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Symbolic Optimization of Algebraic Functions

Masaaki KANNO∗, Kazuhiro YOKOYAMA†,
Hirokazu ANAI‡, and Shinji HARA§

April 21st, 2008

Abstract
This report attempts to establish a new framework of symbolic optimiza-

tion of algebraic functions that is relevant to possibly a wide variety of prac-
tical application areas. The crucial aspects of the framework are (i) the suit-
able use of algebraic methods coupled with the discovery and exploitation
of structural properties of the problem in the conversion process into the
framework, and (ii) the feasibility of algebraic methods when performing
the optimization. As an example an algebraic approach is developed for the
discrete-time polynomial spectral factorization problem that illustrates the
significance and relevance of the proposed framework. A numerical example
of a particular control problem is also included to demonstrate the develop-
ment.

Keywords: Parametric optimization, Gröbner basis, quantifier elimination,
polynomial spectral factorization

1 Introduction

Whilst numerical computation based on floating-point arithmetic is prevalent in the
applied science and engineering fields, algebraic methods and algebraic algorithms
have been attracting much attention from those application areas due to computed
results of different quality such approaches can potentially offer. The early days
saw results of theoretical interest, but even a tiny toy problem could hardly be
solved because of lack of effective algorithms and implementation and also be-
cause of the limited computation power available at that time. Algorithmic devel-
opment, coupled with the ever increasing computation capability, made it possible
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to find solutions for (sometimes more than) toy problems. The achievement further
stimulated both computer algebraists and people on the application side. Solution
for larger, more realistic problems has been envisaged and formulation of a wider
class of practical problems in the algebraic framework pursued.

This report attempts to establish a new framework of symbolic optimization
which has relevance to practical problems. Emphasized in the development is the
significance of the appropriate use of algebraic methods and of the discovery of
structural properties inherent in original problems in the application areas. More
specifically algebraic methods play a vital rôle in converting the original problem
into the suggested optimization framework and moreover in solving the resulting
optimization problem. As an example we consider a particular control problem
which falls into the framework, but the framework in fact encompasses a wide
class of problems in signal processing and control. The authors believe that a large
number of problems from the application side can be dealt with in a similar fashion
and that the framework indeed embraces an extensive area of problems of practical
significance. It is thus hoped that this report will stimulate the research in various
fields of application and also the computer algebra community into the search of
latent structures and exciting algorithmic improvements.

The rest of the report is organized as follows. Section 2 is devoted to the formu-
lation of the new framework this report proposes, and some discussions are given
on how to achieve the framework and to solve the formulated optimization problem
effectively are given. Section 3 takes up an example of the discrete-time polyno-
mial spectral factorization problem, which can help convert various problems in
signal processing and control into the suggested framework and thus indicates the
relevance of the framework in the context of the solution of problems arising from
application fields. Then a numerical example of a control problem is given in Sec-
tion 4. Some concluding remarks are made in Section 5.

2 New Framework of Symbolic Optimization

Two algebraic techniques most commonly relied upon to solve problems from ap-
plied fields may be Gröbner bases and quantifier elimination (QE). After the formal
establishment of the notion of Gröbner bases, endeavours based on Gröbner basis
theory have been made for the solution of various problems. For instance the power
of Gröbner basis theory is exerted to observe the structure of the solution set of al-
gebraic equations [1], and also to reduce the number of variables (or elucidate free
variables) for parametrization of solutions [2]. The technique of QE, originated
by Tarski in 1950s, has a long history of application examples, but more recently
benefits from the algorithmic development [3, 4, 5, 6] and easy-to-use implemen-
tation [7] and also from the computation capability of modern computers. Typical
usages of QE include computation of algebraic expressions for feasible regions
of parameters [8, 9, 10, 11, 12] and (possibly non-convex) optimization of a cost
function which is rational in parameters under some algebraic constraints on pa-
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rameters [13, 14, 15]. Possibilities of other methods are explored as well and new
application examples have been constantly appearing [16].

However, in order to make such algebraic methods more useful in practice, it
is of crucial importance to greatly reduce computation time and moreover to allow
treatment of a wider class of problems that are relevant to practical applications.
For the reduction of the computation burden, it is never sufficient to solely ex-
pect improvements in algorithms. Extensive efforts are also to be made to pursue
methods that exploit the structural properties of the problems that are being solved,
and furthermore the discovery of better representations of the problems that reveal
desirable structures is to be made. More importantly several techniques need to
be organically blended so that sundry problems of practical significance may be
formulated appropriately in the algebraic framework.

In this report a new framework of symbolic optimization is proposed that may
overcome current limitations and proceed in the direction mentioned above. The
purpose of the report is twofold:

• to show the significance of combining various algebraic techniques in re-
ducing a practical problem to a new framework of symbolic optimization
suggested in this report and further performing optimization; and

• to indicate that the suggested framework has relevance to practical problems
by giving a particular example in control.

The suggested formulation is written as
{

maximize/minimize φ(p)

subject to F(p)
(1)

where p = (p1, p2, . . .) is a vector of real parameters, φ(p) ∈ L with L/Q(p) be-
ing a finite algebraic extension of Q(p), and F(p) is a set of algebraic constraints
on p. In this report we call φ(p) a real algebraic function for simplicity (and hence
the title of the report). Namely, φ(p) is a rational function in ζ and p, where ζ is
some algebraic number defined as a particular root of a minimal polynomial over
Q(p). By F , the feasible region of parameters are specified algebraically, e.g.,
−1 ≤ p1 < 2 or p2

1 + 2p2
2 ≤ 1. Furthermore, as a special case of (1), we consider

the situation where the cost function φ(p) is the largest real root of a polynomial
whose coefficients are polynomials/rational functions in p.

The problem formulation (1) may be in fact contained in a general framework
stated in [13], but there are two distinctive points in our framework: (i) formulation
in this way and (ii) solution of this optimization problem. It can hardly be expected
that a realistic optimization problem arising from a practical application is readily
given in the form of (1). Indeed it is often the case that a practical problem is
tackled by solving a series of equations and thus that the input to an equation
depends on the output (i.e., solution) of the preceding equations. With parameters
the situation is more problematic. Algebraic methods can assist reformulation of
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the original optimization problem in the form of (1). We will see as an example
that sophisticated Gröbner basis techniques turn a control problem into this form.

It goes without saying that the computation cost is always the issue when an
algebraic method is utilized. We further point out the significance of the exploita-
tion of structural properties of the problem and of the pursuit of more desirable
parametrization of variables for accomplishing this part, which cannot be over-
stressed.

Once converted into (1), various optimization algorithms, both numerical and
algebraic [17], may be applicable, and extensive efforts have been made for im-
provement of the efficacy of such algorithms. It is indicated that this optimization
can also be performed by means of the QE approach [13, 14, 15]. The optimiza-
tion problem in (1) is in general non-convex and thus it is not an easy task for a
numerical optimization algorithm to find the global optimum. Algebraic methods
based on, e.g., QE, have an advantage that they can in principle find the global
optimum. This report shows that a wide class of realistic practical problems can be
formulated as in (1) and thus that QE-based optimization has immense significance
in the application field.

More specifically, write φ(p) = φ̄(ζ,p), where ζ is defined as a particular real
root of a polynomial over Q(p) and φ̄(ζ,p) is a rational function in ζ and p. That
ζ is a particular real root can be stated in an equivalent condition on ζ that there are
a particular number of real roots between ζ and +∞. Therefore, ζ can be specified
algebraically by way of the defining polynomial and the condition from the Sturm-
Habicht sequence [18]; see [14, 19] for more details. The optimization problem is
thus stated as a QE problem:

∃ζ ∃p ( η = φ̄(ζ,p) ∧ F(p)

∧ [ Condition from the Sturm-Habicht sequence ] ) .

After the elimination of variables ζ and p, the condition only on η results, which
indicates the range of the values φ̄(ζ,p) (equivalently, φ(p)) can take when param-
eters p change subject to F(p). It is immediate to find the minimum/maximum of
φ(p) from the result.

We point out that, in this part, further exploitation of structural properties is also
possible for speeding up optimization when φ(p) is defined as the largest real root
of a polynomial over Q(p) [20]. This further expands the practical applicability of
algebraic approaches.

It is emphasized here that all the points stated above have a significant meaning
to practical applications and are indispensable for devising effective algebraic ap-
proaches. Indeed control problems considered in [14, 21] are suitably transformed
in the form of (1) and also solved via the QE-based optimization approach. In
Section 3, we see another example of a control problem that falls into the frame-
work suggested in this section. It is believed that these problems are convincing
evidences of the versatility of this framework.
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3 Discrete-time Polynomial Spectral Factorization

The problem of polynomial spectral factorization is of crucial importance in signal
processing [22] and control [23] for finite dimensional linear systems. The pursuit
of its solution approaches thus has a long history [24]. Early results includes ap-
proaches using constant matrix factorization or the Newton-Raphson method. A
typical approach in recent times may be to reduce the problem to an algebraic Ric-
cati equation and solve it by means of numerical linear algebra. The authors of this
report pointed out an intriguing and useful relationship between the continuous-
time polynomial spectral factorization and Gröbner basis theory [25] and discussed
an algebraic approach to parametric polynomial spectral factorization based on this
discovery [14, 19]. The key ingredient in this approach is a quantity called the sum
of roots (SoR), and it is further indicated that this quantity also has an essential
meaning in control theory [21].

This section develops a similar algebraic approach to the discrete-time case.
Since modern signal processing and control systems utilize digital computers to
fulfil severe requirements for high-level performances and accomplish complicated
tasks, analysis and synthesis of discrete-time systems have become of practical
significance [26]. It is thus beneficial to develop mathematical tools for discrete-
time systems.

In general, given a result for the continuous-time case, a conceivable approach
is to make use of the bilinear transform (Tustin transform) [26], which is a con-
formal mapping that transforms the continuous-time representation to the discrete-
time one and vice versa. Indeed this approach works for the polynomial spectral
factorization problem, and parametric discrete-time polynomial spectral factoriza-
tion is feasible via the approach to the continuous-time counterpart. There is how-
ever a drawback in such an approach because it may obscure a fundamental quan-
tity in the discrete-time domain.

The aim of this section is thus to develop a more direct method for parametric
discrete-time polynomial spectral factorization which preserves a quantity that has
an essential meaning in control theory, just like the SoR in the continuous-time
case. The development turns out to be analogous to the continuous-time case [14,
19] and the approach is fairy effective. Nevertheless it is emphasized that this
analogy is achieved by means of a novel parametrization. The development is
thus believed to serve as a persuasive evidence for the importance of seeking nice
representations.
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3.1 Problem Formulation

Consider the polynomial1 of degree 2n in R[x] of the following form:

f(x) = anxn + an−1x
n−1 + · · · + a1x + a0

+
a1

x
+ · · · +

an−1

xn−1
+

an

xn
, an 6= 0 , (2)

where ai ∈ R, i = 0, 1, . . . , n. Here, for the brevity of the exposition, we first as-
sume that the coefficients of f(x) are real constants and do not contain parameters.
The discussion on the parametric case is deferred until Subsection 3.3. The poly-
nomial f(x) is called self-reciprocal since f(x) and its reciprocal polynomial2,
f
(

1
x

)

, are coincident:

f(x) = f
(1

x

)

.

Suppose that f(x) has no roots of unit modulus, i.e., has no roots on the unit circle.
Due to the self-reciprocal property, if α is a root of f(x), then so is 1

α
. All the

roots are situated symmetrically about the unit circle and there are n roots each
inside and outside the unit circle. The task in the discrete-time polynomial spectral
factorization problem is to decompose f(x) as a product of two polynomials, a
polynomial that captures all the roots inside the unit circle (namely, ‘stable’ roots)
and its reciprocal.

Definition 1 The spectral factorization of f(x) in (2) is a decomposition of f(x)
of the following form:

f(x) = g(x) g
(1

x

)

, (3)

where

g(x) = bnxn + bn−1x
n−1 + · · · + b1x + b0 ∈ R[x] , bn > 0 , (4)

and g(x) has roots strictly inside the unit circle only. The polynomial g(x) is called
the spectral factor of f(x).

Some investigation on the structural properties of the problem is made. Let
αi, i = 1, 2, . . . , n, be the n roots of f(x) inside the unit circle (i.e., |αi| < 1).
The remaining n roots located outside of the unit circle can then be written as 1

αi
,

i = 1, 2, . . . , n. Using αi’s, we can express f(x) and g(x) as

f(x) = an

n
∏

i=1

(x − αi)
(

1 −
1

αix

)

,

g(x) = bn

n
∏

i=1

(x − αi) . (5)

1The polynomial (2) is obviously not a polynomial, but it can be easily converted to a polynomial:
xnf(x). We thus regard (2) as a polynomial to follow the convention in signal processing and control
and also to simplify the notation in the development in this report.

2Again, to be precise, this is not a polynomial, but we also consider this one as a polynomial.

6



Unlike the continuous-time case, the leading coefficient bn of g(x) is not imme-
diately determined from f(x), but, comparing the leading coefficients of the both
sides of (3), we can observe the following relationship:

an = bnb0 = b2
n

n
∏

i=1

(−αi) . (6)

Now, just as the SoR in the continuous-time case, let us introduce the quantity
called the product of roots (PoR):

π := (−α1)(−α2) · · · (−αn) . (7)

The naming may be obvious since π is the product of roots of g(x) up to sign. As
will be seen below, π is a crucial quantity in carrying out discrete-time polynomial
spectral factorization. Since |αi| < 1, and also any non-real root of f(x) (resp.,
g(x)) has its complex conjugate as a root of f(x) (resp., g(x)) and their product
becomes real, the following fact is immediately derived.

Fact 2 The quantity π is real and its modulus (absolute value) is strictly less than
1.

A naı̈ve approach to polynomial spectral factorization may be to first calculate
the roots αi’s of f(x) inside the unit circle, compute bn from (6) and then construct
g(x) using (5). Our main target is nevertheless parametric f(x) and we pursue
an algebraic approach that computes π without explicitly finding αi’s. Also the
approach is expected to reduce the polynomial spectral factorization problem in
essence to the computation of π, just as in the continuous-time case where the
crucial part of the approach is to obtain the SoR. In preparation for the development
some polynomials which has π as one of their roots are introduced.

Definition 3 Let P =
{

(ε1, ε2, . . . , εn) | εi ∈ {1,−1}
}

, and C(ε1, ε2, . . . , εn) =
(−α1)

ε1 · (−α2)
ε2 · · · (−αn)εn for each (ε1, ε2, . . . , εn) in P . The characteristic

polynomial Sf (y) of π is defined as

Sf (y) =
∏

(ε1,ε2,...,εn)∈P

(

y − C(ε1, ε2, . . . , εn)
)

.

Notice that

π = C(1, 1, . . . , 1) ,

and the degree of Sf (y) is 2n. It is further noted that Sf (y) belongs to R[y].
In the case where f(x) belongs to Q[x], Sf (y) belongs to Q[y], as well (while
g(x) 6∈ Q[x] in general).

The following lemma can be deduced in a manner analogous to the continuous-
time case.

7



Lemma 4 The PoR π defined in (7) coincides with the real root of Sf (y) with the
smallest modulus. Moreover, under the assumption that f(x) does not have roots
on the unit circle, π is always a simple root.

In the discrete-time case we are dealing with in this section, we need an extra
trick to facilitate solution of the polynomial spectral factorization problem. Using
π, we can write the relationship in (6) as

b2
n =

an

π

(

π =
an

b2
n

)

. (8)

Then,

S̃f (ỹ) := ỹ2n+1

Sf

(an

ỹ2

)

(9)

is a polynomial in ỹ of degree 2n+1 whose largest real root is equal to bn (remember
that we assume that bn > 0). Also, bn is always a simple root of S̃f (ỹ) when f(x)
has not roots on the unit circle.

The relationship (8) permits us to treat π and bn interchangeably. The advan-
tage of dealing with bn (rather than π) is twofold: it allows us to solve the problem
of polynomial spectral factorization effectively by means of Gröbner bases, which
we will see in the following subsection; and the quantity bn is directly related to
some essential quantity in control theory [27].

The next subsection develops an algebraic approach to the problem of discrete-
time polynomial spectral factorization. Since the structure of roots of f(x) is clear,
we can make an extensive use of its properties we have investigated in this subsec-
tion. We stress here the importance of the discovery of useful structural properties
and the exploitation thereof for acquiring effective algebraic approaches.

3.2 Solution Approach

If we compare the coefficients of the both sides of (3), a system of quadratic poly-
nomial equations in bi’s is obtained. Write as ḡk the coefficient of the k-th order
term of g(x)g

(

1
x

)

− f(x), that is,

g(x)g
(1

x

)

− f(x) =

n
∑

k=−n

ḡ|k|x
k . (10)

Then, for each k, k = 0, 1, . . . , n, we have

ḡk =
n−k
∑

i=0

bibi+k − ak . (11)

The polynomial spectral factorization problem thus reduces to finding a particu-
lar zero of an ideal. Considering bi, i = 0, 1, . . . , n, as variables and letting B0 =
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{b0, b1, . . . , bn}, we have an ideal 〈G0〉 in R[B0] generated by G0 = {ḡ0, ḡ1, . . . , ḡn}.
Then each zero of 〈G0〉 corresponds to the sign of bn and (ε1, ε2, . . . , εn) ∈ P
through the relationships g(x) = bn

∏n
i=1(x − αεi

i ) and an = b2
n

∏n
i=1(−αεi

i ).
Hence the ideal 〈G0〉 is 0 dimensional and has at most 2n+1 distinct zeros.

In the continuous-time case, the set of polynomials derived in an analogous
fashion forms a Gröbner basis of the ideal generated by itself and we can imme-
diately employ various results from Gröbner basis theory [25, 14]. Unfortunately
the same is not true for the discrete-time case under investigation. However we can
show that a different representation of the coefficients of g(x) and some manipula-
tion of the set of polynomials yield a desired Gröbner basis.

Another representation of g(x) we use is

g(x) = βn(x + 1)n + βn−1(x + 1)n−1 + · · · + β0 . (12)

Notice that bi and βj are related as

bi =
n

∑

j=i

(

j

i

)

βj (13)

βj =
n

∑

i=j

(

i

j

)

(−1)i−jbi , j = 0, 1, . . . , n ,

where
(

j
i

)

is the binomial coefficient for i, j ∈ N. Denote {β0, β1, . . . , βn} by
B. Then the conversion between B0 and B is linear and there is a one-to-one
relationship. Also notice that βn = bn(> 0), and we develop our approach around
βn.

We can transform each ḡk(B0) to a polynomial in B, which we denote by
ḡk(B). The set of polynomials {ḡ0, ḡ1, . . . , ḡn} is still not a Gröbner basis, but a
Gröbner basis can be computed in a very simple manner from ḡk without resorting
to algorithms such as Buchberger’s algorithm. Let ck,`, k = 0, 1, . . . , n, k ≤ ` ≤
n, be



















ck,k = 1 k = 0, 1, . . . , n ,

c0,` = (−1)`2 ` = 1, 2, . . . , n ,

ck,` = (−1)k+` · 2
(2k)! ·

(k+`−1)!
(`−k)! ·`

{

k = 1, 2, . . . , n ,
k < ` ≤ n .

Lemma 5 Let

¯̄gk :=
n

∑

`=k

ck,` ḡ`

(

= ḡk +
n

∑

`=k+1

ck,` ḡ`

)

, k = 0, 1, . . . , n . (14)

Then the set of polynomials

G := {¯̄g0, ¯̄g1, . . . , ¯̄gn} , (15)
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forms the reduced Gröbner basis of the ideal generated by {ḡ0, ḡ1, . . . , ḡn} in R[B]
with respect to the graded reverse lexicographic order βn � βn−1 � · · · � β0,
with β2

k being the leading monomial of ¯̄gk. (The leading coefficients are 1.)

The proof is given in the Appendix.
We call the ideal 〈G〉 of R[B] the ideal of spectral factorization. The set of the

leading monomials of the elements of G is {β2
0 , β2

1 , . . . , β2
n}. Therefore,

LB :=
{

βd0

0 βd1

1 · · ·βdn
n | dk ∈ {0, 1}

}

forms a basis of the residue class ring R[B]/〈G〉 as an R-linear space, and
dimR R[B]/〈G〉 = #LB = 2n+1. These facts lead to the following lemma.

Lemma 6 The ideal of spectral factorization is 0 dimensional and the number of
its zeros with multiplicities counted is 2n+1.

Once this ideal of spectral factorization is established based on the unconven-
tional representation (12) of g(x), the rest of the development follows essentially
in the same line as the continuous-time case. Here some vital points are presented.
Readers are referred to [19, 14] for full details of the continuous-time case. If f(x)
does not have multiple roots, there are exactly 2n distinct possible root combina-
tions and thus 2n+1 different polynomials g(x) that satisfy (3). This also implies
that there are exactly 2n+1 zeros of 〈G〉. The ‘true’ g(x), namely the spectral factor,
corresponds to a zero with the largest real βn. In order to simplify the search for
this particular zero, we convert the Gröbner basis G into the so-called shape basis.

The ideal of spectral factorization for the discrete-time system has two cases,
the generic case and the singular case, just as for the continuous-time system.
Almost all f(x) arising from practical applications fall into the generic case and
we mainly discuss the generic case; some remark on the singular case will be made
at the end of this subsection.

Definition 7 Given f(x), when distinct (ε1, ε2, . . . , εn) ∈ P give distinct
C(ε1, ε2, . . . , εn), we call the situation a generic case. Otherwise it is called a
singular case.

In either case we can show by using ‘generic coefficient’ and Lemma 11 in the
next subsection that S̃f (ỹ) in (9) is identical to the characteristic polynomial of βn

modulo 〈G〉, i.e., the characteristic polynomial of the linear map derived from the
multiplication map [28]:

R[B]/〈G〉 3 g → βng ∈ R[B]/〈G〉 .

Moreover, in the generic case, S̃f (ỹ) is square-free and its degree is 2n+1. Noting
that the ideal of spectral factorization has at most 2n+1 distinct zeros, we can im-
mediately deduce that βn is a separating element [29]. Due to the facts that 〈G〉
is 0 dimensional and radical and that βn is a separating element, we can obtain a
special Gröbner basis called the shape basis in the discrete-time case as well.
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Theorem 8 In the generic case the ideal of spectral factorization has a
Gröbner basis so-called shape basis with respect to any elimination ordering
{β0, β1, . . . , βn−1} �� βn:

F :=
{

S̃f (βn), βn−1 − h̃n−1(βn), . . . , β0 − h̃0(βn)
}

,

where S̃f is a polynomial of degree exactly 2n+1 and h̃i’s are polynomials of degree
strictly less than 2n+1.

The theorem guarantees that, in the discrete-time case, just like the continuous-
time case, all the coefficients of the spectral factor can be expressed as polynomials
in βn and therefore that the problem of polynomial spectral factorization can in
essence be solved by finding the largest real root of S̃f (ỹ). Last but not least, since
G is already a Gröbner basis, we can effectively compute a shape basis from G by
way of the basis conversion (change-of-order) technique [29].

Here it should be emphasized that the proposed approach has properties favour-
able to practical applications. A Gröbner basis with respect to the graded reverse
lexicographic order is obtained almost instantly from the problem formulation and
the investigation of the properties of the ideal is thus possible. It is then seen that a
shape basis is obtainable, and that relatively easily. Lastly we only have to examine
the largest real root of S̃f (ỹ). A typical scenario is that one need to resort to an
expensive calculation to derive a shape basis and then one has to investigate all
the roots of the characteristic polynomial in search of the true solution. Those
advantages are acquired by discovering the representation (12) that yields helpful
structural properties.

Before closing this subsection we briefly discusses the the singular case, where
the characteristic polynomial S̃f (ỹ) has multiple roots. Even in this case we are
still able to derive a shape basis in the same manner as in [19]. The key point is to
add the simple part T̃ (ỹ) of S̃f (ỹ) to the ideal, where the simple part T̃ (ỹ) is the
factor of S̃f (ỹ) obtained as the product of ỹ − γi for all simple roots γi of S̃f (ỹ).
Note that T̃ (ỹ) can be computed by GCD of S̃f and its derivative. Then we can
show the following.

Theorem 9 The ideal 〈G, T̃ (βn)〉 has a shape basis with respect to any elimination
ordering {β0, . . . , βn−1} �� βn:

{

T̃ (βn), βn−1 − h̄n−1(βn), . . . , β0 − h̄0(βn)
}

,

where h̄i’s are polynomials of degree strictly less than that of T̃ .

3.3 Parametric Case

This section deals with the case where each coefficient ak is some polynomial in
real parameters p = (p1, p2, . . . , pm) over Q. Now the polynomial f(x) is con-
sidered as a multivariate one f(x,p) in Q[x,p]. Even in the parametric case it
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often happens that the ideal of spectral factorization is generic for almost all com-
binations of parameter values. In such a case we can apply efficient parametric
basis conversion, where we can compute the shape basis directly over the rational
function field of parameters, as pointed out in [19] (See also Remark 13 below).
Nevertheless we need to pay special attention to singular situations so that opti-
mization that follows may be carried out thoroughly. It is shown here that such
singularities can also be dealt with systematically. To this end the notion of ‘com-
prehensive Gröbner system’ is crucial and we can apply several techniques for its
computation.

For each element c = (c1, c2, . . . , cm) in Rm, we denote by ϕc the ring homo-
morphism from Q[p][B] to R[B] obtained by substitution of p with c. For sim-
plicity we denote by fc(x) the polynomial ϕc(f)(= f(x, c)). To perform spectral
factorization, we consider the following semi-algebraic set.

Definition 10 A semi-algebraic set C ⊂ Rm is called a regular region if, for any
c ∈ C, an(c) 6= 0 and there exist no roots of unit modulus in fc(x).

In the same way as the continuous-time case, the condition that f has no roots
of unit modulus can be computed by the quantifier elimination technique or real
root counting methods. Notice that a polynomial in x over R has a root of unit
modulus if and only if it has a factor of the form of x2 + cx + 1, x − 1, or x + 1
over R. Due to the special structure (2), factors such as x − 1 and x + 1 in fact
appear in f(x) as their squares and thus are represented by x2 + cx + 1. Substitute
c with a new variable z. Then the resultant of xnf(x) and x2 + zx + 1 becomes
a polynomial R(z) in z over Q[p]. It can be shown that, for a parameter value
c ∈ Rm, ϕc(f) has no roots of unit modulus if and only if ϕc(R(z)) has no real
roots.

Now assume that C is a regular region for f(x,p). We can compute the poly-
nomial set G as in Lemma 5, where all polynomials are treated as ones over Q[p].
Also, for each c ∈ C, we can compute the polynomial set, say Gc, for fc as in
Lemma 5. Then, Gc = ϕc(G). Lemma 5 now implies that G and Gc are still
Gröbner bases over Q(p) and Q for ideals generated by themselves with respect to
the graded reverse lexicographic order βn � · · · � β0.

We now consider the ideal 〈G〉 of spectral factorization in Q(p)[B] and the
ideal 〈Gc〉 of spectral factorization in R[B]. We note that all arguments in the
previous subsections can be applied to the ideals in Q(p)[B], as Q(p) is a field.

An important computational property of the characteristic polynomial of βn

can be derived as follows: LB =
{

βd0

0 βd1

1 · · ·βdn
n | dk ∈ {0, 1}

}

is still a linear
basis for Q(p)[B]/〈G〉, and, for the linear map Q(p)[B]/〈G〉 3 g → βng ∈
Q(p)[B]/〈G〉, its matrix representation Mp with respect to LB is a matrix over
Q[p], since all the leading coefficients of the elements of G are 1 as polynomials in
Q[p,B]. Thus the characteristic polynomial S̃f is a polynomial in ỹ over Q[p].

In the same manner, for each c ∈ C, we can compute the characteristic polyno-
mial S̃fc as the characteristic polynomial of the matrix Mc derived from the linear

12



map. Then, Mc coincides with the matrix obtained from Mp by substituting p with
c, and thus, ϕc(S̃f(x,p)) = S̃fc .

Lemma 11 The characteristic polynomial S̃f is a monic polynomial over Q[p],
and, for each c ∈ C, the characteristic polynomial S̃fc can be computed by
S̃fc(βn) = ϕc

(

S̃f (βn)
)

.

Again there are the generic case and the singular case for the ideal spectral fac-
torization over Q(p). In the generic case, S̃f (y) is square-free over Q(p) and the
ideal 〈G〉 is radical. Then we have the shape basis F with respect to an elimination
ordering {β0, . . . , βn−1} �� βn over Q(p) as in Theorem 8. For the singular case
we compute the simple part T̃ of S̃f by using GCD computation, and consider the
ideal 〈G ∪ {T̃}〉 instead of the original one. Then, over Q(p), we have the shape
basis as in Theorem 9. Thus, from now on, we only deal with the generic case.

Now we outline our approach for the computation of the shape basis for the
parametric case. Using comprehensive Gröbner systems [30, 31], we can compute
the Gröbner basis of the ideal of spectral factorization with respect to the elimina-
tion ordering, where the region C may be decomposed to a number of cells:

C =
⋂

i∈I

Ci and #I < ∞ , (16)

where each Ci is given as a semi-algebraic set and its associated polynomial set
Gi in Q(p)[B] is computed such that ϕc(Gi) forms a Gröbner basis of 〈Gc〉 for
any c ∈ Ci. We can make the above comprehensive Gröbner system reduced, that
is, for each c ∈ C, ϕc(Gi) is reduced. Then, from the discussion in the previous
subsection, it follows that, for each cell Ci in (16), Gi is a shape basis if S̃fc is
square-free for any c in Ci.

Definition 12 In the resulted comprehensive Gröbner system (16), if Gi is a shape
basis, we say that Ci is generic.

Thus, examining the forms of Gi’s, we can extract all generic cells Ci’s where
Gi’s are shape bases.

Remark 13 To extract such a generic cell more efficiently, we can use the tech-
nique of parametric basis conversion proposed in [19]. Over Q(p), both G and its
shape basis F are Gröbner bases (with respect to different orderings) and so it can
be shown that, for any c ∈ Rm, if the denominators of elements of F do not vanish
on c, then ϕc(F) is also the shape basis of 〈ϕc(G)〉.

For a non-generic cell Ci, we can compute a certain shape basis by Theorem
9. In this case, by introducing new variable γ, we can extract the simple part of

S̃f . Let G̃ := G ∪ {γ
dS̃f

dβn
− 1}. Since the additional polynomial excludes multiple

roots of S̃f , computing the comprehensive Gröbner system for G̃, we have a desired
shape basis whose first element has βn as its largest real root. Also we can apply
efficient technique in [19].
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4 Numerical Example

This section considers a particular control problem to demonstrate the discrete-time
polynomial spectral factorization algorithm developed in Section 3 and further to
show the applicability of the optimization framework proposed in this report. The
problem we deal with is the H2 regulation problem with input penalty, which is
often employed in a research direction in control called the characterization of per-
formance limitations [32]. The problem is formulated as follows. In the feedback
configuration in Figure 1, P (z) is a plant, i.e., a system we want to control, and
K(z) is a controller that we have to design. The disturbance signal d(k) is taken
to be a unit pulse signal and the cost function we employ is

E :=
∞

∑

k=0

(

|y(k)|2 + |u(t)|2
)

.

The task is then to find a controller that achieves the smallest value of E among all
stabilizing controllers and also the smallest value of E :

E? := min
K stabilizing

E .

Given a fixed P (z), a standard numerical procedure allows us to find the value of
E? and the controller that achieves this. Our focus is thus on a plant with parame-
ters P (z;p), where p is a vector of real parameters that can be tuned, and we aim
to find the minimum value of E?:

min
p∈Q

E? ,

where Q is the feasible region of p, specified as F(p) (cf. (1)). Write an n-th order
single-input-single-output plant P (z) as

P (z) =
PN (z)

PD(z)
,

where PN (z) and PD(z) are coprime polynomials and PD(z) is n-th order and
monic. Construct a self-reciprocal polynomial

PN (z)PN

(1

z

)

+ PD(z)PD

(1

z

)

(17)

K(z) P (z)e - - ?e - -r

6−
e

d

u y

Figure 1: Unity feedback system configuration.
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(which corresponds to f(x) in (2)), and write its spectral factor as

MD(z) = mn(x + 1)n + mn−1(x + 1)n−1 + · · · + m0

(which corresponds to g(x) in Definition 1 represented in the form of (12)). Un-
der the assumptions that P (z) is strictly proper and minimum-phase, E? can be
expressed as [27]

E? = m2
n − 1 . (18)

Notice that (18) satisfies the condition for φ(p) in (1) since the development in
Section 3 allows us to get a polynomial which has mn as a real root and whose
coefficients are polynomial in p. It is also noted that, using the expressions of
mj’s, we can get an expression for the optimal controller. Thus the essential part of
the solution is to compute the shape basis for mj’s. It is emphasized that, although it
is not immediate to see the relationship between the H2 regulation problem and the
problem formulation (1), Gröbner basis theory can reformulate the control problem
into (1) and thus that the formulation (1) is relevant to the control problem. Other
important things to be noted here are that mn (bn and βn in Section 3) represents
an essential quantity in control and that it is beneficial to develop a polynomial
spectral factorization algorithm in the discrete-time domain.

As a numerical example we employ the following:

P (z; p1, p2) =
z −

(

p1 −
1
8

)

p1

z2 +
(

1 + 1
100p2

)

z + p2
2 + 1

4

,

(p1, p2) ∈ Q :=
{

(p1, p2)
∣

∣ p1 ∈ [−1
4 , 1

4 ], p2 ∈ [−1
2 , 1

2 ]
}

.

Firstly it can be confirmed that the region Q is regular. Comparing the coefficients
of (17) and MD(z)MD

(

1
z

)

, we obtain a set of polynomials. Using Lemma 5,
we can get a Gröbner basis with respect to the graded reverse lexicographic order
m2 � m1 � m0:

{

m2

0
− p4

1
− p4

2
+ 1

4
p3

1
+ 1

50
p3

2
− 129

64
p2

1
− 5001

10000
p2

2
+ 1

4
p1 + 1

200
p2 −

17

16
,

m2

1
− 2m2m0 + m1m0 −

1

100
p3

2
+ p2

1
+ 3p2

2
− 1

8
p1 −

1

80
p2 −

1

4
,

m2

2
+ m2m1 + m2m0 − p2

2
− 1

4

}

.

It can further be converted into a shape basis (which is not included due to space
limitation) by using the basis conversion computation over the rational function
field of parameters. None of the denominators vanishes inside Q and thus Q is
generic (see Remark 13). Lemma 11 then confirms that the first element is the cor-
rect characteristic polynomial of m2 for all p ∈ Q. In fact, since we are focusing
on m2 only in this problem, it suffices to construct the multiplication matrix of m2

and to compute its characteristic polynomial. From the characteristic polynomial
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of m2, we can obtain a polynomial in λ whose largest real root is equal to m2
2:

λ4 + (−p4

1
− p4

2
+ 1

4
p3

1
− 1

64
p2

1
+ 14999

10000
p2

2
− 1

50
p2 −

41

16
)λ3

+ (−2p4

1
p2

2
− 19999

10000
p6

2
+ 1

2
p3

1
p2

2
− 1

50
p2

1
p3

2
+ 1

50
p5

2
+ 1

2
p4

1
− 65

32
p2

1
p2

2

+ 1

400
p1p

3

2
+ 30001

20000
p4

2
− 1

8
p3

1
− 1

40
p2

1
p2 + 1

4
p1p

2

2
+ 1

100
p3

2

− 319

128
p2

1
+ 1

320
p1p2 −

459983

160000
p2

2
+ 5

16
p1 + 17

800
p2 + 5

32
)λ2

+ (−p4

1
p4

2
− p8

2
+ 1

4
p3

1
p4

2
− 1

2
p4

1
p2

2
− 1

64
p2

1
p4

2
+ 9999

10000
p6

2

+ 1

8
p3

1
p2

2
− 1

50
p5

2
− 1

16
p4

1
− 1

128
p2

1
p2

2
− 37501

20000
p4

2
+ 1

64
p3

1

− 1

100
p3

2
− 1

1024
p2

1
− 190001

160000
p2

2
− 1

800
p2 −

41

256
)λ

+ p8

2
+ p6

2
+ 3

8
p4

2
+ 1

16
p2

2
+ 1

256
.

By means of a special QE algorithm [20] and the relationship (18), we can find that
the global optimum of E? is

min
p∈Q

E? ' 1.508 ,

and that this is achieved at

popt ' (0.0625,−0.3457) .

It is emphasized that the optimal value and popt are the true global optimal values
(cf. Figure 2) and moreover can be obtained as algebraic numbers and that they can
be computed with arbitrary accuracy. The computation times required for obtaining
the result are

Computation of the shape basis : 0.01 [sec]
Optimization of E? : 403.57 [sec]

by programs implemented in Maple running on a 1.33GHz PC with Intel Core Solo
U1500.

5 Conclusions

This report has proposed a new framework of symbolic optimization that may en-
compass a wide range of problems arising from practical applications. Algebraic
approaches play a crucial rôle in the framework: formulation into this framework
and solution of the problem formulated in this framework. Also emphasized is
the significance of the exploitation of the structural properties inherent (sometimes
in an obscure way) in the problem. As an example this report has developed an
algebraic approach to discrete-time polynomial spectral factorization, which is be-
lieved to deserve attention in its own right. It is expected that the development will
find many applications in the area of signal processing.
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Figure 2: Plot of E?.

6 Acknowledgments

The authors would like to thank Ms. Silvia Gandy and Mr. Hideaki Tanaka for their
help in preparing the numerical example.

References

[1] B. Hanzon and J. M. Maciejowski. Constructive algebra methods for the L2-
problem for stable linear systems. Automatica, 32(12):1645–1657, December
1996.

[2] H. Park. Optimal design of synthesis filters in multidimensional perfect re-
construction FIR filter banks using Gröbner bases. IEEE Transactions on
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Appendix: Proof of Lemma 5

Firstly the conversion between ḡi and ¯̄gk are linear and also triangular, and ḡi’s can
also be expressed as linear combinations of ¯̄gk’s. Therefore the ideals 〈ḡ0, ḡ1, . . . , ḡn〉
and 〈¯̄g0, ¯̄g1, . . . , ¯̄gn〉 are identical. So it is sufficient to show that G is the reduced
Gröbner basis of the ideal generated by itself.

We first show that G is a Gröbner basis. Each ḡk is quadratic and contains terms
β2

` , k ≤ ` ≤ n, but not β2
`′ , 0 ≤ `′ < k. Also the coefficient of the term β2

k in ḡk

is 1. These facts imply that ¯̄gk is quadratic and contains terms β2
` , k ≤ ` ≤ n (but

not β2
`′ , 0 ≤ `′ < k), with the coefficient of β2

k being 1. Moreover Claim A below
states that, when constructing ¯̄gk, the coefficients of term βiβj , k ≤ i ≤ j ≤ n,
become 0 except for i = j = k, namely, all the terms bigger than β2

k disappear.
Therefore the leading monomial of ¯̄gk is β2

k . (It is also noted that ¯̄gk does not have
monomials of the form β2

` except β2
k .) Furthermore the leading monomials of any

pair of polynomials in G are prime to each other. Thus Buchberger’s criterion [33,
Section 2-2, Theorem 6] is satisfied, and G is a Gröbner basis of 〈G〉.
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Now the reducedness of the basis is proven. For any ¯̄gk ∈ G,

〈LT(G − {¯̄gk})〉 = {β2
0 , β2

1 , . . . , β2
n} \ {β

2
k} , (19)

where LT(·) denotes the set of leading terms of elements. It is immediate that
no monomial of ¯̄gk lies in (19). That is, G satisfies the definition of the reduced
Gröbner basis [33, Section 2-2, Definition 5] and is thus the reduced Gröbner basis.

Claim A The coefficients of term βiβj , k ≤ i ≤ j ≤ n, in the polynomial ¯̄gk are 0
except for i = j = k, and the coefficient of β2

k is 1.

Proof: Let dk
i,j be the coefficient of the term βiβj in ḡk for 0 ≤ k ≤ n, 0 ≤ i ≤

j ≤ n. By (11) and (13), it follows that






















dk
i,j =

n
∑

`=0

(

i

`

)(

j

` + k

)

+
n

∑

`=0

(

j

`

)(

i

` + k

)

i < j ,

dk
i,i =

n
∑

`=0

(

i

`

)(

i

` + k

)

,

where
(

s
t

)

is the binomial coefficient for s, t ∈ N and its value is defined 0 when
t < 0 or t > s. Then it is straightforward to show that

n
∑

`=0

(

i

`

)(

j

` + k

)

=

(

i + j

j − k

)

,

which can be considered as a generalization of Pascal’s arithmetic triangle. We
thus have















dk
i,j =

(

i + j

j − k

)

+

(

i + j

i − k

)

i < j ,

dk
i,i =

(

2i

i − k

)

.

Now we consider the coefficients of ¯̄gk. Let ek
i,j be the coefficient of the term

βiβj in ¯̄gk for 0 ≤ k ≤ n, 0 ≤ i ≤ j ≤ n. By the definition (14) of ¯̄gk, we have

ek
i,j =

n
∑

`=k

ck,`d
`
i,j . (20)

To show that ek
i,j = 0 for j > i ≥ k and that ek

i,i = 0 for i > k, we use some
kind of “induction argument on i+ j”. By Pascal’s arithmetic triangle, we have the
following for k ≤ i < j and k ≤ `:

d`
i,j =

(

i + j

j − `

)

+

(

i + j

i − `

)

=

(

i + j − 1

j − `

)

+

(

i + j − 1

j − 1 − `

)

+

(

i + j − 1

i − `

)

+

(

i + j − 1

i − 1 − `

)

=

{

d`
i,j−1 + d`

i−1,j j − 1 6= i ,

2d`
i,i + d`

i−1,i+1 j − 1 = i .
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Also we have

d`
i,i =

(

2i

i − `

)

=

(

2i − 1

i − `

)

+

(

2i − 1

i − 1 − `

)

= d`
i−1,i .

Hence, by (20), we have

ek
i,j =

{

ek
i,j−1 + ek

i−1,j j − 1 6= i ,

2ek
i,i + ek

i−1,i+1 j − 1 = i ,

ek
i,i = ek

i−1,i .

Thus, if ek
i−1,j = ek

i,j−1 = 0, then we have ek
i,j = 0. Moreover, if ek

i−1,i = 0, then
ek
i,i = 0.

Using this fact, we can apply some kind of “induction argument”. Assume, to
the contrary, that ek

i,j 6= 0 for some j ≥ i ≥ k (but not i = j = k). Then, at least
either ek

i−1,j 6= 0 or ek
i,j−1 6= 0. Applying this argument recursively, we reach the

conclusion that there is some i > k such that ek
k,i 6= 0. Conversely, it means that, if

ek
k,i = 0 for any i > k, then ek

i,j = 0 for j ≥ i ≥ k except for the case i = j = k.
Finally we show that ek

k,i = 0 for any i > k, which completes the proof of
Claim A. To this end we use an induction argument on i.

For i = k + 1, direct computation shows that ek
k,k+1 = 0. Thus we assume

that ek
k,k+s = 0 for some s > 0, and show that ek

k,k+s+1 = 0. By the definition of
ek
k,k+s+1, we have

ek
k,k+s+1 =

n
∑

`=k

ck,`d
`
k,k+s+1

=
n

∑

`=k

ck,`

{

d`
k,k+s +

(

2k + s

k + s + 1 − `

)

+

(

2k + s

k − 1 − `

)}

= ek
k,k+s +

k+s+1
∑

`=k

ck,`

(

2k + s

k + s + 1 − `

)

.

We note that
(

2k+s
k−1−`

)

= 0, as ` ≥ k, and that dt
k,k+s = 0 for t > k + s.

By the assumption, ek
k,k+s = 0 and, thus it is enough to show that the second

term vanishes:

k+s+1
∑

`=k

ck,`

(

2k + s

k + s + 1 − `

)

= 0 .
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By direct calculation, we have the desired conclusion:

k+s+1
∑

`=k

ck,`

(

2k + s

k + s + 1 − `

)

=
k+s+1
∑

`=k

(−1)k+` 2

(2k)!

(k + ` − 1)!

(` − k)!
`

(2k + s)!

(k + s + 1 − `)!(k + ` − 1)!

=
s+1
∑

t=0

(−1)t 2

(2k)!

(2k + s)!(k + t)

t!(s + 1 − t)!

= ∆k
s+1
∑

t=0

(−1)t 1

t!(s + 1 − t)!
+ ∆

s+1
∑

t=1

(−1)t 1

(t − 1)!(s + 1 − t)!

= ∆
k

(s + 1)!

s+1
∑

t=0

(−1)t

(

s + 1

t

)

+ ∆
1

s!

s+1
∑

t=1

(−1)t

(

s

t − 1

)

= 0 ,

where ∆ = 2(2k+s)!
(2k)! . �
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