper M-convex and L-convex functions, respec-
tively. Neither dom f nor dom g is a closed set.

Although the effective domains are not always closed, they are well-behaved
and almost polyhedral, as follows.

A polyhedron S ⊆ R
n is said to be M-convex (resp., M\-convex, L-convex,

L\-convex) if the indicator function δS : R
n → {0,+∞} defined by

δS(x) =

{
0 (x ∈ S),

+∞ (x 6∈ S)

is M-convex (resp., M\-convex, L-convex, L\-convex). For any set S ⊆ R
n

we denote by cl(S) the closure of S, i.e., the smallest closed set containing
S.

Theorem 3.2. For any closed proper M-convex (resp., M\-convex) function
f : R

n → R ∪ {+∞}, the set cl(dom f) is an M-convex (resp., M\-convex)
polyhedron.

Proof. The proof is given in Section 4.1.

Theorem 3.3. For any closed proper L-convex (resp., L\-convex) function
g : R

n → R ∪ {+∞}, the set cl(dom g) is an L-convex (resp., L\-convex)
polyhedron.

Proof. The proof is given in Section 4.2.

Theorem 3.4. The effective domain of a closed proper M-convex (resp.,
M\-convex) function is a locally simplicial set.

Proof. The proof is given in Section 4.3.

Theorem 3.5. The effective domain of a closed proper L-convex (resp.,
L\-convex) function is a locally simplicial set.

Proof. The proof is given in Section 4.4.

The continuity of closed proper M-/L-convex functions, as claimed in
Theorems 1.1 and 1.2, follows from Theorems 2.3, 3.4, and 3.5.
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4 Proofs

4.1 Proof of Theorem 3.2

For any closed proper convex function f : R
n → R ∪ {+∞}, we define a

function f0+ : R
n → R ∪ {+∞} by

(f0+)(y) = lim
λ→∞

f(x + λy) − f(x)

λ
(y ∈ R

n),

where x ∈ R
n is any fixed vector in dom f . The function f0+ is called the

recession function of f (see [12] for the original definition of the recession
function). The recession function f0+ is a positively homogeneous closed
proper convex function. Our proof of Theorem 3.2 is based on the following
fact.

Theorem 4.1 ([12, Theorem 13.3]). For any closed proper convex func-
tion f : R

n → R∪{+∞}, the recession function f0+ is the support function
of dom f •.

It suffices to consider a closed proper M-convex function f : R
n → R ∪

{+∞}. Then, its conjugate function g = f • is a closed proper L-convex
function [10, Theorem 1.1]. As shown below, the recession function g0+

of g is L-convex. This implies that the support function of (the closure of)
dom f• is a positively homogeneous L-convex function, which in turn implies
that cl(dom f •) is an M-convex polyhedron [8, Theorem 4.38].

We now show the L-convexity of the recession function g0+. Namely, we
prove that g0+ satisfies (LF1) and (LF2).

Let p0 ∈ dom g be any fixed vector. Then, the recession function g0+ is
given as

(g0+)(p) = lim
λ→∞

g(p0 + λp) − g(p0)

λ
(p ∈ R

n).

Since g satisfies (LF2), there exists r ∈ R such that

g(p + α1) = g(p) + αr (∀p ∈ dom g, ∀α ∈ R). (4.1)

For any p ∈ dom g0+ and α ∈ R, we have

(g0+)(p + α1) = lim
λ→∞

g(p0 + λ(p + α1)) − g(p0)

λ

= lim
λ→∞

g(p0 + λp) + λαr − g(p0)

λ

= lim
λ→∞

g(p0 + λp) − g(p0)

λ
+ αr

= (g0+)(p) + αr,

where the second equality is by (4.1). Hence, (LF2) holds for g0+.
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Let p, q ∈ dom g0+. For any λ ∈ R+, we have

g(p0 + λp) + g(p0 + λq) ≥ g(p0 + λ(p ∧ q)) + g(p0 + λ(p ∨ q))

by (LF1) for g. Hence, we have

g0+(p) + g0+(q)

= lim
λ→∞

g(p0 + λp) − g(p0)

λ
+ lim

λ→∞

g(p0 + λq) − g(p0)

λ

≥ lim
λ→∞

g(p0 + λ(p ∧ q)) − g(p0)

λ
+ lim

λ→∞

g(p0 + λ(p ∨ q)) − g(p0)

λ

= g0+(p ∧ q) + g0+(p ∨ q),

i.e., (LF1) holds for g0+.

4.2 Proof of Theorem 3.3

It suffices to consider a closed proper L-convex function g : R
n → R∪{+∞}.

The properties (LF1) and (LF2) for g imply that D = dom g satisfies the
following properties:

(LS1) p, q ∈ D =⇒ p ∧ q, p ∨ q ∈ D,
(LS2) p ∈ D =⇒ p + λ1 ∈ D (∀λ ∈ R).

Therefore, Theorem 3.3 follows immediately from the next theorem.

Theorem 4.2. For any nonempty set D ⊆ R
n, let

γD(i, j) = sup{p(j) − p(i) | p ∈ D} (i, j ∈ N),

D̃ = {p ∈ R
n | p(j) − p(i) ≤ γD(i, j) (i, j ∈ N)}.

If D satisfies (LS1) and (LS2), then we have cl(D) = D̃.

Proof. The inclusion cl(D) ⊆ D̃ is easy to see. To prove the reverse inclu-
sion, we show that q ∈ D holds for any vector q in the relative interior of
D̃.

We first show that for any i, j ∈ N there exists pij ∈ D such that

pij(j) − pij(i) ≥ q(j) − q(i).

If −γD(j, i) = γD(i, j), then any vector in D can be chosen as pij since for
any p ∈ D we have p(j) − p(i) = γD(i, j) = q(j) − q(i). Hence, we suppose
that −γD(j, i) < γD(i, j) holds. Then, we have q(j) − q(i) < γD(i, j) since
q is in the relative interior of D̃. By the definition of γD(i, j), there exists
some pij ∈ D such that q(j) − q(i) ≤ pij(j) − pij(i) ≤ γD(i, j).

By (LS2), we may assume that pij(i) = q(i) and pij(j) ≥ q(j). For each

i ∈ N , the vector pi =
∨

j∈N

pij (∈ D) satisfies pi(i) = q(i), pi(j) ≥ q(j) for

all j ∈ N . Therefore, it holds that q =
∧

i∈N

pi ∈ D.
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4.3 Proof of Theorem 3.4

For any set S ⊆ R
n and a vector x ∈ S, we denote by cone(S, x) the conic

hull of the vectors {y − x | y ∈ S}, i.e., cone(S, x) is the set of vectors
d ∈ R

n such that d =
∑m

k=1
αk(yk − x) for some positive integer m and

yk ∈ S, αk > 0 (k = 1, 2, . . . ,m). The following is immediate from the
definition of locally simplicial sets.

Lemma 4.3. A convex set S ⊆ R
n is locally simplicial if for each x ∈ S,

cone(S, x) is a polyhedral cone.

For the proof of Theorem 3.4 it suffices to consider an M-convex function.
Then, Theorem 3.4 follows from Lemma 4.3 and the following lemma.

Lemma 4.4. Let f : R
n → R∪{+∞} be a closed proper M-convex function.

For any x ∈ dom f , it holds that

cone(dom f, x) = cone(Rx, x),

where Rx ⊆ R
n is a polyhedral cone given by

Rx = {χj − χi | i, j ∈ N, i 6= j, x + α(χj − χi) ∈ dom f for some α > 0}.

To prove Lemma 4.4 we use the following properties of M-convex func-
tions.

Lemma 4.5 ([10, Proposition 2.2]). If f : R
n → R ∪ {+∞} is closed

proper M-convex, then x(N) = y(N) for all x, y ∈ dom f .

Lemma 4.6 ([10, Theorem 3.11]). Let f : R
n → R ∪ {+∞} be a closed

proper convex function. Then, f satisfies (M-EXC) if and only if it satisfies
(M-EXCs):

(M-EXCs) ∀x, y ∈ dom f , ∀i ∈ supp+(x − y), ∃j ∈ supp−(x −
y) :

f(x)+f(y) ≥ f(x−α(χi−χj))+f(y+α(χi−χj)) (∀α ∈ [0, α0(x, y, i)]),

where

α0(x, y, i) =
x(i) − y(i)

2|supp−(x − y)|
.

Proof of Lemma 4.4. It is easy to see that cone(Rx, x) ⊆ cone(dom f, x). To
prove the reverse inclusion, it suffices to show that y − x ∈ cone(Rx, x) for
any y ∈ dom f .

We will show that there exists a sequence of vectors yk (k = 0, 1, 2, . . .)
such that y0 = y and

yk ∈ dom f, yk 6= x, y − yk ∈ cone(Rx, x) (k = 0, 1, 2, . . .), (4.2)

||yk+1 − x||1 ≤ (1 −
1

2n2
)||yk − x||1. (4.3)
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This implies that y − x = limk→∞(y − yk) ∈ cone(Rx, x), since cone(Rx, x)
is a closed set.

We define the vectors yk (k = 0, 1, 2, . . .) iteratively as follows. Suppose
that yk is already defined and satisfies the condition (4.2). Since yk 6= x, we
have supp+(yk − x) 6= ∅. Let i ∈ supp+(yk − x) be such that

yk(i) − x(i) = max{yk(i
′) − x(i′) | i′ ∈ supp+(yk − x)}. (4.4)

By Lemma 4.6, there exists j ∈ supp−(yk − x) such that

yk − α(χi − χj) ∈ dom f, x + α(χi − χj) ∈ dom f,

where α = (yk(i)−x(i))/2n. Then, yk+1 is defined as yk+1 = yk−α(χi−χj).
We now show that the vector yk+1 satisfies the conditions (4.2) and (4.3).

Since yk+1(i) > x(i), we have yk+1 6= x. Since x + α(χi − χj) ∈ dom f , we
have χi − χj ∈ Rx, which, together with y − yk ∈ cone(Rx, x), implies

y − yk+1 = (y − yk) + α(χi − χj) ∈ cone(Rx, x).

Since yk(N) = x(N) by Lemma 4.5, it holds that

||yk − x||1 = 2
∑

{yk(i
′) − x(i′) | i′ ∈ supp+(yk − x)}

≤ 2n(yk(i) − x(i))

= 4n2α,

where the inequality is by (4.4). Hence, it holds that

||yk+1 − x||1 = ||yk − x||1 − 2α ≤ (1 −
1

2n2
)||yk − x||1.

4.4 Proof of Theorem 3.5

Theorem 3.5 follows from Lemma 4.3 and Lemma 4.7 below. Note that it
suffices to consider an L-convex function.

Lemma 4.7. Let g : R
n → R ∪ {+∞} be an L-convex function. For any

p ∈ dom g, it holds that

cone(dom g, p) = cone(Rp, p),

where Rp ⊆ R
n is a polyhedral cone given by

Rp = {χX | X ⊂ N, p + αχX ∈ dom g for some α > 0} ∪ {+1,−1}.

To prove Lemma 4.7, we use the following property of L-convex functions.
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Lemma 4.8 ([9, Proposition 3.10]). If g : R
n → R∪{+∞} is L-convex,

then we have
g(p) + g(q) ≥ g(p + λχX) + g(q − λχX)

for all p, q ∈ dom g and λ ∈ [0, λ1 − λ2], where χX ∈ {0, 1}n denotes the
characteristic vector of X ⊆ N , and

λ1 = max{q(i) − p(i) | i ∈ N},

X = {i ∈ N | q(i) − p(i) = λ1},

λ2 = max{q(i) − p(i) | i ∈ N \ X}.

Proof of Lemma 4.7. It is easy to see that cone(Rp, p) ⊆ cone(dom g, p),
where it is noted that p + α1 ∈ dom g for all α ∈ R. To show the reverse
inclusion, it suffices to show that q − p ∈ cone(Rp, p) for any q ∈ dom g.

By (LF2) for g, we may assume that p ≤ q and p(i0) = q(i0) for some
i0 ∈ N . We prove q − p ∈ cone(Rp, p) by induction on the number m of
distinct values in {q(i) − p(i) | i ∈ N}.

If m = 0, then we have q − p = 0 ∈ cone(Rp, p). Hence, we assume
m > 0, which implies q(i1) > p(i1) for some i1 ∈ N . By Lemma 4.8, we
have

p + (λ1 − λ2)χX ∈ dom g, q − (λ1 − λ2)χX ∈ dom g,

where

λ1 = max{q(i) − p(i) | i ∈ N},

X = {i ∈ N | q(i) − p(i) = λ1},

λ2 = max{q(i) − p(i) | i ∈ N \ X}.

We note that λ1 and λ2 are finite values and X is a nonempty proper subset
of N . Put q̃ = q − (λ1 − λ2)χX . Then, the number of distinct values in
{q̃(i) − p(i) | i ∈ N} is equal to m − 1. Therefore, the induction hypothesis
implies q̃ − p ∈ cone(Rp, p). We also have χX ∈ Rp since p + (λ1 − λ2)χX ∈
dom g. Hence, it holds that

q − p = (q̃ − p) + (λ1 − λ2)χX ∈ cone(Rp, p).
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