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Sensitivity Analysis of Networked Control Systems

via an Information Theoretic Approach

Kunihisa OKANO∗ Hideaki ISHII† Shinji HARA∗

March 11, 2008

Abstract

This paper deals with an MIMO feedback control system that has
two channels with additive noise and studies the effects of the noise
on the input and output signals of the plant. We derive integral-
type limitations for sensitivity-like properties of the feedback system
based on an information theoretic approach. It is shown that they are
generalizations of Bode’s integral formula for the case that the feedback
system includes nonlinear elements.

1 Introduction

The rapid development in communication technologies and the growth of
computer networks have enabled us to implement feedback control systems
utilizing communication channels. Research on such networked control sys-
tems has recently attracted much attention; see, e.g., [1] and the references
therein. A typical system setup can be found in Fig. 1. Here, for the com-
munication between the plant and the controller, various constraints may
arise including time delays, data losses, quantization/coding errors. Such
constraints may be harmful and cause degradation in performance and even
instability of the closed-loop system.

To deal with these issues, it is important to evaluate the amount of in-
formation that the communication signals contain regarding the plant and
the controller. This view has motivated analyses of networked control sys-
tems based on notions and results from information theory. For example,
channels can be characterized by their capacity and rate of communication,
which represent the numbers of bits that can be transferred at each time
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Figure 1: Networked control system.

step. The results in [6, 13] give conditions on the channels in terms of the
communication rate for the existence of stabilizing controllers, encoders, and
decoders.

Furthermore, in the approach based on information theory, the focus
is on signals rather than on systems representing input-output relations.
Hence, in certain cases, we may relax the assumptions on systems and ex-
tend prior results in control theory which have been limited to linear time-
invariant systems to systems with nonlinear elements.

One such result can be found in [5]; in this work, a sensitivity property
of feedback systems with linear plant and nonlinear controllers is analyzed
by measuring the entropy of the signals. In particular, it provides a lower
bound on the gain of a sensitivity-like function which is expressed by the
unstable poles of the plant. On the other hand, a well-known relation be-
tween a sensitivity property and the unstable poles of the plant is given by
Bode’s integral formula [2, 4, 11]. While Bode’s integral formula deals only
with linear systems, the result in [5] extends it to systems with nonlinear
controllers. In our prior work [7], this approach has been followed to char-
acterize a complementary sensitivity property by the unstable zeros and the
direct feedthrough term of the plant. Though only linear systems are consid-
ered there, employing an information theoretic approach, it has shown the
possibility of extending Bode’s integral formula for complementary sensitiv-
ity functions [12] to nonlinear systems. From the viewpoint of networked
control systems, these results show certain limitations on the reduction of
the effects of channel noises.

In this paper, we consider networked control systems based on the ap-
proach of [5, 7]. Specifically, we analyze the effects of channel noises on the
input and output signals of the plant in a unified manner. These effects
are measured by four sensitivity-like functions including those for the sensi-
tivity and the complementary sensitivity properties. We derive constraints
on these functions described by the plant properties such as the unstable
poles/zeros and direct feedthrough terms. Moreover, the constraints are ex-
tensions of the results in [5, 7] to multi-input multi-output (MIMO) systems
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and a class of nonlinear controllers.
This paper is organized as follows: We first introduce some notions and

results in information theory in Section 2. Then, in Section 3, we formulate
the problem of the paper and introduce related previous works. The main
results of the paper are given in Section 4. This is followed by Section 5,
where important properties required to derive the results are presented. In
Section 6, we illustrate the results through numerical examples. Finally, we
state concluding remarks in Section 7.

In this paper, we adopt the following notation.

• We represent random variables using boldface letters such as x.

• Consider a discrete-time stochastic process {x(k)}∞k=0. We represent
a sequence of random variables from k = l to k = m (m ≥ l) as
xm

l := {x(k)}m
k=l. In particular, when l = 0, we write xm

l simply as
xm.

• We use x instead of {x(k)}∞k=0 when it is clear from the context.

• The operation E[·] denotes the expectation of a random variable.

2 Entropy and mutual information

In this section, we introduce some notation and basic results from informa-
tion theory that we use in the paper.

Entropy is a notion widely used as a measure of uncertainty contained
in a random variable. It is defined as follows.

Definition 1. The (differential) entropy h(x) of a continuous random vari-
able x ∈ R

m with the (joint) probability density px is defined as

h(x) := −
∫

Rm

px(ξ) log px(ξ)dξ.

Next, we introduce mutual information, which is a measure of the amount
of information that one random variable possesses about another random
variable.

Definition 2. The mutual information I(x;y) between x ∈ R and y ∈ R is
defined as

I(x;y) = h(x) − h(x|y),

where h(·|·) represent the conditional entropy.
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Note that in the above definitions, we assume the existence of the prob-
ability density functions and the joint probability density functions of the
random variables.

We now list some of the basic properties of entropy and mutual infor-
mation which are required in the paper. Their proofs can be found in, e.g.,
[3, 8, 9].

• Symmetry and nonnegative property:

I(x;y) = I(y;x)
= h(x) − h(x|y) = h(y) − h(y|x) ≥ 0 (1)

• Entropy and conditional entropy: From the above property, the fol-
lowing holds:

h(x|y) ≤ h(x). (2)

• Chain rule:

h(x,y) = h(x) + h(y|x) (3)

• Data processing inequality: Suppose that f is a measurable function
on the appropriate space. Then, the following holds:

h(x|y) ≤ h(x|f(y)). (4)

We have equality if f is invertible.

• Transformations of random variables and their entropy: Suppose that
f is a piecewise C1-class injective function and x and y = f(x) take
continuous values. Then, the following holds:

h(y) = h(x) + E [log |Jf (x)|] , (5)

where Jf is the Jacobian of the transformation f .

• Suppose that f is any given function on the appropriate space. Then,
the following holds:

h(x − f(y)|y) = h(x|y). (6)

Next, we turn our attention to stochastic processes and introduce some
notions. The entropy rate is an asymptotic time average of the entropy of a
process and plays an important role in our analysis.
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Definition 3. The entropy rate h∞(x) of a stochastic process x is defined
as

h∞(x) := lim sup
k→∞

h(xk−1)
k

.

The stochastic processes appearing in this paper are of weak stationarity
as defined below. For such processes, their power spectral densities can be
obtained.

Definition 4. A zero-mean stochastic process x (x(k) ∈ R
m) is weakly

stationary if for every γ ∈ Z, the following equations hold:

E[x(k + γ)] = E[x(γ)],

E[x(k + γ)x(k)�] = E[x(γ)x(0)�].

For a weakly stationary process x, we can define the power spectral density
Φx using Rx(γ) := E[x(γ)x(0)�] = E[x(k + γ)x(k)�] as

Φx(ω) :=
∞∑

γ=−∞
Rx(γ)e−jγω.

The following lemma gives an explicit relation between the entropy rate
and the power spectral density.

Lemma 1 ([8, 14]). If x is a weakly stationary process, then the following
equation holds:

h∞(x) =
1
2

log(2πe)m +
1
4π

∫ π

−π
log det Φx(ω)dω.

v

P
y
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K

w

u

d

e

Figure 2: Model of a networked control system.
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3 Problem Setting

In this section, we formulate the problem considered in this paper and
present several related works in the literature.

As a model of networked control systems in Fig. 1, we consider the feed-
back system depicted in Fig. 2. The system has two analog channels with
additive noises w and d. We assume that the noises w and d are weakly sta-
tionary stochastic processes. The plant P is an m-input m-output discrete-
time linear time-invariant system which consists of a discretized continuous-
time system and some time delays. Let a state-space representation of P be
given by

P :
[

x(k + 1)
y(k)

]
=

[
AP BP

CP 0

] [
x(k)
u(k)

]
,

where x(k) ∈ R
n is the state, u(k) ∈ R

m is the input, and y(k) ∈ R
m is the

output. It is assumed that there exists ν ∈ N such that

CP Ai−1
P BP = 0, for i = 1, 2, · · · , ν − 1,

det CP Aν−1
P BP �= 0. (7)

Then, let DP := CP Aν−1
P BP . It is known that when a continuous-time

system is discretized with sampling period τ , this assumption is satisfied
with ν = 1 for almost all τ . We should take an appropriate ν when P has
time delays due to communication and/or computation in the controller.

The controller K is an m-input m-output dynamical nonlinear system
represented as

K :
z(k + 1) = f(z(k), e(k)),

v(k) = g(z(k)) + φ(e(k)),
(8)

where z(k) ∈ R
nK is the state, e(k) ∈ R

m is the input, and v(k) ∈ R
m is the

output. Here, f and g are arbitrary nonlinear functions, and φ : R
m → R

m

is a piecewise C1-class injective function.
Regarding the random variables in the system, we assume that x(0), wk,

and dk are mutually independent for every k ∈ Z+, and |h(x(0))| < ∞. In
particular, the assumption |h(x(0))| < ∞ implies that the initial condition
x(0) is neither completely known nor completely unknown. As we will see
later, this assumption is characteristic to the information theoretic approach.

In this paper, we analyze the effects of the noises w and d on the input u
and the output y of the plant. These effects are measured by the sensitivity-
like functions defined in the following.
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Definition 5. Consider the system depicted in Fig. 2. Assume that u and
y are weakly stationary processes. Denote by Φs and Φt the power spectral
densities of the signals s ∈ {w,d} and t ∈ {u,y}. The sensitivity-like
function Tts(ω) from s to t is the ratio of these power spectral densities
given by

Tts(ω) :=

√
det Φt(ω)
det Φs(ω)

, s = w,d, t = u,y. (9)

We now show that the sensitivity-like function Tts is closely related to
the transfer function from s to t. If the controller K is linear, we can define
the corresponding transfer functions Tts(z) as

Tuw(z) := (I − K(z)P (z))−1,

Tyw(z) := P (z)(I − K(z)P (z))−1,

Tud(z) := (I − K(z)P (z))−1K(z),

Tyd(z) := P (z)(I − K(z)P (z))−1K(z).

When we consider a transfer function, we implicitly assume that its initial
state is zero. We note that, under this assumption, if a transfer function
G(z) is stable, then the following equation holds:(

det G(ejω)
)2

=
det Φy(ω)
det Φx(ω)

,

where x, y are the input and output signals of G(z), and Φx, Φy are their
power spectral densities, respectively [8]. Thus, in the special case that,
in the system in Fig. 2, the initial state x(0) is zero, the following relation
holds:

Tts(ω) = |det Tts(ejω)|, s = w,d, t = u,y. (10)

In general, this equality is important since it clarifies the relation between
the ratio of power spectral densities and the transfer function.

However, we emphasize that, in the problem setting of this paper, this
equality does not hold. This is because the assumption that the initial state
x(0) of the plant P is zero implies h(x(0)) = −∞. Hence, x(0) does not
satisfy the assumption |h(x(0))| < ∞. Therefore, within the scope of this
paper, the relation (10) does not hold.

In the analysis of this paper, the plant properties of poles and zeros are
important.

Definition 6. Let UPP and UZP represent the sets of unstable poles and
unstable zeros of P , respectively:

UPP := {z | |z| ≥ 1, det(AP − zI) = 0} ,

UZP :=
{

z | |z| ≥ 1, FP (z) < max
λ∈C

FP (λ)
}

,
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where

FP (z) := det
[

AP − zI BP

CP Aν
P DP

]
.

We next present previous works related to the analysis of this paper.
First, in the work of Martins et al. [5], for the case m = 1, the sensitivity
property Tuw is analyzed based on an information theoretic approach. They
have focused on the entropy and mutual information of w and u and have
clarified a relation between Tuw and the unstable poles of P . The following
theorem holds by applying the result in [5] to our problem.

Theorem 1 ([5]). Consider the system depicted in Fig. 2. Suppose that P is
a single-input single-output (SISO) discrete-time linear time-invariant sys-
tem, and K is an arbitrary causal system. If u and y are weakly stationary
and supk E[x(k)�x(k)] < ∞, then the following relation holds:

1
2π

∫ π

−π
log

∣∣∣Tuw(ω)
∣∣∣ dω ≥

∑
λ∈UPP

log |λ| .

Next, in our prior paper [7], we have followed the approach of [5] and
have analyzed the complementary sensitivity property Tyd for the special
case of m = 1 and linear K, i.e., the controller K is in the form as

K :
[

z(k + 1)
v(k)

]
=

[
AK BK

CK DK

] [
z(k)
e(k)

]
. (11)

The following theorem has been shown.

Theorem 2 ([7]). Consider the system depicted in Fig. 2. Suppose that P
and K are SISO discrete-time linear time-invariant systems. If
supk E[x(k)�x(k)] < ∞, then the following relation holds:

1
2π

∫ π

−π
log

∣∣∣Tyd(ω)
∣∣∣ dω ≥

∑
β∈UZP

log |β| + log |DK |.

We remark that Theorems 1 and 2 are similar to Bode’s integral for-
mula for the sensitivity and complementary sensitivity functions, Tuw(z)
and Tyd(z) (see [11, 12], and Theorem 4 in this paper). The formula has
given a well-known trade-off property, i.e., the water-bed effects on the gains
of Tuw(z) and Tyd(z) in the frequency domain. In our problem, the gain of
Tuw(z) corresponds to the effect of the noise w on the input u of plant, and
the gain of Tyd(z) corresponds to the effect of the noise d on the output y
of P .

Theorems 1 and 2 have been derived based on an information theoretic
approach. In contrast, Bode’s integral formula has been shown using com-
plex analysis. Moreover, Theorem 1 extends Bode’s formula in the sense
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that the theorem deals with an arbitrary causal nonlinear controller, while
Bode’s formula treats only linear controllers.

In this paper, we follow the approach in [5, 7], and extend Theorems 1
and 2 to square MIMO systems which includes a nonlinear controller K
represented in (8). In addition, we discuss all four properties of the feedback
system for the noises defined in (9) in a unified manner.

4 Sensitivity analysis of networked control systems

4.1 Main result

In this subsection, we present the main result of this paper. Let Jφ be the
Jacobian of the function φ in the controller K in (8), and let

DK := lim inf
k→∞

∑k
i=0 E [log |Jφ(e(i))|]

k
.

Here, DK represents (the logarithm of) the gain of K. If K is a linear
system such as that in (11), this DK is reduced to the simpler form DK =
log |det DK |, which is determined by the direct feedthrough term DK .

The following theorem provides integral-type constraints on the sensitivity-
like functions Tts.

Theorem 3. Consider the system depicted in Fig. 2. If u and y are weakly
stationary and supk E[x(k)�x(k)] < ∞, then the following relations hold:

i)
1
2π

∫ π

−π
log

∣∣∣Tuw(ω)
∣∣∣ dω ≥

∑
λ∈UPP

log |λ| , (12)

ii)
1
2π

∫ π

−π
log

∣∣∣Tyw(ω)
∣∣∣ dω ≥

∑
β∈UZP

log |β| + log |det DP |, (13)

iii)
1
2π

∫ π

−π
log

∣∣∣Tud(ω)
∣∣∣ dω ≥

∑
λ∈UPP

log |λ| + DK , (14)

iv)
1
2π

∫ π

−π
log

∣∣∣Tyd(ω)
∣∣∣ dω ≥

∑
β∈UZP

log |β| + log |det DP | + DK . (15)

Proof. We immediately obtain this theorem from Proposition 1 and Lemma 3,
which are presented in Section 5.

Several remarks regarding this result are in order. First, Theorem 3
shows that there are lower bounds on the reduction of the effects of the
noises w and d. Furthermore, these bounds can be expressed by the unstable
poles/zeros of P and the direct feedthrough terms of P and K. Second, in
Theorem 3, the relations in (12) and (15) extend those in Theorems 1 and
2 to a more general setup and in particular to a class of m-input m-output
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nonlinear controllers. It is also noted that similarly to Theorem 1, the
bound in (12) holds for any nonlinear controller that is causal and hence is
not restricted to K in the form of (8). Third, we obtain the constraints on
Tyw and Tud in (13) and (14), respectively, which are similar to the those
on Tuw and Tyd.

4.2 Comparison with Bode’s integral formula

As we have described in Section 3, the sensitivity-like function Tts is the
ratio of power spectral densities and corresponds to the transfer function
Tts from s to t. In this subsection, we present a result on Tts(z) based on
complex analysis. This is a generalization of Bode’s integral formula.

Suppose that in Fig. 2, the plant is SISO (m = 1) and also that K is a
linear time-invariant system as in (11). The following theorem provides the
constraint on Tts(z).

Theorem 4. Consider the system depicted in Fig. 2. If the feedback system
is stable, then the following equalities hold:

i)
1
2π

∫ π

−π
log

∣∣Tuw(ejω)
∣∣ dω =

∑
λ∈UPP

log |λ| +
∑

λ∈UPK

log |λ| , (16)

ii)
1
2π

∫ π

−π
log

∣∣Tyw(ejω)
∣∣ dω =

∑
β∈UZP

log |β| +
∑

λ∈UPK

log |λ| + log |DP | ,

(17)

iii)
1
2π

∫ π

−π
log

∣∣Tud(ejω)
∣∣ dω =

∑
λ∈UPP

log |λ| +
∑

β∈UZK

log |β| + log |DK | ,

(18)

iv)
1
2π

∫ π

−π
log

∣∣Tyd(ejω)
∣∣ dω =

∑
β∈UZP

log |β| +
∑

β∈UZK

log |β|

+ log |DK | + log |DP | . (19)

Proof. The relations (16) and (19) are known as Bode’s integral formula
and have been shown in [11] and [12], respectively. The relations (17) and
(18) can be easily derived using Jensen’s formula [10].

Now, we have independently obtained two theorems similar to each other,
Theorems 3 and 4. Note that Theorem 3, our main result, shows inequality
constraints, while in Theorem 4 the constraints are in equalities. From our
analysis, it is unclear when the equalities hold and moreover whether we
can show a condition for the equality to hold by the information theoretic
approach. However, as we described in Section 4.1, Theorem 3 can deal with
more general systems than Theorem 4.

Also note that in Theorem 3, the unstable poles and zeros of the con-
troller K do not appear in the constraints. This is due to the assumption
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that the initial state z(0) of K is deterministic. Although, this assumption
is the reason for the inequalities as we mentioned above, it enables us to
deal with the nonlinear controller K in (8).

To summarize the results obtained so far, we list the differences between
Theorems 3 and 4 as follows:

• Theorem 3

– Analysis of the ratios of power spectral densities

– Time-domain

– Square MIMO system

– A class of nonlinear controllers

– Constraints in inequalities

• Theorem 4

– Analysis of the transfer functions

– Frequency-domain

– SISO system

– Linear controllers

– Constraints in equalities

5 The entropy rates of input and output signals

In this section, we give some results which are required to derive our main
result.

We note that because of the relation given by Lemma 1, the ratio Tts

of power spectral densities can be expressed as the difference in the entropy
rates. Hence, in this section, we analyze the entropy rates of the input
signal s and the output signal t to evaluate the ratio Tts of power spectral
densities.

The following proposition gives the relation between the entropy rates
h∞(s) and h∞(t).

Proposition 1. Consider the system depicted in Fig. 2. The following
inequalities hold:

i) h∞(u) − h∞(w) ≥ lim inf
k→∞

I(uk;x(0))
k

, (20)

ii) h∞(y) − h∞(w) ≥ lim inf
k→∞

I(yk+ν
ν ;x(0))

k
+ log |det DP |, (21)

iii) h∞(u) − h∞(d) ≥ lim inf
k→∞

I(uk;x(0))
k

+ DK , (22)
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iv) h∞(y) − h∞(d) ≥ lim inf
k→∞

I(yk+ν
ν ;x(0))

k
+ log |det DP | + DK . (23)

This proposition gives the relation between the entropy rates of the input
signal s and the output signal t. It is noted that no assumption is made on
the stability of the feedback system.

Proposition 1 can be shown by a conservation law between the entropies
of s and t. We describe this in the following as a lemma.

Lemma 2. Consider the system depicted in Fig. 2. The following relations
holds:

i) h(uk) = h(wk) + I(uk;x(0)) +
k∑

i=0

I(u(i);di−1|x(0),ui−1), (24)

ii) h(yk+ν
ν ) = h(wk) + I(yk+ν

ν ;x(0)) + (k + 1) log |det DP |

+
k∑

i=0

I(u(i);di−1|x(0),ui−1), (25)

iii) h(uk) = h(dk) + I(uk;x(0)) +
k∑

i=0

E [log |Jφ(e(i))|]

+
k∑

i=0

I(u(i);wi−1|x(0),ui−1), (26)

iv) h(yk+ν
ν ) = h(dk) + I(yk+ν

ν ;x(0)) + (k + 1) log |det DP |

+
k∑

i=0

E [log |Jφ(e(i))|] +
k∑

i=0

I(u(i);wi−1|x(0),ui−1). (27)

Proof. Here, we give the proof for (27). The equation (27) describes the
relation between the entropy of the input signal at time k, h(d(k)), and that
of the output signal, h(y(k)). Hence, we should study how h(d(k)) affects
h(y(k)). However, because of the time delay of ν steps within P , d(k) has
an influence on the output y only after time k + ν.

To deal with this problem, we define the auxiliary system P0 and the
signal y+ as

P0(z) := zνP (z),
y+(k) := y(k + ν).

The state-space representation of P0 is given by

P0 :
[

x(k + 1)
y+(k)

]
=

[
AP BP

CP Aν
P DP

] [
x(k)
u(k)

]
.

12
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Figure 3: Equivalent system with P0.

We have det DP = detCP Aν−1
P BP �= 0 because of (7), and hence P0 is a

biproper system. By using P0 and y+, the system in Fig. 2 can be expressed
as that in Fig. 3.

We now consider a conservation law between the entropies of d and y+.
It follows that

h(y+(i)|(y+)i−1) = h(y+(i)|(y+)i−1,x(0)) + I(y+(i);x(0)|(y+)i−1)

= h(u(i)|ui−1,x(0)) + log |det DP |
+ I(y+(i);x(0)|(y+)i−1), (28)

where the first equality follows by (1) and the second one follows by (4),
(5), and (6). Moreover, the first term on the right-hand side of (28) can be
expressed as

h(u(i)|ui−1,x(0)) = h(u(i)|ui−1,x(0),wi−1) + I(u(i);wi−1|ui−1,x(0))

= h(d(i)|di−1,x(0),wi−1) + E[log |Jφ(e(i))|]
+ I(u(i);wi−1|ui−1,x(0)).

Since x(0), w, and d are mutually independent, x(0) and wi−1 vanish in
the first term on the right-hand side of the last equation. Thus, we have

h(u(i)|ui−1,x(0)) = h(d(i)|di−1) + E[log |Jφ(e(i))|]
+ I(u(i);wi−1|ui−1,x(0)). (29)

We substitute (29) into (28) and obtain

h(y+(i)|(y+)i−1) = h(d(i)|di−1) + I(y+(i);x(0)|(y+)i−1)
+ log |det DP | + E[log |Jφ(e(i))|]
+ I(u(i);wi−1|ui−1,x(0)).

13



Now, by summing both sides of the above equation for i = 0, 1, ..., k, we
have (27).

The other equations (24)–(26) can be proven in a similar way.

Lemma 2 shows that a conservation law of entropy holds in the feed-
back system in Fig. 2. For example, (27) shows such a law between the
entropies of d and y. Other terms in (27) can be explained as follows. The
terms log |det DP | and E[log |Jφ|] reflect the scaling caused by the direct
feedthrough terms of P and K (see (5)). The terms of mutual information
I(yk+ν

ν ;x(0)) and I(u(i);wi−1|ui−1,x(0)) show the effects of x(0) and w;
these can be viewed as external inputs to the feedback system other than d,
which is the input signal we focus on.

Proof of Proposition 1. We give the proof of (23). In (27), we have
k∑

i=0

I(u(i);wi−1|x(0),ui−1) ≥ 0

from the property (1). Thus, it follows that

h(yk+ν
ν ) ≥ h(dk) + I(yk+ν

ν ;x(0)) + (k + 1) log |det DP |

+
k∑

i=0

E [log |Jφ(e(i))|] .

We obtain (23) by dividing the above inequality by k and taking the limsup
as k → ∞ on both sides.

We next show as a lemma that the lower bounds in Proposition 1 can be
further bounded by the unstable poles or the unstable zeros of the plant P .

Lemma 3 ([5, 7]). Consider the system depicted in Fig. 2. If the signals u
and y are weakly stationary and supk E[x(k)�x(k)] < ∞, then the following
inequalities hold:

lim inf
k→∞

I(uk;x(0))
k

≥
∑

λ∈UPP

log |λ| , (30)

lim inf
k→∞

I(yk+ν
ν ;x(0))

k
≥

∑
β∈UZP

log |β| . (31)

We have some remarks regarding this result. In general, from the view-
point of the open-loop system, when the system is unstable, the system
amplifies the initial state at a level depending on the size of the unstable
poles. Hence, we can say that in systems having more unstable dynamics,
the signals contain more information about the initial state. Therefore, in
Fig. 2, we can expect the mutual information between the input u and x(0)
to be a function of the unstable poles. The relation (30) corresponds to
this observation. Also, (31) corresponds to the same observation about the
inverse system of P .
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Table 1: Integrals of ratios of power spectral densities versus their theoretical
lower bounds.

K = K1
1
2π

∫
log |Tts(ω)|dω LBBode LBTh.3

Tuw 1.3794 0.1553 0.0721
Tyw −5.2786 −6.5243 −6.6075
Tud 1.4182 0.7487 0.7487
Tyd −5.2398 −5.9309 −5.9309

K = K2
1
2π

∫
log |Tts(ω)|dω LBBode LBTh.3

Tuw 6.2312 0.5929 0.0721
Tyw −0.4484 −6.0867 −6.6075
Tud 6.2319 6.2305 6.2305
Tyd −0.4477 −0.4491 −0.4491

6 Numerical examples

In this section, we illustrate the results presented in Section 4 through nu-
merical examples.

6.1 Feedback systems with two additive noise channels

Consider the system shown in Fig. 2. Suppose that m = 1 and P is an
unstable non-minimum phase system given by the transfer function

P (z) =
0.01005z − 0.01026
z2 − 2.031z + 1.03

. (32)

We consider two systems K1, K2 as stabilizing controllers for the plant P .
The transfer functions of K1 and K2 are given as follows:

K1(z) =
−1.598z3 + 1.414z2 + 1.595z − 1.418

z3 − 2.72z2 + 2.444z − 0.7248
, (33)

K2(z) =
−71.43z3 + 212z2 − 209.7z + 69.16

z3 − 3.423z2 + 3.842z − 1.418
. (34)

We take x(0), w(k), and d(k) as Gaussian (pseudo) random variables
with mean 0 and variance 1, and compute u and y from time 0.00 to 100.00
[sec] with sampling period 0.01 [sec]. Then, we calculate the ratios Tts of
power spectral densities and examine the inequalities in Theorem 3.

In Table 1, we show the result of the simulations. Here, LBTh.3 and
LBBode denote the lower bounds given by Theorems 3 and 4, respectively.
Note that although Table 1 shows the data for certain samples of random
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Figure 4: Sampling paths of y for K1 and K2 (solid line: K = K1, dotted
line: K = K2).

variables x(0), w, and d, we have repeated the simulation for various samples
and have obtained similar data.

In Table 1, we can observe that all inequalities in Theorems 3 and 4 hold
for both cases K = K1 and K = K2. Moreover, the lower bounds given
by these theorems are fairly close to the values obtained by the simulations.
This shows that the results are not conservative for these systems.

We note that the properties of K1 and K2 are significantly different. The
controller K1 aims at achieving high stability with small gain, while K2 aims
at assuring not stability but agility. Fig. 4 shows the difference between K1

and K2 in the sample paths of the output signal y. Here, the solid line is
the response of y for the case K = K1 and the dotted line is for the case
K = K2. We can see that the signal changes rapidly when K = K2. As we
have just described, although properties of the feedback system are different
depending on the controller, Table 1 shows that inequalities in Theorem 3
hold for both controllers.

6.2 Feedback systems with quantizers

In this subsection, we consider networked control systems including digital
channels. For communication through a digital channel, we have to convert
analog signals to digital signals by a quantizer and to represent them in a
finite number of bits. In such feedback systems, we should consider effects
of errors between analog signals and quantized digital signals. The channels

16
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Figure 6: Model of a networked control system including quantizers.

with additive noises depicted in Fig. 2 are often used as a model of these
errors due to quantization, especially for uniform quantizers. The uniform
quantizer Q with quantization step size q is shown in Fig. 5.

Consider the feedback system in Fig. 6, where P is the plant and its
initial state x(0) is a random variable, K is a stabilizing controller, and Q1

and Q2 are uniform quantizers. Here, we compute the ratio Tts of power
spectral densities of the quantization error s ∈ {w,d} and t ∈ {u,y}, and
examine the relations in Theorem 3.

Suppose that the plant P and the controller K are given as in (32)
and (33). Also, the quantizers Q1 and Q2 have a common quantization
step size denoted by q. We consider two quantization steps of q = 0.1 and
q = 0.5. Other settings of the simulation are the same as those in the
previous subsection.

We show the result of the simulation and the difference in y due to the
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Table 2: Integrals of ratios of power spectral densities versus their theoretical
lower bounds.

q = 0.1 1
2π

∫
log |Tts(ω)|dω LBBode LBTh.3

Tuw 1.5719 0.1553 0.0721
Tyw −4.8736 −6.5243 −6.6075
Tud 1.6543 0.7487 0.7487
Tyd −4.7912 −5.9309 −5.9309

q = 0.5 1
2π

∫
log |Tts(ω)|dω LBBode LBTh.3

Tuw 1.5677 0.1553 0.0721
Tyw −4.8664 −6.5243 −6.6075
Tud 1.6577 0.7487 0.7487
Tyd −4.7764 −5.9309 −5.9309

quantization steps in Table 2 and Fig. 7, respectively. In Table 2, we confirm
that all inequalities in Theorems 3 and 4 hold for both quantization steps.
However, we note that in this setting, signals w and d are not stochastic
processes, but sequences of numbers which are deterministically calculated
resulting from the random variable x(0). This implies that the assumption
on w and d being weakly stationary stochastic processes, presented in Sec-
tion 3, might not be satisfied. Even though this means that Theorem 3 does
not assure the properties of the system in Fig. 6, Table 2 shows that the
theorem gives good approximate lower bounds for Tts.

7 Conclusion

In this paper, we have considered a class of networked control systems and
have analyzed the effects of channel noises on the input and the output of
the plants by evaluating the entropy of the signals. In particular, we have
uniformly derived constraints on the sensitivity-like functions expressed by
the unstable poles and zeros of the plant and direct feedthrough terms.
These constraints extend Bode’s integral formula to a more general system.
Future research will deal with finding conditions for the equalities to hold
in Theorem 3.

Acknowledgement: This work was supported in part by the Ministry of Edu-
cation, Culture, Sports, Science and Technology, Japan, under Grant-in-Aid
for Scientific Research No. 17760344.
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Figure 7: Sample paths of y with the quantization steps q (solid line: q = 0.1,
dotted line: q = 0.5).
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