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Abstract

A Galerkin scheme is presented for a class of conservative nonlin-
ear dispersive equations, such as the Camassa—Holm equation and the
regularized long wave equation. The scheme has two advantageous
features: first, it is conservative in that it keeps the discrete ana-
logue of the continuous energy conservation property in the original
equations; second, it can be formulated only with cheap H'-elements
even if the original equations include third derivative ugy,. Numeri-
cal experiments confirm the stability and effectiveness of the proposed
scheme.

1 Introduction

In this paper numerical integration of a class of nonlinear dispersive equa-
tions:

Up — Uggy + Ky + 3uty = ¥(2Uptizy + Uligyy), reR t>0, (1)

is considered. The equation (1) describes a wide variety of nonlinear disper-
sive phenomena depending on the values of x and v. With x > 0,y =1, it



reduces to the Camassa—Holm equation (CH):
Up — Uggy + Kllg = 2Uglizy + Ulgey — 3Ulg, (2)

which models unidirectional propagation of shallow water waves [5, 6], with u
representing the fluid velocity in the z direction (or equivalently the height of
the fluid’s free surface), and & the critical shallow water wave speed. The CH
has a bi-Hamiltonian structure, is completely integrable [17], and has global
solutions [9]. It also has solitary waves, but they are in sharp contrast to, for
example, those of the Korteweg—de Vries equation, in that the solitary waves
become peaked in the limit of K — 0 (called “peakons”), which describe in
physical context “wave-breaking” [27]. When k = 0,7 € R, the equation
reduces to the Dai equation [13]:

Up — Uggr + 30ty = Y(2Uplsy + Ullyas), (3)

which describes propagation of finite-length and small-amplitude waves in
cylindrical compressible hyperelastic rods. In this case u represents the ra-
dial stretch, and ~ the material constant which, for example, ranges from
—29.4760 to 3.4174 [14]. Although this equation looks quite similar to
the CH, its solutions behave in completely different manners depending on
v [11, 14]. For v < 1, solitary waves of the Dai equation are smooth. When
v = 1 the equation reduces to the CH equation with x = 0, and thus solitary
waves become peaked. If v exceeds one, the singularities in the solutions
become even stronger such that at some points derivatives are no longer
bounded (“cusped”); physically, it expresses the “rod-breaking.” Another
example of (1) is the so-called regularized long wave (or simply the BBM)
equation [2]:

Up — Uggt = —3UUG — Uy, (4)

which is obtained by setting x = 1,7 = 0. In contrast to the preceding
two equations, all solutions of the BBM are global, and solitary waves are
smooth.

Motivated by the physical and mathematical relevance of these PDEs,
some effort have been already devoted to the numerical computation of the
equation (1). Below are such examples. For the CH, several standard pseu-
dospectral schemes [5, 6, 22|, a finite-difference scheme [20], a specialized
scheme using the multi-peakon structure of the equation [21], and a multi-
symplectic scheme [8] have been studied. For the BBM, we refer the readers
to [15, 19] and the references therein. For the Dai equation, we could not
find any, which might be attributed to the fact that the equation itself is
quite new (proposed in 1998).



The aim of the present paper is to give a new reliable numerical scheme
for the equation (1), from a different perspective from the above mentioned
numerical studies. The key fact here is that the equation (1) has an invariant
under appropriate boundary conditions. With numerical analysis in mind,
let us choose the periodic boundary condition:

u(z,t) = u(z + L, 1), z € (—00,00),t > 0. (5)
Then we see the quantity
1 [
-3 /0 (ku® + v’ + yuu,?) do (6)

is strictly preserved along the solution (see Theorem 2.1). It often corre-
sponds to some physical energies of fluids or rods, and thus is called the
“energy.” In the present paper, in the purpose of constructing a “reliable” nu-
merical scheme, we demand our numerical scheme to keep this energy conser-
vation property in discrete setting. In recent years, such “energy-conserving”
numerical schemes have drawn much interest and been extensively studied
for various PDEs, since they are more likely to give stabler and qualita-
tively better computations [3, 18, 25| (see also [23] for nearly-conservative
method for Hamiltonian PDEs). To the best of the authors’ knowledge,
however, so far strictly conserving scheme for (1) has not yet been proposed
in the literature (except an unpublished study on strictly conservative finite
difference schemes for the CH [26], and a study on a nearly-conservative
multi-symplectic scheme for the CH [8]). Our main idea for constructing
a strictly-conservative scheme is to utilize the concept of “discrete partial
derivatives,” which has been introduced in [24] by one of the present authors
for designing conservative (or dissipative, respectively) Galerkin schemes for
certain conservative (dissipative) PDEs in variational form. It will be shown
that with some trick the equation (1) can be also written in variational form,
and the idea and tools above can be utilized for (1).

In this mission, we further like to demand that our numerical scheme is
able to be formulated within the space H!, the standard first-order Sobolev
space, due to the following two reasons. First, simply from the computational
perspective, we hope to keep the possibility of utilizing cheap H'-elements
(instead of relatively expensive C'-elements). Second and more importantly,
since the solutions of the target equation (1) can develop derivative singulari-
ties (e.g. peakons), it seems natural to work within the space H' rather than
H? which is seemingly required to treat the third-order equation (1). This
point seems to have not been explicitly emphasized in the existing numerical
studies, where more or less stronger regularity is implicitly assumed by using
some standard finite-difference or pseudospectral discretization.



With such a goal fixed—an energy-conserving scheme implementable within
H'—we face a big difficulty: as far as the authors know, there has been no
H'-formulation of the equation (1) in the literature that directly gives rise to
the energy conservation property. Although some H'-formulation have been
found so far in order to justify peakons (see Section 2), the energy conserva-
tion property of their H' solutions can be proved only in so indirect manners
that they can not be followed in discrete setting. As a solution to this issue,
in this paper we present a new H'-formulation of the problem from which
the energy conservation property can be quite easily and directly derived.

The rest of the present paper is organized as follows. In Section 2, math-
ematical preliminaries regarding the target equation (1) are summarized.
Then in Section 3, the proposed scheme is presented, and its properties are
discussed. Its application examples are shown in Section 4 with various nu-
merical experiments that illustrate the effectiveness of the proposed scheme.

2 Properties of the target equation

Some mathematical properties of the target equation (1) are summarized. Let
us denote by S the torus of length L, and consider that the target equation
is defined on it. We denote by L?*(S) the standard L? space over S, and by
(f,9) = fOL fgdx its associated norm. We also denote by H"(S) the standard
Sobolev space over S.

The equation (1) can be viewed as a gradient flow:

(- 2)u (),

2 3 2
G(u,ux) _ _Ku + u2+ YUU . (8)

where

The symbol
oG 0G0 0G

Su  Ou Ox ou,, )

denotes the standard variational derivative of G(u,u,) with respect to w.
If we further introduce an operator K = (1 — 9*/9z*)~!, which is a map
L*(S) — H*(S) [4], the equation can be rewritten as

(%) "




With the Green function:

_ cosh(x — L{z/L] 4+ L/2)

kle) = 2 sinh(L/2) ’ (11)

the operator IC can be expressed in terms of the convolution

() () = (k* f)(z) = / K(r — €)F(€)de. (12)

The conservation property (6) is summarized in the following theorem,
which holds for general G(u,u,) (i.e. not only for the one defined in (8)
but also for other functions). Observe that the variational derivative plays a
central role in the proof, and the concrete form of G is not relevant here.

Theorem 2.1 (Conservation property of (1)). Suppose u(-,t) € H3(S), us(-, ) €
H'(S), and G(u,u,) is sufficiently smooth with respect to its arguments.
Then,

d L
E/0 Gdz = 0. (13)

Proof.
d [~ L roG G Lsa oG 1"
E/o Gdr = /0 <%ut + 3—uxum> dr = /0 EUt dr + {aux ut}

0
L
= / E/C<E) dz = 0.
o Ou ou / ,
In the third equality, the boundary term is dropped due to the periodicity.

In the last equality, an identity (Kf,, f) = 0 which holds for any f € H'(S)
is used. O

The story above makes sense only when u(-,t) € H3(S) since (6G/du),
essentially includes u,,,. However, in order to allow singular solutions like
peakons, an H!(S)-formulation is inevitably required. In the critical CH
(k = 0) case, such a form is given in [9] (see also [12]):

1/ 5 o | Ug?

which makes sense for u(-,t) € H(S). In the present paper, however, we
do not adopt this expression, since it seems that the conservation property
of (14) can not be directly established, and thus (14) is not a convenient in
our project. Actually, in [10], the conservation property of (14) is established
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by expressing the target H'-solution of (14) as the limit of a series of energy-
conserving H?3-solutions of (2) (with k = 0). It seems difficult to do a similar
thing in discrete setting.

Instead we propose to employ the following set of weak forms. Recall-
ing the relation (9), we rewrite the equation (10) to the problem: Find
u(+,t),p(-,t) € H(S) such that for any vy, v, € HX(S),

(up,v1) = (Kpg,v1), (15)
(pyv2) = <g—f,v2>+<gz,(v2)x). (16)

It is obvious that the solution u(-,¢) € H3(S) that solves (10) also solves this
set of weak forms by setting p = 0G/du. From the weak forms (15), (16) , the
desired conservation property can be successfully deduced as shown in the
next theorem. The deduction can be done completely in an abstract way as

in Theorem 2.1; in this case, however, the key tool is the partial derivatives
0G/0u, 0G /du,, instead of the variational derivative dG/du.

Theorem 2.2 (Conservation property of the weak forms (15), (16)). Suppose
u(+,t),p(-,t) € HY(S) are the solution of the weak forms (15) and (16). Also
assume that G is sufficiently smooth and u,(-,t) € HY(S). Then it holds

d L
E/0 Gdz = 0. (17)

Proof.

d [* oG oG
& . Gdﬂ? = <%,Ut> + (8—%;7//&) — (p7 ut) - (’Cpflrap) = 0. (18)

The first equality is just the chain rule. The second equality follows from (16)
with vy = uy, and the third one from (15) with v; = p. O

Remark 2.1. From the mathematical point of view, it should be asked if
and under what conditions the system of the weak forms (15), (16) has a
solution in H'(S) (as noted above, when (10) has a H3(S) solution, it also
solves the system; in this case, only its uniqueness matters). In the present
paper, however, we like to leave this open, since the situation drastically
varies depending on the concrete form of G(u,u,) (or equivalently, the pa-
rameters K, in the equation (1)), and the question itself seems to be a big
mathematical challenge which has not yet been completely solved even in the
case of the original PDE (1). Interested readers may refer [7] which discusses
the local well-posedness of (1). |



3 Galerkin scheme and its properties

An energy-preserving scheme is constructed and its properties are shown. As
seen in the previous section, the partial derivatives 0G/du, 0G /Odu, play a
central role in proving the conservation property (Theorem 2.2). This moti-
vates us to employ the idea of the “discrete partial derivatives” [24] for con-
structing an energy-preserving Galerkin scheme. For readers’ convenience,
the idea is briefly summarized first.

Following [24], we here consider generalized energy functions of the form

u ux Zfl gl u:v (19)

where M € {1,2,...}, and f, g, are sufficiently smooth real-valued functions.
The target energy function (8) in this paper is a special case of (19), where
M =3, fi=—ku?/2,q1 =1, fo = —u’/2,go = 1, and f3 = —yu/2, g5 = u,*.

Let us denote Galerkin approximate solutions by u(™ ~ u(x, mAt) (At
is the time mesh size). Then “discrete partial derivatives” of the energy
function (19) are defined as follows.

Definition 3.1 (Discrete partial derivatives [24]). We call the discrete quan-

tities

0Gq — fiu™ D) = A™)\ [ a@d™) + gi(ui™)
A(u(m+1) y(m)) = Z( u(m+1) — 4 (m) ) ( 2 20)

=1

Gu S (A )Y (08— ),
Aum Y WMy 2 ymHn) _ (m)

T =1 T

the “discrete partial derivatives,” which corresponds to 0G /ou and 0G/du,,
respectively' .

For the function G(u, u,) defined in (8), the concrete forms of the discrete
partial derivatives are

aGd (u(erl) 4 u(m)) (u(m+1))2 + u(m+1)u(m) 4 (u(m))Z
_lﬁ; E—

O(ulm+1) gy (m)) 2 2
(m+1)\2 (m)y2
Ug + (ug
4 <( — ) , (22)
o ) 4 (W
o = ) (u : ) - - . (23)
O(ug ' ug ) 2 2

'Expressions similar to (f(a) — f(b))/(a —b) should be interpreted as f'(a) when a = b.
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It can be easily verified that, corresponding to the continuous chain rule:

d [* L roG oG
a . G(U,Ux)dl':/(; (aut‘i‘a—%uxt) de’,

the following discrete chain rule holds (hereafter G (u(™, u(wm)) is abbreviated

as G(ul™) to save space.)

Theorem 3.1 (Discrete chain rule [24]). Concerning the discrete partial
derivatives (20) and (21), the following identity holds.

o L a6 um) )
L (1Y _ (30 _ d
ai ), (@)~ Gt as /o{a(u<m+l>,u<m>>< A )

8Gd u:(vm+1) . ug(tm)

With these discrete partial derivatives, we define an abstract scheme for
the weak forms (15) and (16) as follows. Let S, Sy € H*(S) be appropriately
chosen trial spaces, and Wy, W, € H'(S) test spaces. In the subsequent
application examples, they shall be chosen to the standard periodic piecewise
linear function space (the so-called “Pl-elements”); for the moment, however,
we would rather like to leave them open in order to keep the flexibility of the
scheme.

Scheme 3.1 (Abstract Galerkin scheme for (15),(16)). Suppose that u'® ()
is given in Sy. Find ™) € S, pimts) ¢ G (m =0,1,2,...) such that,
for any vi € W1 and vy € W,

u(m+D) _ oy (m)
() - oo
(u

<p(m+%)7v2) =

x,U1) , (25)

(m1) gy (m))’ U2>

m+l))
0G4

0 )
0

i (6(u;(vm+i(j ud™)’ (02)m> ' 20

The scheme enjoys the next conservation property. The proof can be done
analogously to the continuous case.

Theorem 3.2 (Conservation property of Scheme 3.1). Assume the trial and
test spaces Sy, Sy, W1 and Wy are set such that (i) (u™") —u(™) /At € Wy;
and (ii) S; € W;. Then Scheme 3.1 is conservative in the sense that

1

L
—/ (™) — Q™)) de =0, m=0,1,2,....
At S,



At

1

= (IC(p(m%))x,p(m*?)) = 0.

The first equality follows from the discrete chain rule (Theorem 3.1). The
second one is shown by using the equation (26) with vy = (u(™*+) — (™)) /At
(the substitution is allowed by the assumption (i)), while the third one is
given by using the equation (25) with v; = pm+3) (allowed by the assumption
(ii)). O

Under the periodic boundary condition (5), it is natural to take S; =
So = Wi = W,. For example, in the finite-element context, all of them can
be chosen to the same P1, P2, or higher-order elements. It is also possible
to employ finite-dimensional Fourier (or Chebyshev and so on) space, which
results in the so-called Fourier (Chebyshev) Galerkin schemes. In any cases,
the assumptions in Theorem 3.2 are automatically satisfied as far as S, =
So = Wy = W, and the resulting schemes become conservative.

Note that Scheme 3.1 makes sense and Theorem 3.2 holds for any energy
function G(u,u,) in the form (19). Thus, they cover not only the target
equation (1) but also similar variants that can be written in the variational
form (7).

Remark 3.1. The equation (10) can also be viewed as a conservation law:
=0, (27)

0G

(note that for f € H'(S) it holds (Kf), = K(f.)), and there is another

invariant: .
d oG

The final equality follows from an identity ((Kf),,1) = 0 which holds for
any f € H'(S). Scheme 3.1 also conserves this invariant:

1 L

N (w0 — ™) d = (K(p™+2)),,1) =0, m=0,1,2,.... (29)
0



Remark 3.2. Mathematically, the guarantees of the existence, uniqueness,
stability, and convergence of the solutions of Scheme 3.1 should be given.
This issue is, however, closely connected to the solvability of the continu-
ous problem (15) and (16), which is set outside the scope of this paper as
mentioned in Remark 2.1 . Thus we also like to leave such mathematical
studies of Scheme 3.1 (save for the strict conservation properties) as future
works. Instead, below we give various numerical experiments which support
the stability and effectiveness of the proposed scheme. [ |

4 Application examples

Scheme 3.1 is tested for the three PDEs mentioned in the introduction.

4.1 Common settings of the experiments

The spatial period [0, L] is divided into N grids (either equispaced or non-
equispaced), whose mesh points are denoted by z; (j = 0,1,...,N) (zo =
0,2y = L). We then employ the standard periodic piecewise-linear function
space S, C H'(S) over the mesh; i.e., we set S} = Sy = Wy, = Wy = S, in
Scheme 3.1. Given the approximation space, the concrete form of Scheme 3.1
is

W) gy
A( < ) = Kptd), (30)
AP = f), ) o

where u(™ = (u®") (z), ..., ul™ (zx_1))T, pr™+) = (P (xg), ..., p™H ) (zy )T,
and f(u™*D 4™) is the vector arising from the r1ght hand 81de of (26)
which in general nonlinearly include w(™+Y) and «w(™. The matrix A is the
standard mass matrix whose elements are A;; = (¢i,¢j), where ¢; (i =

0,...,N —1) are the standard basis functions of S;,, and K;; = (K(¢;)z, ¢;)-
Note that the matrices A and K depend only on the approximate space (i.e.
the mesh), and can be prepared in prior to the time evolution process. The
preparation of the matrix K involves the computation of convolutions, which
can be done by hand in the case of S,. When more general approximate
spaces are required, it is also possible to employ some numerical integrator
with sufficient accuracy. Since the matrix A is invertible, the equations (30)
and (31) immediately reduce to

w(m D) _ g (m)
A(T) KA f(umt) 4 m), (32)
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That is, the computation of the intermediate variable p(mJ’%) can be skipped,
and the dimension of the system to be solved is N, instead of 2N. In what
follows, our numerical calculations are based on this expression.

The nonlinear equations (32) should be solved by some iterative method.
A convenient way is to use some reliable numerical Newton library. In the
experiments below, the routine ims1_d_zeros_sys_eqn in the IMSL was used.

4.2 The limiting Camassa—Holm equation

Originally, the Camassa—Holm (CH) equation (2) only makes sense for x > 0
in physical context, since x corresponds to the critical shallow water speed
that should be strictly positive (see [5]). Mathematically, however, main
interest is usually on the limiting case x = 0, where solitons become peaked.
Below we consider this case. The concrete form of Scheme 3.1 then becomes
as follows. With the function
u® + wuy?

G(u,uy) = —%, (33)
which is obtained by setting £ =0, v =1 in (8), the discrete partial deriva-
tives (22) and (23) become

0G4 B _(u(m+1))2+u(m+1)u(m) +(u(m))2
a(u(m-l-l),u(m)) - 2
(m+1)y2 (m)y2
(sereeen) o

0G4 B wm D) g\l g im a5
S ) )

Note that for the energy function (33) the (continuous) partial derivatives
are
oG 3, 1 , oG

— = ——u’ — = d
ou 2u 2% at OU,

and we can see the correspondence between the continuous and discrete ones.
Substituting the discrete partial derivatives into Scheme 3.1, we obtain the
concrete form of the scheme, which is then implemented as described in
Section 4.1.

For comparison, the following two implicit schemes have been also tested;

= —UUyg,

11



The Crank—Nicolson scheme:

(m+1) _ 4, (m)
<u = u ,m) _ (’C(p(m+%))z,v1) (36)
2
p ) - 9 9 9 9 )

(m+1) (m) (m~+1) (m)
U +u Uy =+ Uy
i (( . ) ( - ) , (U2)$> @

and the implicit Euler scheme:

(m+1) _ ,,(m)
<%,v1> _ (IC(p(mJ’%))x,m) (38)
(m+1) _ § (m+1))2 1 (m+1))2
p 27,V - 2(” ) +2(u1~ ) , U2
- (U(erl)uéerl), ('UZ):E) ) (39)

Note that, since all of these schemes are based on the same weak forms (15)
and (16), the spatial discretization is exactly the same, and only the temporal
discretizations are different.

First, the three schemes are tested on the equispaced mesh with L = 40
and N = 200 (thus Az = 0.2). The initial data is u(z,0) = 5e~#=%al 4
2e~lm=ml where z, = (200/3 + 1/2)Ax and z, = (400/3 + 1/2)Az. Since
larger peakons are faster, the larger peakon initially centered at x, overtakes
the smaller one at z;, as time passes. Figure 1 shows the numerical results
obtained by the three schemes. According to the figure, both the proposed
conservative scheme and the Crank-Nicolson scheme seem to correctly track
the overtaking phenomenon (note that since now the periodic boundary con-
dition is applied, the outgoing peakons come back to the interval from the
left boundary). On the other hand, in the implicit Euler case, although the
computation itself is stable, the peakons %radually become flattened. Fig-
ure 2 shows the evolution of the energy [ G (u™)dx; the left figure shows
the evolution near the starting time, and the right figure the overall profile.
As suggested in the wave pattern in Figure 1, we observe strong energy dis-
sipation in the case of the implicit Euler scheme (see left figure); the energy
rapidly tends to zero. Although in Figure 1 the results by the proposed
conservative scheme and the Crank—Nicolson scheme look quite similar, the
energy profiles are considerably different (see right figure). In the proposed
conservative scheme, the energy is strictly conserved to the machine accuracy,
while in the Crank—Nicolson scheme it drifts.

12



Implicit Euler

Conservative

Crank-Nicolson

Figure 1: Evolution of the two peakons; (top-left) the conservative scheme,
(top-right) the implicit Euler scheme, (bottom) the Crank-Nicolson scheme

-50 -71
-85 | 1 R
Crank-Nicolson 7~

-60 - 1 /
3 Implicit Euler 3 3y
T -65 @
5 5 i

74
=70 | |
75 7 Crank-NlcoIsonm o -75 4
Conservative i Conservative
80 . . . . 76 . . . .
0 0.02 0.04 0.06 0.08 0.1 0 2 4 6 8 10

Figure 2: Evolution of the energies (two peakons case); (left) detailed profile
around the origin, (right) global profile
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Next, in order to check the long-time stability, the problem is solved for
0 <t < 70 with the time mesh size At = 0.02 and the number of spatial
grid points N = 400 (Az = 0.1). With these parameters, the larger peakon
goes round the spatial interval about ten times. The conservative scheme
successfully integrates the problem with the energy strictly kept (Figure 3
(left) and Figure 4). In the Crank—Nicolson case, the energy is nearly con-
served in the early stage 0 < ¢ < 20; the energy periodically oscillates and
stays around the exact value. As time passes, however, the oscillation be-
comes irregular (20 <t < 50), and then completely unstable (50 < ¢ < 70).
This instability can be observed in the wave pattern in Figure 3, where the
peakons in the Crank—Nicolson case are completely broken at ¢ = 70. For
t > 70, it turns out that the numerical Newton solver does not work in the
Crank—Nicolson scheme, and it is impossible to continue the computation.
This result strongly suggests that the conservative scheme is in fact more
reliable than the standard Crank-Nicolson scheme.

Crank-Nicolson

Conservative

Figure 3: Long-time computation of the two-peakons problem; (left) the
conservative scheme, (right) the Crank-Nicolson scheme

The third experiment is to check if the proposed scheme works on non-
equispaced grids as well. To this end, the CH is solved on the spatial interval
[0,200] with the grid shown in Figure 5 (N = 200), and with the triangle
shaped initial data

r—2.+20 ifzer.—201z.),
u(z,0) =< —(r—=x)+20 ifz € [z, 20),
0 otherwise,

where z, = 80.5.

Figure 6 shows the numerical results by the three schemes, where the time
mesh width is set to At = 0.05. For comparison, a result by a standard nu-
merical method on finer equispaced mesh (N = 2000), marked as “FD/RK”

14



" Conservative -
8y Crank-Nicolson ------- B

-80 r ,T

82 LA N

energy

84 t+

-86

-88

Figure 4: Evolution of the energies in the long-time computation

Figure 5: The non-uniform mesh (N = 200)

in the figures, is also presented. The scheme is obtained by discretizing
space variable by the standard central finite-differences (with second-order
accuracy), and then by discretizing time stepping by the standard 4th-order
Runge-Kutta method. The time-stepping width is chosen considerably small
(At = 0.0005) such that the result is accurate enough as a substitute for the
unknown exact solution. As the solution suggests (Figure 6, bottom-right),
in this problem setting the initial triangle shaped data soon splits into a
number of peakons. The splitting mainly occurs at the center of the interval,
which is the reason why the grid is chosen to be dense at the center. The
result by the implicit Euler scheme (top-right) again exhibits strong dissi-
pation, which can be also observed in the energy profile (Figure 7). The
result by the proposed conservative scheme (Figure 6, top-left) is similar to
the accurate result by FD/RK, with the excellent energy conservation profile
(Figure 7). Compared to this result, even with considerably fine mesh sizes,
the energy in FD/RK scheme monotonically moves apart from the exact
value; this means that however mesh is refined the FD/RK method is not so
reliable that it can be used as an integrator for long-time computations. The
shape of the peakons in Crank—Nicolson case seems to be quite similar to the
conservative and FD/RK cases (Figure 6, bottom-left). The energy profile,
however, behaves dreadfully, where the error exceeds 10% in magnitude. In
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this example, the peakons are quite sharp and high, and the slight error in
the shapes of peakons is magnified as the big error in the energy.

Conservative

Implicit Euler

FD/RK ——

Figure 6: Generation of peakons; (top-left) the conservative scheme, (top-
right) the implicit Euler scheme, (bottom-left) the Crank—Nicolson scheme,
(bottom-right) the FD/RK solution on the finer mesh

4.3 The Dai equation

Scheme 3.1 is tested in the case of the Dai equation (3), which is an example
of (1) with k = 0, v € R. This is quite similar to the limiting CH case,
but now we have a freedom in the choice of 7. As described before, soliton
solutions are expected to be smooth when v < 1 and become “cusped” when
v > 1. Below we have tested two cases: 7 = 0.5 and v = 1.4. The energy

function is 5 )
Gy ) = 1 (40)
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Figure 7: Evolution of the energies (peakon train case)

and accordingly the discrete partial derivatives are

0G4 o (u(m+1))2 + u(m+1)y,(m) 4 (u(m))2
a(u(m-l-l), u(m)) - 2
(m~+1)y2 (m)\2
Uz + (ug
5 (( I ) , (a1)
oG (m~+1) (m) :(vm+1) :(Em)
1 d ~ (u +u ) u +u ()
8(uﬁ(nm+ ), uﬂ(rm)) 2 2

We test Scheme 3.1 and the Crank-Nicolson scheme. The latter is con-
structed in a similar manner as in the previous section.

First, the case of v = 0.5 is considered. With this parameter, soli-
tons are smooth and the computation is rather easy. In order to check the
long-time stability of the schemes, the problem is solved in a long interval
0 <t < 500 with the temporal mesh size At = 0.1. The initial data is
u(z,0) = 5sech(x — 5) + 2sech(x — 15). The length of the spatial interval
L is set to 40, for which the equispaced grid with N = 200 is employed (i.e.
Az = 0.2). Figure 8 shows the evolution of the numerical solutions. The
computation proceeds quite stably as expected, and the shapes of the soli-
tons are successfully preserved in both schemes, although the phase speeds
of the solitons are different. Figure 9 shows the evolution of the energies. In
the conservative scheme, the energy is strictly kept. In the Crank-Nicolson
scheme, the energy oscillates, but stays near the exact value.

Next, the results with v = 1.4 are presented. The equispaced grid on
the spatial interval [0,40] with N = 200 or 400 is used, and the problem is
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Figure 8: Smooth solitons in the Dai equation (v = 0.5); (left) the conserva-
tive scheme, (right) the Crank—Nicolson scheme
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Figure 9: Evolution of the energies (the Dai equation, v = 0.5)
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solved in 0 < ¢t < 10 with the time mesh size At = 0.1. The initial data
is set to the same one as in the limiting CH case, i.e., u(xz,0) = 5e~1#=2al 4
2elm=ml with 2, = (200/3 + 1/2)Ax and z, = (400/3 4 1/2)Az. Figure 10
shows the numerical solutions of N = 400, and Figure 11 the evolution
of the energies in both N = 200 and 400 cases. From Figure 10, both
schemes succeed in catching the peaked solutions (although numerically it is
difficult to judge if the solutions are really “cusped” rather than “peaked”).
Comparing Figure 11 (left) and Figure 9, we notice that with the same mesh
(N = 200) the energy deviation in the Crank—Nicolson scheme becomes much
larger when the solutions become singular, although it can be improved by
refining the spatial mesh (Figure 11, right). In any case, the conservative
scheme seems to be safer when we deal such singular solutions.

Crank-Nicolson

Conservative

c
oNn MO

Figure 10: Cusped solutions in the Dai equation (y = 1.4, N = 400); (left)
the conservative scheme, (right) the Crank—Nicolson scheme
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88 | i 1 200 |

Conservative
-89 . . . . -100.5
0

Figure 11: Evolution of the energies (the Dai equation, v = 1.4); (left)
N =200, (right) N = 400
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4.4 The BBM equation

In this section Scheme 3.1 is tested in the case of the BBM equation (4). The
energy function is

34,2
Gluyu) = =, (43)
and accordingly the discrete partial derivatives are
0G4 (u(m+1))2 _|_u(m+1)u(m) 4 (u(m))Z
a(u(m-l—l), u(m)) = — 5
(m+1) (m)
_ %, (44)
2
oG
(m+1)d oy = 0 (45)
O(ug 7 ug )

The equation is considered over the spatial domain [0,40] using the eq-
uispaced mesh with the number of grid points N = 100. Then the problem
is integrated in 0 < ¢ < 20 with the time mesh size At = 0.25. The initial
data is set to u(z,0) = ¢18ech(0.35(z — 15)) + cosech(0.25(x — 25)), where
i = 0.7%/(1 — 0.7%),co = 0.5*/(1 — 0.5%) (see [16] for this initial data).
The conservative scheme and the Crank—Nicolson scheme are tested. Fig-
ure 12 shows the numerical solutions, and Figure 13 the evolution of the
energies. Both schemes successfully capture the propagation of the two-
soliton. The conservative scheme strictly preserves the energy, while in the
Crank—Nicolson scheme the energy oscillates around the exact value.

Conservative

Crank-Nicolson

Figure 12: Two-soliton in the BBM equation; (left) the conservative scheme,
(right) the Crank—Nicolson scheme
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Figure 13: Evolution of the energies (the BBM equation)

5 Concluding remarks

In this paper a conservative Galerkin scheme for a class of nonlinear dis-
persive PDEs such as the Camassa—Holm equation has been proposed. The
effectiveness of the scheme has been confirmed by numerical experiments.
Finally we would like to emphasize that the proposed scheme has an ad-
ditional welcome feature that the conservation property would not be lost
even if time mesh size is changed during the time evolution process. This
can be easily understood by observing the facts that the scheme is a one-step
method and that Theorem 3.2 holds for any At (as far as the scheme has a
solution). This allows us to incorporate some adaptive time-stepping tech-
nique in the scheme in order to decrease computational cost, or to utilize the
so-called composition technique (see, for example, [3]) in order to increase the
temporal accuracy. This point should be another advantage of the proposed
scheme over other standard numerical schemes, such as the Crank—Nicolson
scheme employed in this paper. In the numerical experiments, the Crank—
Nicolson scheme also showed good performance (if not the same level as the
proposed scheme), but this might be caused by the time-symmetry of the
scheme; it is generally known that, for time-symmetric differential equations,
time-symmetric schemes quite often show far better behaviors than expected.
However, as soon as some non-uniform time-stepping is introduced, the time-
symmetry is destroyed, and accordingly the good performance would be lost.
In fact, we did some experiments and found that the near-conservation of
the energy (see, for example, Figure 9) dissolved under such circumstances
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