MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

On-Site Synchronization of Software Artifacts

Yingfei XIONG, Zhenjiang HU, Masato TAKEICHI,
Haiyan ZHAO, Hong MEI

METR 2008-21 April 2008

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY
THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html

The METR technical reports are published as a means to ensure timely dissemina-
tion of scholarly and technical work on a non-commercial basis. Copyright and all
rights therein are maintained by the authors or by other copyright holders, notwith-
standing that they have offered their works here electronically. It is understood that
all persons copying this information will adhere to the terms and constraints invoked
by each author’s copyright. These works may not be reposted without the explicit
permission of the copyright holder.

On-Site Synchronization of Software Artifacts

Yingfei XIONG, Zhenjiang HU, Masato TAKEICHI

Department of Mathematical Informatics
University of Tokyo, Tokyo, Japan
xiong@pl.t.u-tokyo.ac.jp

{hu, t akei chi }@ri st.i.u-tokyo.ac.jp

Haiyan ZHAO, Hong MEI

Key Laboratory of High Confidence
Software Technologies (Peking University)
Ministry of Education, Beijing, 100871, China

{zhhy, nei h}@ei . pku. edu. cn

April 15th, 2008

Abstract

Software development often involves multiple artifactscts as feature
models, UML models and code, which are in different formatsdhare a
certain amount of information. When users change one artifachange
several artifacts simultaneously, we need to propagatetbleanges across
all artifacts to ensure them consistent.

Existing approaches focus on off-site synchronizatioat th, manipu-
lating application data on external copies. However, in ynsoftware de-
velopment tools, synchronization happens “on-site”. Thehronization is
tightly integrated into the tool and manipulates the iné¢data.

In this paper we propose a new approach to on-site synclatimiz
which takes modification operations on artifacts and preduew modifica-
tion operations to make them consistent. The synchropizégiincremental,
ensuring short response time. We evaluate the performdramé approach
by experiments.

1 Introduction

Software development often involves multiple artifacts, such as UML modsdg, ¢
and abstract views of code, which are in different formats but sharertain
amount of information. When users change one artifact or changeatevé-
facts simultaneously, we need to propagate these changes across adtsatof
ensure consistency among the artifacts. This process of propagatingeshis
calledsynchronizatiofjACar].

Deploy rrent Yiew Fersistence Wiew
E1B Module EntityBean
+10: Integer
+ID: Integer +Module | +URIL: String +EJE-N5II‘T‘2' String
+Mame: Siring +Description: Sring +ModuleName: String
+Persistent: Boolkean +Marre ! String +ModuEURT: Sliring

Figure 1: The Class Diagram of the EJB Tool

Existing approaches focus on off-site synchronization. That is, aijgits ex-
port their data on some intermediate formats, such as XML, and a syncéitioniz
system manipulates the intermediate data. Off-site synchronization is suitable fo
synchronizing off-the-shelf applications that were implemented withoutrsyn
nization support. However, as many software engineering tools arenéelsigth
synchronization in mind from the beginning, in this paper we argue thatgingy
support foron-site synchronizatiors worth more investigation. On-site synchro-
nization is tightly integrated into the applications and manipulates the internal data.

As an example, let us consider a simple Enterprise JavaBeans (EJ&g) des
tool that provides two editable views: the deployment view shows how EdBs a
assembled into EJB modules, while the persistence view shows a list of parsiste
EJBs (EntityBeans). In a practical system, these two views may be storbjgoi®
defined in Figure 1. If th€er si st ent attribute of arEJB object istrue, there is
a correspondin@nt i t yBean object, where thé D attributes of the two objects
are equal and the other attributes of thet i t yBean object are equal to the
related attributes of thEJB object and itdvbdul e object. When users modify,
for instance, théNane attribute of anEJB object, the system should dynamically
modify theEJ BNarme attribute of the correspondirignt i t yBean object to make
all objects consistent. That is, the synchronization is integrated into therdol a
happens “on-site”.

Off-site approaches have difficulties in supporting on-site synchrboizalf
we implement the synchronization between the two views using an off-site ap-
proach, we have to export all objects to the intermediate format, synckrani
import the objects again. It requires extra work to design the intermediatefor
and to implement the import and export, and also the system performance will be
low. To support on-site synchronization, we need a new interfaceahdietightly
integrated into applications.

Besides the need for a new interface, on-site synchronization imposes so
other new requirements. A notable one is that on-site synchronizationdtasta
requirement on response time. One way to achieve short response timeeis inc
mental synchronization, where the modified part is treated carefully to ageid
computing on the unmodified parts. Although there is a bundle of work on in-
cremental unidirectional on-site transformation [Aca05] and incremefftzite

synchronization [GWO06], as far as we know, there is little discuss aborgrmen-
tal on-site synchronization.

As a matter of fact, on-site synchronization allows us to use more information
such as modification operations, which makes room for solving the challgngin
problem of synchronizing artifacts with inner dependency. In the abzaenple
of the EJB design tool, there is inner dependency:BhB objects depend on the
Modul e objects that are in the same artifact. So if users deldedul e object,
we should delete thEJB objects in the same view as well. Off-site synchroniza-
tion has difficulties to cope with inner dependency because there is nonafor
tion about which part has been modified. As will be seen later in Section 2 and
Section 5, on-site synchronization can deduce the needed informatiorugers’
modification operations and propagate modification inside one artifact.

In this paper, we made the first attempt of defining a set of imposgmt
chronizersfor on-site synchronization. Our synchronizers can be integrated into
applications through modification operations. They take the modification -opera
tions on the application artifacts and produce new modification operationsahat
make the artifacts consistent. The features of our synchronizers are:

e Our synchronizers are constructegimpositionalljlike lens [FGM"07]. A

set of primitive synchronizers and a set of combinators provide uddrsaw
powerful mechanism to describe various synchronization behavior.

e Our synchronizers hawdear synchronization semanticsatisfying the sta-
bility, preservation, propagation properties as proposed in our prewotk
[XLH T07] for off-site synchronization, ensuring predicable synchronimatio
behavior [Ste07].

e Our synchronizers can eplemented efficientlfhey synchronize artifacts
incrementally, ensuring a minimal response time. In addition, they can be
used together with off-site synchronization, which may lead to a more gen-
eral synchronization framework.

We have implemented all primitive synchronizers and combinators as an open
source Java librafywith which users can easily integrate our approach into their
Java projects for on-site synchronization. In addition, we confirm ficesicy and
practicality of our approach by testing our system on the EJB design toahwh
we believe is a typical example capturing requirements in common synchronizatio
applications.

The rest of the paper is organized as follows. We first give an owgrvieur
approach in Section 2. Then we establish some common notation in Section 3 and
introduce the data types and modification operations we use in Section 41 @ase
them we define a set of synchronizers and combinators in Section 5 ationS&
and show how to synchronize the EJB design tool in Section 7. We evaleate th
performance of our approach by experiments in Section 8. Finally, weistisc
related work in Section 9 and conclude the paper in Section 10.

http://code.google.com/p/synclib/

Sgnon : Moduk UserEntity : EntityBean
LRI = signor-eib. jar EJBMarme = UserEJB
Marme = SignOn MaduleMarme = Signon
Description = authenticate users I“’["JIP';URI = signarrajb. jar
+ +
+hocue Modue Module DepartmentEntity . EntityBean

SignOnEIR : EIB UserElR : EIB DepartentElR : EIB
EJBMarme = DepartmentE 1R

Mare = SignOnEJR || Mame = UserEIR | | Marre = DepartrrentE]R | | ModuleMarme = SighCn
Persistent = fake ||Persitent = true | | Persistent = true ModulelURI = signon-ejb. jar
L=1 ID=2 D=3 D=3

Figure 2: An Example of Objects

2 System Overview

Before explaining the detailed definition of synchronizers for on-sitetsyoniza-
tion, we give a taste of synchronizers by showing some synchronizationpges
of the EJB design tool.

Figure 2 shows six objects (of the three types) that are consistent. The co
sistency relation is established and kept by a synchrosizetich is defined in
Section 7.

In order to identify an object that has been modified or to be modified, we
assume each type of objects has an attribute callddethattribute which is unique
among all instances and should not be modified by users. Fofbithel e objects,
we may choose theRl attribute. For th&JB andEnt i t yBean objects, we may
choose the D attribute.

Each synchronizer, including the synchronizeaccepts modification opera-
tions as input and produces modification operations as output. Whemuseify,
for example, thévbdul eNane attribute ofUser Enti ty (whosel Dis “2”) to
“SignOnModule”, the following modification operations will be sent to the syn-
chronizers.

(1,7,&{2 — &{Mbdul eName —!“SignOnModule”}; })

The inputis a triple, describing the modification operations on each typgexftsb
The first twor’s denote no modification on bof B objects andvbdul e objects.
The third component describes the modification operation oritié t yBean
objects: theEnt i t yBean object with ID of 2 has its attribut&bdul eNane
changed tdSignOnModule”.

Taking the input operations, the synchronizeran automatically produce the
following output.

(1, &{"signon-ejb.jar” — &{Nane —!“SignOnModule”} . } -,
&{2 — &{Modul eNane —!“SignOnModule”} .,
3 — &{Mbdul eName —!“SignOnModule™}})

which is the result as expected: thane attribute of theMbdul e object and
the Modul eNane attributes of allEnt i t yBean objects in the same module

4

are changed. There are neither unnecessary changes like modifyEbBaob-
ject, nor overwriting of the users’ input modification operations like modifying
Modul eName back to “SignOn”.

For another example, if users delete Nelul e object with a URI of
“signon-ejb.jar”, the input will be:

(1, &{"signon-ejb.jar” — del},, 7)

Because thé&elB objects and théent i t yBean objects are dependent on the
Modul e object, all these objects should be deleted. After synchronization, the
output will be as follows.

(&{1 — del 2 +— del,3 — del} .,
&{“signon-ejb.jar” — del},,
&{2 — del, 3 — del},)

It is worth noting that there are often more than one way to synchronize ob-
jects and it is a challenge to provide a proper method for users to customize the
system behavior. For the above example, it is also possible to set the a#tribute
EJB. Modul e, Enti t yBean. Modul eNanme andeEnt i t yBean. Modul eURI
tonul | to achieve consistent. We address this issue by introducing options to syn-
chronizers, which will be explained in Section 5.

3 Notations

We start by introducing some common notations to be used in the rest of the pape
We use the lambda notations for functions, for instatee, a denotes an identity
function andf « indicates applying a functioii to an argumen&. When f is a
partial function, we writef « = L to meanf is undefined om. We writedom(f)

for the set of arguments on whichis defined. For any sef, we write S| to
denoteS U { L }. We write {} for a function that maps anything tb. Suppose

f € A— B,a e A be B. The update of a function, written g3a «—], is
defined as

) fd ifd #a
f[a<—b]a—{b ifd =a
We write{k; — v1,...,k, — v,} to denote{ }[k1 < v1]... [k — vy].

We usev to denote a n-tuplévy, va, ..., v,). We writev.i for the ith com-
ponent of the tuplel. We write (a ... a)" for an-tuple where all elements are
Let@ = (a1,...,an), b = (b1, ...,b,) be two tuples, we writ& & b for the con-
catenation of the two tuple&y, ..., an,b1,...,b,). Letd be a n-tuple. We write
dali < x] for a new tuple that is obtained by replacing ttie element ofi with z.
Let fe (A — B)"™ be atuple of functions and € A™ be a tuple, we us?ﬁto
denote(f; v1, fo vo,..., fn vn). Let f € A — B be a function and’ € A™ be a
tuple, we writef > v for (f vi, f va,..., f vn).

5

4 Data Representation and Modification Operations

Data Representation We define synchronizers on a set of data types. We treat
numbers and strings as unstructugetnitive values denoted byP. We also de-
note the set of integers ds whereZ C P. Dictionariesmap keys irP to values,
denoted byD. We use a universal séf to denote all primitive values and dic-
tionaries. The dictionary s€? and the universal sét are recursively defined as
follows.

D= {f|feP—Uanddomf) is finite },
U= (PUD),.

Being simple, this data representation based on dictionaries can be used to
describe various types of artifacts. For the two views in our EJB editanpba
we can describe the objects of the two views using the above data rejptesg@n
For all instances of a class, we represent them as a dictionary mappingHe
values of the key attributes to the objects. Each object is also represented a
dictionary mapping from the non-key attribute nhames to the attribute values. If
the attribute value is a primitive value, we use the primitive value. If the attribute
value is a reference to another object, we use the value of the key attritihie o
referenced object.
As an example, the objects in Figure 2 can be represented by the following
three dictionaries.
{1— {Nane — “SignOnEJB”",
Per si st ent — false
Modul e — “signon-ejb.jar”},
2 +— {Name — “UserEJB”,
Per si st ent — true,
Modul e — “signon-ejb.jar”},
3 +— {Name — “DepartmentEJB’,
Per si st ent — true,
Modul e — “signon-ejb.jar’}};
{“signon-ejb.jar” — {Name — “SignOn”,
Descri pti on — “authenticate users}};
{2+— {EJBNanme — “UserEJB",
Modul eNane — “SignOn”,
Modul eURI — “signon-ejb.jar”},
3 +— {EJBNane — “DepartmentEJB”,
Modul eNane — “SignOn”,
Modul eURI — “signon-ejb.jar”}}.

Modification Operations Modification operations are also defined on the data
types. In general, users can perform three types of modificationtapesa@n the

2This representation is just conceptual. In actual implementation, we doeeeat to transform
objects into the data types because we rely on modification operations toregize data.

data: replacing a primitive value by a new valuedeleting a value, and making
modification inside a dictionary according to a structurmapping keys to mod-
ification operations. We view each modification operation as a function mapping
from old values to new values and usedel, &w to denote the three types of op-
erations, respectively. We also use a special functitmindicate no modification.

To discuss the properties of maodification operations, we formally definesthe s
of modification operationd as follows.

M =PMUDM U {r,del}

where

PM = {lv|veP}

DM ={&w |weP — M};
TeEU—-UTa=a;

dele U — {Ll}, dela = 1;

lweP, =P, wa=nu;

&weD| — D,

&w L = &w{},

&wd=d wherevk e P:d k=wk (dk).

We use{}; to denote a special function that maps any thing.t8imilarly, we
write {k1 — v1,...,k, — vy}, to denote{ } [k «— v1] ... [kn < vy).

If we have applied a modification operation to an artifact, applying it again will
not change anything. This property can be used to check if a modificgiemation
has been applied or not:

Propertyl Yme M, veld: m (mv) =mv

If two modification operations affect different parts of an artifact, we th& two
operations arelistinct Formally, we sayn;, mo € M are distinct if and only if
they are commutem; o mo = mo o my. We writem; & my if m; andms are
distinct.

For distinct operations, we have the following property:

Property 2 Vmy,mgy € M : (m1 © mg = mj omg € M)

This property plays an important role in our design of synchronizerstwhic
map modification operations to modification operations. From this property we
know that for a sequence of distinct modification operations, there is a wetthfi
operation inM that has the same effect. On the other hand, if users perform
two operations that are not distinct, e.fy; followed by lvs, it is sufficient to
use the latter to represent the whole sequence. As a result, it sufficesdioer
modification operations iM instead of considering a sequence of operations.

If a modification operationn is included in another modification operation
ma, We saym; is a sub modificatiorof my, denoted asn; T mo. Formally,
my C my if and only if m; o my = mo.

5 Synchronizers

Before introducing our synchronizers, we should be more preciset arssite
synchronization. Given a consistency relatiBrover n artifacts, anon-site syn-
chronizerbased orR takes users’ modification operations on the artifacts and pro-
duces new modification operations which are expected to be applied to thetartif
to make them satisfjR. To perform incremental synchronization, we also need
to keep some information like trace information, and update the information after
synchronization. We call this information the state of the synchronizerjanadte
the set of all states &3.

Formally, asynchronizers synchronizingn artifacts consists of two parts, a
consistency relation.R C U™ and a triple(s.©, s.9, s.syng, wheres.v € 5.0
is the start state angsynce 5.0 — M"™ — 5.0 x M" is the synchronization
function. Initially, the synchronizer is in thed state and assume all artifacts are
L (each artifact contains no content in the initial stage). We also write: for
the number of artifacts thatsynchronizes.

As argued in Section 2, the output modification operations should meet some
requirements. We formalize the requirements by the following three properties

Property 3 (Stability) Let7 = (r...7)%!", we have
vVl € 5.©: s.syncd 7= (0,7T)
=/

Property 4 (Preservation) s.syncd m = (¢’ m') = Vi € {1,2,...,s.len} :
m. Em'.i

Property 5 (Propagation) If we construct as.data function using only the follow-
ing two rules:
1. (L... 1)k € s.datas.v
2. s.syncdm = (0',m)
= Vv € (s.dataf) : (m' v) € (s.datad’)
we have:
VO € 5.0 : s.datal C s.R

The three properties were originally proposed in our previous work{XQ7]
for off-site synchronization. Here we adapt them to on-site synchatiniz. In-
tuitively, the stability property is to prohibit the synchronizer making unneuagss
changes. The preservation property requires the synchronizexgerpe all users’
modification operations. The propagation property states that if we apptydte
ification operations produced by the synchronizer, the artifacts shauid the
consistency relation.

In this section, we propose a powerful mechanism for users to spegify s
chronizers with various kinds of synchronization behavior. To achikig we
adopt the compositional method used in many off-site synchronization agpes
[FGM*07, LHTO7]. As will be seen later, we shall provide some primitive syn-
chronizers that synchronize artifacts according to some predefimadiye rela-
tions. We also provide combinators, where a combinator can combine thHergync
nizers into a new synchronizer to synchronize artifacts according tovaelation

8

that is combined from the consistency relations of the inner synchronirettsis
way users can get their synchronizers by only considering combiniatores.

In addition, all primitive synchronizers and synchronizers combinediyi-
nators are ensured to satisfy the three properties. This can be formalgdoand
users can know their synchronizers work correctly once they hanbioed them.
Due to space limit, we omit the formal proof and only state the result:

Theorem 1 All synchronizers, either directly introduced in the paper or combined
by combinators introduced in the paper, satisfy the stability property, treepra-
tion property and the propagation property.

Sometimes we have different ways to achieve consistency. To customize the
behavior, we further parameterize primitive synchronizers and combgnafitin
options Options are a tuple of boolean values, often denoted by different
assignment to the options leads to a different synchronizer or combindtioits
own way to achieve consistency. By adjusting the behavior of local pas&s
can customize the global behavior of their synchronizers. The numlmggtioins
can be large. In this paper we show a small set of options as an examgle, an
demonstrate how to customize the behavior when deletvtgdail e object.

We denote the set of all synchronizersias

5.1 Primitive Synchronizers

Basic Synchronizers ~ We start from a simple synchronizi that is to keep
two artifacts identical.

id.R={(a,a) | aclU}
id.© = {¢}

id.d =€

. (e, (m1omg, mi 0omg)) m1 ©me
id.synce (mq,mg) = {J_ olse

Theid synchronizer keeps the relation definedithyR, has only one constant
statee that does not change during synchronization, and has an importattreync
nization functionid.syncsaying that given two modifications; andms on two
artifacts respectively, it returns a pair of the same modification operationm,
to be applied to the two artifacts+if; andms are distinct, and returns error other-
wise.

Two other basic synchronizers aemoveand equalv]. The synchronizer
removeremoves an artifact by setting it tb. The synchronizeequalv] forces an
artifact to be equal to a primitive value The definitions of the two synchronizers
are as follows.

removeR = {L}
remove® = {e}
removey = e
removesynce (m) = ¢ (e, (del)) elif m © del
L else

{ (e,(1)) if m=r7

veP

equalv].R ={{(a) |la=vVa=_1}
equalv].© = {e}
equalv].9 =€

cqualpl synee m) = {{G 50 1,) e

Synchronizers on Dictionaries The dynamic get synchronizelget’ synchro-
nizes a dictionaryl € D, a keyk € P and a valuev € U, and ensures that
v is the value obtained by queryingwith k. It has three optionsd_over _v,
prop_v_del andk_exi sts. The optiond_over v determines whether we
used to updatev or usewv to updated when only %k is modified. The option
prop_v_del determines whether we deleteor deleted.k whenv is deleted.
The optionk _exi st s determines whether we ensuté: # | by settingk to |
whend k = 1.

1 = (d_over .v,prop._v_del ,k_exi sts)

dget'.R = {(k,d,v) | d € Dy,v €U,k € Py,
dk=vVv(d=1LAv=1)VEk=1}

dget.© = dget’.R

dget’. = (1,1, 1)

The state ofiget’ is a tuple that records the current values of the three artifacts.
Every time we synchronize, the state will change to new values.

The functiondget’.syncis a bit complex to write in mathematical notations,
S0 we present it in pseudo code, as shown in Algorithm 1. The functiorcdlis
dget’.syné defined in Algorithm 2 and applies the returned modification opera-
tions to the state. In Algorithm 2, first the algorithm deals with the situation where
k andd are modified tal, respectively (Line 1-5). Then the algorithm chandes
to {} and changes to &{}, for later processing (Line 6-9). After that, the algo-
rithm merges the value in the dictionary, the value artifact, and their modification
operations using mergefunction defined below (Line 10-13). ifis deleted, the
algorithm further deleteg or deletes: according to the semantics of options (Line
14-20). Finally, the algorithm restores the modification operatiod tmr if the
original one isr (Line 21), and then returns the result (Line 22).

10

Algorithm 1: dget’.sync
Input: (k,d,v), (mg, mg, my)
1 if dget’.syné (k,d,v) (my, mg, m,) = L thenreturn L;
2 (mj,, mly,m,,) — dget’.syné (k,d, v) (my, mg, my);
3 return ((mj k,m/, d,m} v), (m),m,,m,));

mergec Y - U - M — M —- M
mergev; v my mo = Mergeé vy ve (mq o my)

mergeé v, v, m =
(

T if vi=vwAm=r1

del elif m = del

I(mwvy) elif v € Py Avg=L AmePMU{r}
(m vg) elif v € PL Avg € PAm e PMU{r}

mergé {} vam elif vy = L Avy €D
mergév; {} m elifv; €DAvy=1

&w elif v1,v9 € D Am = &’
where w k = mergé (vy k) (v k) (' k)

&w elif vi, e DAm=r
where w k = mergé (vq k) (va k) 7

1 else

\

The static get synchronizeget [k] is similar todget’, but the keyk is stati-
cally determined at the beginning. Teget [k] synchronizer can be defined using
thedget’ synchronizer, as follows.

1 = (d_over .v,prop.v_del)
Y = (p.d_over _v,+.prop_v_del ,false
keP
sget [k].R = {(d,v) | (k,d,v) € dget’’.R}
sget'[k].© = sget'[k].R
sget'[k].sync(d, v) (mg, my) =

dget” .sync(k, d,v) ('k, d,v)

5.2 Combinators

In this section we introduce two useful combinators for constructing a biyge
chronizer by gluing smaller synchronizers statically and dynamically. Taphgr
combinator statically combines synchronizers by organizing them isymehro-
nizer graph The dictionary map combinator dynamically uses an inner synchro-
nizer to synchronize a list of dictionaries.

Graph Combinator Figure 3 shows an example of a synchronizer graph which
synchronizes aiiJB object, anEnt i t yBean object, theirl D attributes and all

11

Algorithm 2 : dget’.syné

Input: (k,d,v), (mg, mg, my)

k' — mp k;

if £/ = L then return (mg, mgq, my);

if mgy = delthen
if m, © delA my, © delthen return (my, del, del);
else return L;

ml, «— mg;

if d =1 thend «— {};

if m/, =7thenw « {};

else&w — m/;

10 if not (w k) & m, then return _L;

11 if ¢p.d_over _v then m! «— merge(d k') v (w k') my;

12 else m! «— mergev (d k') m, (w k');

13 ml, — &wlk' — m}];

14 if m}, v = L then

15 if ¢».pr op_v_del then

© 00 N o 0o b WON B

16 if mq © delA m,, © delthen return (m, del, del);
17 else returnL;

18 else ify).k_exi st s then

19 if my © delA m, © delthen return (del, mg4, del);
20 else return L;

21 if m!, = &/{}T/thel;l ml, = mg;
22 return (1K', m/,m});

Modul e objects. In the figure, the rectangles agachronizer holderand the
circles arevariables Synchronizer holders, as the name suggests, store synchro-
nizers. Variables are artifacts being synchronized or artifacts fome@iate data.
We distinguish the artifacts being synchronized and the artifacts for intéateed
data by denoting the former with solid circles and the latter with hollow circles.
We also call the formeparameters If a synchronizer connects to some variables
by hand-like lines, we consider that the synchronizer synchronizegatiebles.
A number on a line shows the index in the tuple of artifacts that the synchronize
synchronizes. A number on a parameter shows the index of the parameter.

Formally, we define a synchronizer grapls a 5-tupl€V, H, p, v, ¢) :

e Vis a set of variables.

e 7 is a set of synchronizer holders.andH form the vertexes of the graph.

e j € VT is a sequence of variables that are used as the parameters of the
synchronizer graphp does not contain duplicated elements.
~: H — VT is a function mapping each synchronizer holder to a sequence
of variables. For any. € H, (v h) does not contain duplicated elements.
denotes the edges of the graph.

12

(1) EJB ’]71 id L[. (2) EntityBean ID
D

“[Name] EJBName CegorTEJaName] | (4) EntityBean
sge ame sge ame
SER ‘]71 w.d_over_v=true L[O]iz w.d_over v=false 1 [.]
- Y-prop_v_del=true |wprop_v_del=true|
[1 1
dget® ModuleURI

5) Module 2| y.d over v=true |1 2 sget[Module] sget*[ModuleURI]
(D)ictionary.]7 y.prop_v_del=false {O } y.d_over_v=true || w.d_over_v=false

y.k_exists = true y.prop_v_del=true| |p.prop_v_del=true

12

ModuleName

sget*[Name] 2 2 sget’[ModuleName
Module O]71 y.d_over_v=true —[@} y.d_over_v=false

w.prop_v_del=false y.prop_v_del=true

[N

Persistent

sget*[Persistent]
1 yw.d_over_v=true —[@]7 equalltrue]
w.prop_v_del=false

Figure 3: The Synchronizer Gragh

e © € H — X maps each synchronizer holder to a synchronizer.

Given a synchronizer grapfi we turn it into a synchroninzer by ttgraph
combinator The resulted synchronizer is denoteddwjg]. The consistency rela-
tion, the state set and the start statgdfj] is defined as follows.

g= W, H,D,7,¢)

ggl.R={7|3f eV —-U: forp=TA
VheH: fr(yh) € (ph).R}

gclgl.© ={0 |YVhe H: (0 h) € (¢ h).O}

gcfg]l.v =Ah e H: (¢ h).d

The consistency relation afc[g] is the conjunction of consistency relations of
inner synchronizers. The state@d]g] is a function that maps each synchronizer
holder to a state of the corresponding synchronizer, and the start staseeaeh
synchronizer holder to the start state.

The algorithm ofgc[g].syncis given in Algorithm 3. The algorithm uses a
function f,,, to map each variable to the modification operation on the variable. At
the beginning, all synchronizers are put into a BefLine 2). In every iteration,
the algorithm chooses a synchronizerdnthat has the highest priority (explained
below) and uses the synchronizer to synchronize its connected varialine 6-

8). If the synchronizer modifies a variable, then all synchronizerseximy to the
variable are added tH (Line 10-11). Then the process repeats uHtils empty.

We use priority to ensure that we invoke more determined synchronizer firs
to reduce unnecessary failures. First, a synchronizer has the lpviesty if it
does need to be invoked (e.g. no modification on its variables). Seconupttee
choices the synchronizép h) has to synchronize the artifacts, the lower the pri-
ority is. For exampledget’ 6 (!k, 7, v) has higher priority thadget’ 6 (r, 7, lv)
because the latter has choices to modifyhile the former does not have. In this

13

Algorithm 3: gc[g].sync
Input: 8, m
Data: f,, €V - M, HCH
1 fm = {}r;
2 H+—H,
3 foreachi € {1,2,...,9c[g].len} do

4 mefm[ﬁZHmZL

5 while H # () do

6 h «— the synchronizer holdér’ € H wherep h' has the highest priority;
7 if (¢ h).sync(@ h) (fm > (v h)) = L thenreturn L;

8 (O, mp) — (@ h).sync(d h) (fm > (v h));

9 foreachj € {1,2,...,(p h).len} do

10 if mp.j # fm (v h).j then

11 H — H U{h | h connects to v by v};

12 fm = ful(y B).J < Mip.4];

13 0 — O[h — 0];
14 H«— H\{h};
15 1M = fr > 5

16 return (0, m);

way we reduce the chance that an inner synchronizer make wrong emai¢bere-

fore reduce the chance of failure. The priority can be calculated(in) time by

examining the type of the synchronizer and the types of modification opesation
Note in the algorithm, an inner synchronizer can be invoked again when the

modification operations on the connected variables are changed. In this iwa

possible to propagate modification back into the same artifact, addressing inner

dependency.

Dictionary Map Combinator The dictionary map combinatosynchronizes
several dictionaries using an inner synchronizenn the simplest situation, we
synchronize two dictionarieg d’ by matching the items in the two dictionaries by
key and synchronizing the matched pairs using

In a more complex situation, the two domains of keys are not equal, and we
use a bijective mapping,. to relate the keys of the two dictionaries. That is, we
uses to synchronizel k andd’ k' for each(k, k') € Ry.

Additionally, the inner synchronizer may need some “global artifacts” tuat ¢
not be obtained from the two dictionaries. For example, we need/iaieil e
dictionary when we are synchronizing &JB object and aPer si st ent EJB
object in Figure 3. In this case, we restart the whole synchronizationeviee the
“global artifacts” are modified by the inner synchronizeso that all items in the
dictionaries are consistent with the “global artifacts”.

Furthermore, sometimes we want to use the keys in the inner synchronization.
For example, we may need to use tiel attributes when we are synchronizing

14

aModul e object. However, we do not want the inner synchronizer to modify the
keys because this will make the matched keys not in the reld@jgrso we put a
!k on the keyk before invoking the inner synchronizer.

Finally, we sometimes synchronize more than two dictionaries and we achieve
this by extending®;. over any number of domains. Formallysammetric relation
Ry, C P" satisfiesva,b € Ry,i € T : @i = bi = @ = bandVa € P,i €
{1,...,n} : 3k € Ry, : a = k.i. We write||Ry|| for , the number of domains.

Now putting the above all together, we get the dictionary map combinator. We
usedc]s, Ry] to denote the synchronizer obtained by combining an inner synchro-
nizers and a symmetric relatioR;, using a dictionary map combinator. The inner
synchronizer is assumed to synchronize a set of keys, the values anlaypplee
keys in the dictionaries, and “global artifacts” in turn. The consisteneyion, the
state set and the start statedefs, R] are defined below.

s € X, Ry, is a symmetric relation
dcfs, Ry].R = Ry U {(L ... L)sten=IlElly
Ry ={d®v|de DRl A7 e yysten—2llRell
AVEk € Ry, k® (dk) ® 7 € s.R}
dC[[S, Rk]].@ = R; — 5.0
dcfs, Rp]. 9 =Aad: s.0

In the consistency relatiof®, the artifacts being synchronized are divided into
two groups.J are dictionaries and are “global artifacts” used by the inner syn-
chronizer. Their relationships are defined by the consistent relatioreahtter
synchronizer. The state dE[s, R] is a function mapping eache Ry, to a state

of the inner synchronizer. Initially the function maps d?h;o the start state.

The algorithm of thelc[s, Ry].syncfunction is described in Algorithm 4. The
algorithm first deals with the situation where all artifacts are deleted (Ling 1-5
Then the algorithm initializes a séf to store all key tuples that need to be syn-
chronized (Line 7-9). For each key tuple i, the algorithm invokes theync
function of the inner synchronizer and stores the result (Line 12i2&je “global
artifacts” are changed, the algorithm resynchronizes from the begjnaiensure
items in the dictionaries are consistent with the “global artifacts” (Line 23-26)

6 Bridging On-Site and Off-Site

When performing an on-site synchronization, we assume the synchrsiggatly
integrated into the system and its state is always compatible with the artifacts.
However, this assumption does not always hold. One exception octiens we
allow disjunction of synchronizers, that is, the artifacts can either behsgnized

by a synchronizet or by a synchronizes. For example, when thiéer si st ent
property of anEJB object ist r ue, we may use the synchronizer in Figure 3 to
synchronize. When users modify tRer si st ent property tof al se, we may

15

Algorithm 4: The algorithm ofdc[s, Rx].sync

Input: (0,7 & 1m,), Where|niy| = || Ryl

1 if my contains dethen

© 00 N o O b~ W N

N NN NNNDNRRR R R B B B b
o 00~ W N RFPR O O 0N © 00 M W N R O

27

if mg @ m, only contains del and then

return (dc[s, Ry,].9, (del. .. del)dCls:Ril-teny.
else

return 1;

replace allr in g with &{},;
KH{E’EGR]{/\T?LCIE% <7’7‘>HR’9H},
if 71, # (7...7)I"| then

K — K udom#);

resync.all:
foreachk € K do

Mg — (A) > k;
1My — Mg @ (Mg k) @ My,
0, — 0 k;
if s.syncé, ms = L then return 1;
(Og,Ms) < s.Syncl, m;
0 — O]k — 0);
foreachi € {1,...,||Ry||} do
Mg — Mgli — mg.i[k.i — . (i + || Ri|))]];
ML, — My;
foreachi € {1,...,dc[s, Ry].len — || Rx||} do
1y, = 1[0 = M. (2| Ry || +9)];
if m. # m, then
My — Mh;
K «— K Udom®#);
gotoresync_al | ;

— —/ .
My < My,

28 replace&{}, in mg with 7 if it is originally 7;
29 return (0, Mg © My);

want to switch to the synchronizer in Figure 4. When we switch to the latter syn-
chronizer, the state of the synchronizer may not be compatible with the tgtifac

To deal with such a situation, we add an off-site synchronization function
s.resynce Yslen — Mslen 5@ x M to a synchronizes. The func-
tion, like s.syng takes and produces modification operations. However, it also
takes all artifacts as input and constructs a new state based on the artifahts

sense, we say that it is an off-site synchronization.

We would expect the.resyncsynchronization to exhibit a consistent behavior
like the s.syncfunction. To ensure this, we extend the properties of synchronizers

16

1 . 2 [:
(1) EJB]7 id (2) EntityBean ID
@ @
sget*[Persistent] f

3) EJB.]71 y.d_over_v=true Q] equal[false]

y.prop_v_del=false —

|1
dget” ModuleURI #Modul
(5) Module . w.d_over v=true |1 o | sget'[Mo Ee]
Dictionary w.prop_v_del=false Q w.d_over_v=true

w.k_exists = true y.prop_v_del=true
3

module () omove | (@) (4) Enttysean

Figure 4: The Synchronizer Gragh

Persistent

N

to constrain the behavior afresync Specifically, we add the following construc-
tion rule tos.datain the propagation property to ensure the artifacts are consistent
after synchronization:

>/

VU : (s.resynci m = (6, m') = (m/ ¥) € (s.datad))

Besides, we add the rule below to the preservation property to ensus mseli-
fication operations are preserved:

sresyncim = (0, m') = Vi e {1,...,s.len} : m.iC i

Theresyndunction of existing primitive synchronizers and combinators can be
similarly defined like thesyncfunction. Here we give the definitions a@f.resync
anddget’.resyncas examples:

<67 <ma m>> mi ©my
L else
wherem = merge vy v1 Mo My

dget’.resynct im = dget’.synct

id.resync(vy, va) (mi,mo) = {

The Switch Combinator Based on theesyndunction, we can achieve disjunc-
tion of synchronizations through thevitch combinatar The switch combinator
allows users to choose between a set of inner synchronizers. If anggnchro-
nizer fails to synchronize the artifacts (returning, the switch combinator will try
another synchronizer until the artifacts are synchronized or all sgnizers fail.
Let 5 be a tuple of synchronizers. We us€fs] to denote the synchronizer
obtained by combining using a switch combinatosd]s] is defined as follows.

17

meIAm>1
Se XM AVie{l,...,m} : Si.len = sd5].len
sl R = Ugeqr,..m) Sk-R
sds].e = {(v,4,0)]ieI/\ﬁe s.i.datafd A O € 5.1.0}
sd[5].0 = ((L...L)SAshlen 1 5.1.9)
sds]. sync(v,z,e) m =
((m! v,4,0"),m’) if S§i.syncdm #£ L
where (6, m') = .i.syncem
=1 5 N oon .03k <m:Skoresyncim # LA
(" 9, &, 6'), ') ethje{l,...,k:—l}:§.j.resyncﬁrﬁzi
where (0',m') = s.k.resyncv m
€ else
ds].resyncv m =

((m' U, k,0)y,m") if

(72}

Jk<m: skresynCz;m;éL/\

Vie{l,...,k—1}: sjresyncim = L
where (0, M) = 5.k. resyncu m

L else

Intuitively, a switch combinator remembers in its state the current values of
the artifacts, the index of the inner synchronizer used in the last symichtamn
and the state of the inner synchronizer.stfis].syn¢ the switch combinator first
invokes thesyncfunction of the inner synchronizer used in the last time. If the func-
tion fails, the switch combinator invokes tressyncfunction of inner synchronizers
one by one. Irsd[s].resyn¢ the switch combinator invokes thesyncfunction of
inner synchronizers one by one until one synchronizer synchretteeartifacts.

7 Application: Synchronizing the EJB Design Tool

As we have introduced all synchronizers, we can use them to con#teisyn-
chronizers for the EJB design tool. The definition efis shown below.

s =dds,=] ¢ =sd(s1,s2)]
s1 =9c@i] sz =9cg]

That is, we first use the dictionary map combinator to match=h® objects
and theEnt i t yBean objects and synchronize each pair with lstidul e ob-
jects usings’. The synchronizes’ switching between; andss to deal with the
situations wherd=JB. Per si st ent = true andEJB. Per si st ent = falsg
respectively. The synchronizess andss are constructed using the graph combi-
nator and the two synchronizer graphs have already been shown ire dgnd
Figure 4.

As mentioned before, when users deletebalul e object, we may not want
to remove objects but want to set the related attributesuld . We can achieve
this by changing ther op_v_del options tof al se on four inner synchronizers:
sget’ [Modul e], sget' [Mbdul eNane], andsget’ [Modul eURI | in Figure 3 and

18

sget’ [Modul e] in Figure 4. In this way we can customize the global behavior by
adjusting the behavior of local synchronizers.

8 Performance Evaluation

We evaluate the performance of our approach by experimenting with ticarsyn
nizer for the EJB design tool. We also compare our results with an off-site-inc
mental synchronizer, medini QVT v1.2,2vhich is a state-of-art implementation
of the model transformation standard [Obj05]. Our experiments are danuikeon

a laptop with an 1.70 GHz Intel(R) Pentium(R) M processor and 1.25 GB RAM.

Before carrying out the experiments, we prepare some common data.stVe fir
construct a large number &JB andMbdul e objects, where every 1080 B ob-
jects belong to &bdul e object and the attributes are randomly assigned. Then
we synchronize to get a consistent seEnf i t yBean objects.

In the first set of experiments we randomly choose a s&Jd& objects, set
their Nane attributes to new values, and record the synchronization time. The
result is shown in Table 1. The third column shows the time our tool takes and the
forth column shows the time medini QVT takes. To be fair, we exclude the time
during which medini QVT loads and saves XMl files, and only use the in-mgmor
evaluation time reported by medini QVT.

Table 1: Modifying theName Attribute

Modification Number of Time(ms) Time(ms)
Size EJB objects (Synchronizers) (QVT)
500 1000 20 901
500 2000 20 2083
500 3000 20 6048
500 4000 20 10155
500 5000 20 16594
500 6000 20 23785
1000 6000 40 23894
1500 6000 60 24706

2000 6000 90 24575
2500 6000 130 25427

From the table we can see, the synchronization time of our tool is a linear
function of the modification size. The time remains constant when we increase
the number ofEJB objects and increases linearly when we increase the size of
modification operations.

The time of medini QVT is much longer than our approach and is mainly re-
lated to the number dtJB objects. This is probably because QVT works off-site.
When synchronizing, medini QVT has to re-check whether all applied ralle
still valid and the number of rules is related to the numbeEbB objects.

Shttp://projects.ikv.de/qvt

19

However, the synchronization time cannot always be a linear function di-mo
fication operations. In the second set of experiments we randomly chnadgect
of theEnt i t yBean class and modify itd#bdul eNane attribute to a new value,
just like the first example in Section 2. To synchronize, we have to iterate all
Ent i t yBean objects to find the objects in the same module for modifying their
Modul eName attributes, and the time of the iteration is related to the number of
objects. The result of the experiment is shown in Table 2. Note medini Qwfiata
synchronize this modification because it does not handle inner depsnden

Table 2: Modifying theModuleName Attribute

Number ofEJB objects ~ Time(ms)

1000 50
2000 80
3000 101
4000 190
5000 250

From the table we can see that the synchronization time increases as the numbe
of EJB objects increases. Nevertheless, the synchronization time is sttllasttb
we believe that it is efficient enough to support real applications.

9 Related Work

The mainstream work of off-site synchronization is work on bidirectiorzadgfor-
mation [FGMF07, KH06, KWO07, LHTO7, Obj05]. In these approaches, a bidirec-
tional language is used to describe a consistency reldtibetween two artifacts

a € Ab € B, aforward functionf : A x B — B and a backward function

g : A x B — A at the same time [Ste07]. Bidirectional transformation cannot
directly support modifying the two artifacts at the same time. Benjamin and et
al. [PSGO03] proposed a framework, Harmony, to support this with bitiines!
transformation by designing a common artifact and use a reconciler toaikon
different versions of the common artifact.

Some bidirectional transformation approaches also target at syndnigpadtt-
ware artifacts. Two among them are Triple Graph Grammars (TGGs) [KVD7]
model transformation approach applying early work in graph grammars te mod
eling environments [NNZ00, AKRSO06], and QVT relations [Obj05], the dtad
of model transformation. The two approaches have been proved s#ilycgim-
ilar by Greenyer and Kindler [GKOQ7]. They are both rule-based, amsupport
incremental synchronization by re-checking applied rules. However,TBGs
approach is based on non-deleting graph grammars, and so far therevisln
defined semantics for object deletion and attribute modification in TGGs. On the
other hand, QVT defines a clear semantics for object deletion and attribalie mo

20

fication by allowing only direct mapping between attributes. As a result, complex
synchronization, like those involving string concatenation, cannot bheosteul by
QVT. On the contrary, our approach can support string concateriafidefining

a new synchronizer for concatenating strings.

Some researchers focus on the view consistency problem, which is altypica
application of on-site synchronization. Amor and et al. [AHM95] desigedat-
ative language which focuses on bijective mappings between views awidl s
powerful support to expressions. Some other work [GHM98, FG4] provides
general frameworks for view consistency, where users write cadieléatifying
and handling inconsistency. Compared to these frameworks, our @ppoody
requires users to composite synchronizers once and users automatatathe g
ability of handling inconsistency.

Our work started from our previous attempt [XI17] on synchronizing mod-
els from a forward transformation program. However, later we foundittieadif-
ficult to fully present the semantics of synchronization just in a forwaogjam,
and then we designed synchronizers, to provide a precise and flexibiddtion
for synchronization.

10 Conclusion and Future Work

In this paper we have proposed a compositional approach to on-sitereyiza-
tion. Our approach is incremental, handles inner dependency and akensto
customize the behavior, making our approach suitable for on-site syrzhtion
of software artifacts.

The set of synchronizers we proposed is growable in the sense #rataan
add new synchronizers, combinators, even new data types and newaaiiatifi
operations when the problem cannot be well tackled by existing onese ifetv
synchronizers satisfy the three properties, they can work well with egisties.
We are actively exploring more synchronization scenarios in softwayeering
and designing new synchronizers when necessary.

References

[Aca05] UmutA. Acar.Self-adjusting computatiofPhD thesis, Carnegie Mel-
lon University, Pittsburgh, PA, USA, 2005.

[ACar] Michal Antkiewicz and Krzysztof Czarnecki. Design space efigno-
geneous synchronization. Rroc. 2nd GTTSEo appear.

[AHM95] Robert Amor, John Hosking, and Warwick Mugridge. A dealar
tive approach to inter-schema mappings. Modelling of Buildings
Through Their Life-Cycle: Proc CIB W78/TG10 Conferent@9s.

21

[AKRS06]

[FGHT94]

[FGM+07]

[GHMO8]

[GKO7]

[GWO06]

[KHO6]

[KWO7]

[LHTO7]

[NNZ00]

[ObjO5]

[PSGO3]

[Ste07]

C. Amelunxen, A. Knigs, T. Rtschke, and A. Séhr. MOFLON: A
standard-compliant metamodeling framework with graph transforma-
tions. InProc. 2nd ECMDApages 361-375, 2006.

A. C. W. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nu-
seibeh. Inconsistency handling in multiperspective specifications.
IEEE Trans. Softw. Eng20(8):569-578, 1994.

J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore; Ben
jamin C. Pierce, and Alan Schmitt. Combinators for bidirectional tree
transformations: A linguistic approach to the view-update problem.
ACM Trans. Program. Lang. SysR9(3):17, 2007.

John Grundy, John Hosking, and Warwick B. Mugridge omgistency
management for multiple-view software development environments.
IEEE Trans. Softw. Eng24(11):960-981, 1998.

Joel Greenyer and Ekkart Kindler. Reconciling TGGs with Q.
Proc. 10th MoDEL$Spages 16-30, 2007.

Holger Giese and Robert Wagner. Incremental model synctation
with triple graph grammars. IRroc. 9th MoDELS$Spages 543-557,
2006.

Shinya Kawanaka and Haruo Hosoya. biXid: a bidirectionaldran
formation language for XML. IrProc. 11th ICFR pages 201-214,
2006.

Ekkart Kindler and Robert Wagner. Triple graph grammarsncapts,
extensions, implementations, and application scenarios. Technical Re-
port tr-ri-07-284, University of Paderborn, June 2007.

Dongxi Liu, Zhenjiang Hu, and Masato Takeichi. Bidirectionatiin
pretation of XQuery. IrfProc. PEPM pages 21-30, 2007.

Ulrich Nickel, Jorg Niere, and Albert dndorf. The FUJABA environ-
ment. Inin Proc. 22nd ICSEpages 742—-745, 2000.

Object Management Group. MOF QVT final adopted specification
http://www.omg.org/docs/ptc/05-11-01.pdf, 2005.

Benjamin C. Pierce, Alan Schmitt, and Michael B. Greenwald. Bring
ing Harmony to optimism: A synchronization framework for hetero-
geneous tree-structured data. Technical Report MS-CIS-034i2, U
versity of Pennsylvania, 2003.

Perdita Stevens. Bidirectional model transformations in QVT: Seman
tic issues and open questions. Pmoc. 10th MoDELSpages 1-15,
2007.

22

[XLH *07] Yingfei Xiong, Dongxi Liu, Zhenjiang Hu, Haiyan Zhao, Masato
Takeichi, and Hong Mei. Towards automatic model synchronization
from model transformations. IRroc. 22nd ASEpages 164-173,

2007.

23

