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Abstract

Software development often involves multiple artifacts, such as feature
models, UML models and code, which are in different formats but share a
certain amount of information. When users change one artifact or change
several artifacts simultaneously, we need to propagate these changes across
all artifacts to ensure them consistent.

Existing approaches focus on off-site synchronization, that is, manipu-
lating application data on external copies. However, in many software de-
velopment tools, synchronization happens “on-site”. The synchronization is
tightly integrated into the tool and manipulates the internal data.

In this paper we propose a new approach to on-site synchronization,
which takes modification operations on artifacts and produces new modifica-
tion operations to make them consistent. The synchronization is incremental,
ensuring short response time. We evaluate the performance of our approach
by experiments.

1 Introduction

Software development often involves multiple artifacts, such as UML models, code
and abstract views of code, which are in different formats but share acertain
amount of information. When users change one artifact or change several arti-
facts simultaneously, we need to propagate these changes across all artifacts to
ensure consistency among the artifacts. This process of propagating changes is
calledsynchronization[ACar].
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Figure 1: The Class Diagram of the EJB Tool

Existing approaches focus on off-site synchronization. That is, applications ex-
port their data on some intermediate formats, such as XML, and a synchronization
system manipulates the intermediate data. Off-site synchronization is suitable for
synchronizing off-the-shelf applications that were implemented without synchro-
nization support. However, as many software engineering tools are designed with
synchronization in mind from the beginning, in this paper we argue that providing
support foron-site synchronizationis worth more investigation. On-site synchro-
nization is tightly integrated into the applications and manipulates the internal data.

As an example, let us consider a simple Enterprise JavaBeans (EJBs) design
tool that provides two editable views: the deployment view shows how EJBs are
assembled into EJB modules, while the persistence view shows a list of persistent
EJBs (EntityBeans). In a practical system, these two views may be stored in objects
defined in Figure 1. If thePersistent attribute of anEJB object istrue, there is
a correspondingEntityBean object, where theID attributes of the two objects
are equal and the other attributes of theEntityBean object are equal to the
related attributes of theEJB object and itsModule object. When users modify,
for instance, theName attribute of anEJB object, the system should dynamically
modify theEJBName attribute of the correspondingEntityBean object to make
all objects consistent. That is, the synchronization is integrated into the tool and
happens “on-site”.

Off-site approaches have difficulties in supporting on-site synchronization. If
we implement the synchronization between the two views using an off-site ap-
proach, we have to export all objects to the intermediate format, synchronize and
import the objects again. It requires extra work to design the intermediate format
and to implement the import and export, and also the system performance will be
low. To support on-site synchronization, we need a new interface that can be tightly
integrated into applications.

Besides the need for a new interface, on-site synchronization imposes some
other new requirements. A notable one is that on-site synchronization has astrict
requirement on response time. One way to achieve short response time is incre-
mental synchronization, where the modified part is treated carefully to avoidre-
computing on the unmodified parts. Although there is a bundle of work on in-
cremental unidirectional on-site transformation [Aca05] and incremental off-site
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synchronization [GW06], as far as we know, there is little discuss about incremen-
tal on-site synchronization.

As a matter of fact, on-site synchronization allows us to use more information
such as modification operations, which makes room for solving the challenging
problem of synchronizing artifacts with inner dependency. In the aboveexample
of the EJB design tool, there is inner dependency: theEJB objects depend on the
Module objects that are in the same artifact. So if users delete aModule object,
we should delete theEJB objects in the same view as well. Off-site synchroniza-
tion has difficulties to cope with inner dependency because there is no informa-
tion about which part has been modified. As will be seen later in Section 2 and
Section 5, on-site synchronization can deduce the needed information from users’
modification operations and propagate modification inside one artifact.

In this paper, we made the first attempt of defining a set of importantsyn-
chronizersfor on-site synchronization. Our synchronizers can be integrated into
applications through modification operations. They take the modification opera-
tions on the application artifacts and produce new modification operations thatcan
make the artifacts consistent. The features of our synchronizers are:
• Our synchronizers are constructedcompositionallylike lens [FGM+07]. A

set of primitive synchronizers and a set of combinators provide users with a
powerful mechanism to describe various synchronization behavior.
• Our synchronizers haveclear synchronization semantics, satisfying the sta-

bility, preservation, propagation properties as proposed in our previous work
[XLH +07] for off-site synchronization, ensuring predicable synchronization
behavior [Ste07].
• Our synchronizers can beimplemented efficiently: they synchronize artifacts

incrementally, ensuring a minimal response time. In addition, they can be
used together with off-site synchronization, which may lead to a more gen-
eral synchronization framework.

We have implemented all primitive synchronizers and combinators as an open
source Java library1 with which users can easily integrate our approach into their
Java projects for on-site synchronization. In addition, we confirm the efficiency and
practicality of our approach by testing our system on the EJB design tool, which
we believe is a typical example capturing requirements in common synchronization
applications.

The rest of the paper is organized as follows. We first give an overview of our
approach in Section 2. Then we establish some common notation in Section 3 and
introduce the data types and modification operations we use in Section 4. Based on
them we define a set of synchronizers and combinators in Section 5 and Section 6,
and show how to synchronize the EJB design tool in Section 7. We evaluate the
performance of our approach by experiments in Section 8. Finally, we discuss
related work in Section 9 and conclude the paper in Section 10.

1http://code.google.com/p/synclib/
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Figure 2: An Example of Objects

2 System Overview

Before explaining the detailed definition of synchronizers for on-site synchroniza-
tion, we give a taste of synchronizers by showing some synchronization examples
of the EJB design tool.

Figure 2 shows six objects (of the three types) that are consistent. The con-
sistency relation is established and kept by a synchronizers, which is defined in
Section 7.

In order to identify an object that has been modified or to be modified, we
assume each type of objects has an attribute called thekey attribute, which is unique
among all instances and should not be modified by users. For theModule objects,
we may choose theURI attribute. For theEJB andEntityBean objects, we may
choose theID attribute.

Each synchronizer, including the synchronizers, accepts modification opera-
tions as input and produces modification operations as output. When usersmodify,
for example, theModuleName attribute ofUserEntity (whoseID is “2”) to
“SignOnModule”, the following modification operations will be sent to the syn-
chronizers.

〈τ, τ,&{2 7→ &{ModuleName 7→!“SignOnModule”}τ}τ 〉

The input is a triple, describing the modification operations on each type of objects.
The first twoτ ’s denote no modification on bothEJB objects andModule objects.
The third component describes the modification operation on theEntityBean
objects: theEntityBean object with ID of 2 has its attributeModuleName
changed to“SignOnModule”.

Taking the input operations, the synchronizers can automatically produce the
following output.

〈τ,&{“signon-ejb.jar” 7→ &{Name 7→!“SignOnModule”}τ}τ ,
&{2 7→ &{ModuleName 7→!“SignOnModule”}τ ,

3 7→ &{ModuleName 7→!“SignOnModule”}τ}〉

which is the result as expected: theName attribute of theModule object and
the ModuleName attributes of allEntityBean objects in the same module
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are changed. There are neither unnecessary changes like modifying an EJB ob-
ject, nor overwriting of the users’ input modification operations like modifying
ModuleName back to “SignOn”.

For another example, if users delete theModule object with a URI of
“signon-ejb.jar”, the input will be:

〈τ,&{“signon-ejb.jar” 7→ del}τ , τ〉

Because theEJB objects and theEntityBean objects are dependent on the
Module object, all these objects should be deleted. After synchronization, the
output will be as follows.

〈&{1 7→ del, 2 7→ del, 3 7→ del}τ ,
&{“signon-ejb.jar” 7→ del}τ ,
&{2 7→ del, 3 7→ del}τ 〉

It is worth noting that there are often more than one way to synchronize ob-
jects and it is a challenge to provide a proper method for users to customize the
system behavior. For the above example, it is also possible to set the attributes
EJB.Module,EntityBean.ModuleName andEntityBean.ModuleURI
tonull to achieve consistent. We address this issue by introducing options to syn-
chronizers, which will be explained in Section 5.

3 Notations

We start by introducing some common notations to be used in the rest of the paper.
We use the lambda notations for functions, for instance,λa : a denotes an identity
function andf a indicates applying a functionf to an argumenta. Whenf is a
partial function, we writef a = ⊥ to meanf is undefined ona. We writedom(f)
for the set of arguments on whichf is defined. For any setS, we writeS⊥ to
denoteS ∪ {⊥}. We write{} for a function that maps anything to⊥. Suppose
f ∈ A → B, a ∈ A, b ∈ B. The update of a function, written asf [a ← b], is
defined as

f [a← b] a′ =

{

f a′ if a′ 6= a

b if a′ = a

We write{k1 7→ v1, . . . , kn 7→ vn} to denote{}[k1 ← v1] . . . [kn ← vn].
We use~v to denote a n-tuple〈v1, v2, . . . , vn〉. We write~v.i for the ith com-

ponent of the tuple~v. We write〈a . . . a〉n for a n-tuple where all elements area.
Let ~a = 〈a1, . . . , an〉,~b = 〈b1, . . . , bn〉 be two tuples, we write~a ⊕~b for the con-
catenation of the two tuples〈a1, . . . , an, b1, . . . , bn〉. Let~a be a n-tuple. We write
~a[i ← x] for a new tuple that is obtained by replacing theith element of~a with x.
Let ~f ∈ (A → B)n be a tuple of functions and~v ∈ An be a tuple, we use~f ~v to
denote〈f1 v1, f2 v2, . . . , fn vn〉. Let f ∈ A → B be a function and~v ∈ An be a
tuple, we writef . ~v for 〈f v1, f v2, . . . , f vn〉.
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4 Data Representation and Modification Operations

Data Representation We define synchronizers on a set of data types. We treat
numbers and strings as unstructuredprimitive values, denoted byP. We also de-
note the set of integers asI, whereI ⊂ P. Dictionariesmap keys inP to values,
denoted byD. We use a universal setU to denote all primitive values and dic-
tionaries. The dictionary setD and the universal setU are recursively defined as
follows.

D = {f | f ∈ P → U anddom(f) is finite},
U = (P ∪ D)⊥.

Being simple, this data representation based on dictionaries can be used to
describe various types of artifacts. For the two views in our EJB editor example,
we can describe the objects of the two views using the above data representation2.
For all instances of a class, we represent them as a dictionary mapping from the
values of the key attributes to the objects. Each object is also represented as a
dictionary mapping from the non-key attribute names to the attribute values. If
the attribute value is a primitive value, we use the primitive value. If the attribute
value is a reference to another object, we use the value of the key attribute of the
referenced object.

As an example, the objects in Figure 2 can be represented by the following
three dictionaries.

{1 7→ {Name 7→ “SignOnEJB”,
Persistent 7→ false,
Module 7→ “signon-ejb.jar”},

2 7→ {Name 7→ “UserEJB” ,
Persistent 7→ true,
Module 7→ “signon-ejb.jar”},

3 7→ {Name 7→ “DepartmentEJB”,
Persistent 7→ true,
Module 7→ “signon-ejb.jar”}};

{“signon-ejb.jar” 7→ {Name 7→ “SignOn” ,
Description 7→ “authenticate users”}};
{2 7→ {EJBName 7→ “UserEJB” ,

ModuleName 7→ “SignOn” ,
ModuleURI 7→ “signon-ejb.jar”},

3 7→ {EJBName 7→ “DepartmentEJB”,
ModuleName 7→ “SignOn” ,
ModuleURI 7→ “signon-ejb.jar”}}.

Modification Operations Modification operations are also defined on the data
types. In general, users can perform three types of modification operations on the

2This representation is just conceptual. In actual implementation, we do notneed to transform
objects into the data types because we rely on modification operations to synchronize data.
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data: replacing a primitive value by a new valuev, deleting a value, and making
modification inside a dictionary according to a structureω mapping keys to mod-
ification operations. We view each modification operation as a function mapping
from old values to new values and use!v,del,&ω to denote the three types of op-
erations, respectively. We also use a special functionτ to indicate no modification.

To discuss the properties of modification operations, we formally define the set
of modification operationsM as follows.

M = PM∪DM∪ {τ,del}
where
PM = {!v | v ∈ P};
DM = {&ω | ω ∈ P →M};
τ ∈ U → U , τ a = a;
del∈ U → {⊥}, dela = ⊥;
!v ∈ P⊥ → P, !v a = v;
&ω ∈ D⊥ → D,
&ω ⊥ = &ω {},
&ω d = d′ where∀k ∈ P : d′ k = ω k (d k).

We use{}τ to denote a special function that maps any thing toτ . Similarly, we
write {k1 7→ v1, . . . , kn 7→ vn}τ to denote{}τ [k1 ← v1] . . . [kn ← vn].

If we have applied a modification operation to an artifact, applying it again will
not change anything. This property can be used to check if a modification operation
has been applied or not:

Property 1 ∀m ∈M, v ∈ U : m (m v) = m v

If two modification operations affect different parts of an artifact, we say the two
operations aredistinct. Formally, we saym1,m2 ∈ M are distinct if and only if
they are commute:m1 ◦ m2 = m2 ◦ m1. We writem1 	 m2 if m1 andm2 are
distinct.

For distinct operations, we have the following property:

Property 2 ∀m1,m2 ∈M : (m1 	m2 ⇒ m1 ◦m2 ∈M)

This property plays an important role in our design of synchronizers which
map modification operations to modification operations. From this property we
know that for a sequence of distinct modification operations, there is a modification
operation inM that has the same effect. On the other hand, if users perform
two operations that are not distinct, e.g.!v1 followed by !v2, it is sufficient to
use the latter to represent the whole sequence. As a result, it suffices to consider
modification operations inM instead of considering a sequence of operations.

If a modification operationm1 is included in another modification operation
m2, we saym1 is a sub modificationof m2, denoted asm1 v m2. Formally,
m1 v m2 if and only ifm1 ◦m2 = m2.
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5 Synchronizers

Before introducing our synchronizers, we should be more precise about on-site
synchronization. Given a consistency relationR overn artifacts, anon-site syn-
chronizerbased onR takes users’ modification operations on the artifacts and pro-
duces new modification operations which are expected to be applied to the artifacts
to make them satisfyR. To perform incremental synchronization, we also need
to keep some information like trace information, and update the information after
synchronization. We call this information the state of the synchronizer, anddenote
the set of all states asΘ.

Formally, asynchronizers synchronizingn artifacts consists of two parts, a
consistency relations.R ⊆ Un and a triple〈s.Θ, s.ϑ, s.sync〉, wheres.ϑ ∈ s.Θ
is the start state ands.sync∈ s.Θ → Mn → s.Θ ×Mn is the synchronization
function. Initially, the synchronizer is in thes.ϑ state and assume all artifacts are
⊥ (each artifact contains no content in the initial stage). We also writes.len for
the number of artifacts thats synchronizes.

As argued in Section 2, the output modification operations should meet some
requirements. We formalize the requirements by the following three properties.

Property 3 (Stability) Let~τ = 〈τ . . . τ〉s.len, we have
∀θ ∈ s.Θ : s.syncθ ~τ = (θ, ~τ)

Property 4 (Preservation) s.syncθ ~m = 〈θ′, ~m′〉 =⇒ ∀i ∈ {1, 2, . . . , s.len} :
~m.i v ~m′.i

Property 5 (Propagation) If we construct as.data function using only the follow-
ing two rules:

1. 〈⊥ . . .⊥〉s.len ∈ s.datas.ϑ
2. s.syncθ ~m = 〈θ′, ~m′〉
=⇒ ∀~v ∈ (s.dataθ) : (~m′ ~v) ∈ (s.dataθ′)

we have:
∀θ ∈ s.Θ : s.dataθ ⊆ s.R

The three properties were originally proposed in our previous work [XLH+07]
for off-site synchronization. Here we adapt them to on-site synchronization. In-
tuitively, the stability property is to prohibit the synchronizer making unnecessary
changes. The preservation property requires the synchronizer to preserve all users’
modification operations. The propagation property states that if we apply themod-
ification operations produced by the synchronizer, the artifacts should be in the
consistency relation.

In this section, we propose a powerful mechanism for users to specify syn-
chronizers with various kinds of synchronization behavior. To achievethis, we
adopt the compositional method used in many off-site synchronization approaches
[FGM+07, LHT07]. As will be seen later, we shall provide some primitive syn-
chronizers that synchronize artifacts according to some predefined primitive rela-
tions. We also provide combinators, where a combinator can combine the synchro-
nizers into a new synchronizer to synchronize artifacts according to a new relation
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that is combined from the consistency relations of the inner synchronizers. In this
way users can get their synchronizers by only considering combining relations.

In addition, all primitive synchronizers and synchronizers combined by combi-
nators are ensured to satisfy the three properties. This can be formally proved and
users can know their synchronizers work correctly once they have combined them.
Due to space limit, we omit the formal proof and only state the result:

Theorem 1 All synchronizers, either directly introduced in the paper or combined
by combinators introduced in the paper, satisfy the stability property, the preserva-
tion property and the propagation property.

Sometimes we have different ways to achieve consistency. To customize the
behavior, we further parameterize primitive synchronizers and combinators with
options. Options are a tuple of boolean values, often denoted byψ. A different
assignment to the options leads to a different synchronizer or combinator,with its
own way to achieve consistency. By adjusting the behavior of local parts,users
can customize the global behavior of their synchronizers. The number ofoptions
can be large. In this paper we show a small set of options as an example, and
demonstrate how to customize the behavior when deleting aModule object.

We denote the set of all synchronizers asX .

5.1 Primitive Synchronizers

Basic Synchronizers We start from a simple synchronizerid that is to keep
two artifacts identical.

id.R = {(a, a) | a ∈ U}
id.Θ = {ε}
id.ϑ = ε

id.syncε 〈m1,m2〉 =

{

〈ε, 〈m1 ◦m2,m1 ◦m2〉〉 m1 	m2

⊥ else

The id synchronizer keeps the relation defined byid.R, has only one constant
stateε that does not change during synchronization, and has an important synchro-
nization functionid.syncsaying that given two modificationsm1 andm2 on two
artifacts respectively, it returns a pair of the same modification operationm1 ◦m2

to be applied to the two artifacts ifm1 andm2 are distinct, and returns error other-
wise.

Two other basic synchronizers areremoveand equalJvK. The synchronizer
removeremoves an artifact by setting it to⊥. The synchronizerequalJvK forces an
artifact to be equal to a primitive valuev. The definitions of the two synchronizers
are as follows.
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remove.R = {⊥}
remove.Θ = {ε}
remove.ϑ = ε

remove.syncε 〈m〉 =







〈ε, 〈τ〉〉 if m = τ

〈ε, 〈del〉〉 elif m	 del
⊥ else

v ∈ P
equalJvK.R = {〈a〉 | a = v ∨ a = ⊥}
equalJvK.Θ = {ε}
equalJvK.ϑ = ε

equalJvK.syncε 〈m〉 =

{

〈ε, 〈del〉〉 m = del
id.sync⊥ 〈!v,m〉 else

Synchronizers on Dictionaries The dynamic get synchronizerdgetψ synchro-
nizes a dictionaryd ∈ D, a keyk ∈ P and a valuev ∈ U , and ensures that
v is the value obtained by queryingd with k. It has three options:d over v,
prop v del and k exists. The optiond over v determines whether we
used to updatev or usev to updated when onlyk is modified. The option
prop v del determines whether we deleted or deleted.k when v is deleted.
The optionk exists determines whether we ensured k 6= ⊥ by settingk to⊥
whend k = ⊥.

ψ = 〈d over v,prop v del,k exists〉
dgetψ.R = {(k, d, v) | d ∈ D⊥, v ∈ U⊥, k ∈ P⊥,
d k = v ∨ (d = ⊥ ∧ v = ⊥) ∨ k = ⊥}

dgetψ.Θ = dgetψ.R
dgetψ.ϑ = 〈⊥,⊥,⊥〉

The state ofdgetψ is a tuple that records the current values of the three artifacts.
Every time we synchronize, the state will change to new values.

The functiondgetψ.syncis a bit complex to write in mathematical notations,
so we present it in pseudo code, as shown in Algorithm 1. The function just calls
dgetψ.sync′ defined in Algorithm 2 and applies the returned modification opera-
tions to the state. In Algorithm 2, first the algorithm deals with the situation where
k andd are modified to⊥, respectively (Line 1-5). Then the algorithm changes⊥
to {} and changesτ to &{}τ for later processing (Line 6-9). After that, the algo-
rithm merges the value in the dictionary, the value artifact, and their modification
operations using amergefunction defined below (Line 10-13). Ifv is deleted, the
algorithm further deletesd or deletesk according to the semantics of options (Line
14-20). Finally, the algorithm restores the modification operation ond to τ if the
original one isτ (Line 21), and then returns the result (Line 22).
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Algorithm 1 : d;getψ.sync

Input : 〈k, d, v〉, 〈mk,md,mv〉
if d;getψ.sync′ 〈k, d, v〉 〈mk,md,mv〉 = ⊥ then return ⊥;1

〈m′
k,m

′
d,m

′
v〉 ← d;getψ.sync′ 〈k, d, v〉 〈mk,md,mv〉;2

return 〈〈m′
k k,m

′
d d,m

′
v v〉, 〈m

′
k,m

′
d,m

′
v〉〉;3

merge∈ U → U →M→M→M
mergev1 v2 m1 m2 = merge′ v1 v2 (m1 ◦m2)
merge′ v1 v2 m =










































































τ if v1 = v2 ∧m = τ

del elif m = del
!(m v1) elif v1 ∈ P⊥ ∧ v2 = ⊥ ∧m ∈ PM∪ {τ}
!(m v2) elif v1 ∈ P⊥ ∧ v2 ∈ P ∧m ∈ PM∪ {τ}
merge′ {} v2 m elif v1 = ⊥ ∧ v2 ∈ D
merge′ v1 {}m elif v1 ∈ D ∧ v2 = ⊥
&ω elif v1, v2 ∈ D ∧m = &ω′

where ω k = merge′ (v1 k) (v2 k) (ω′ k)
&ω elif v1, v2 ∈ D ∧m = τ

where ω k = merge′ (v1 k) (v2 k) τ
⊥ else

The static get synchronizersgetψJkK is similar todgetψ, but the keyk is stati-
cally determined at the beginning. ThesgetψJkK synchronizer can be defined using
thedgetψ synchronizer, as follows.

ψ = 〈d over v,prop v del〉
ψ′ = 〈ψ.d over v, ψ.prop v del, false〉
k ∈ P

sgetψJkK.R = {〈d, v〉 | 〈k, d, v〉 ∈ dgetψ
′

.R}
sgetψJkK.Θ = sgetψJkK.R
sgetψJkK.sync〈d, v〉 〈md,mv〉 =

dgetψ
′

.sync〈k, d, v〉 〈!k, d, v〉

5.2 Combinators

In this section we introduce two useful combinators for constructing a bigger syn-
chronizer by gluing smaller synchronizers statically and dynamically. The graph
combinator statically combines synchronizers by organizing them into asynchro-
nizer graph. The dictionary map combinator dynamically uses an inner synchro-
nizer to synchronize a list of dictionaries.

Graph Combinator Figure 3 shows an example of a synchronizer graph which
synchronizes anEJB object, anEntityBean object, theirID attributes and all
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Algorithm 2 : d;getψ.sync′

Input : 〈k, d, v〉, 〈mk,md,mv〉
k′ ← mk k;1

if k′ = ⊥ then return 〈mk,md,mv〉;2

if md = del then3

if mv 	 del∧mk 	 del then return 〈mk,del,del〉;4

else return⊥;5

m′
d ← md;6

if d = ⊥ then d← {};7

if m′
d = τ then ω ← {}τ ;8

else&ω ← m′
d;9

if not (ω k)	mv then return ⊥;10

if ψ.d over v then m′
v ← merge(d k′) v (ω k′) mv;11

elsem′
v ← mergev (d k′) mv (ω k′);12

m′
d ← &ω[k′ ← m′

v];13

if m′
v v = ⊥ then14

if ψ.prop v del then15

if md 	 del∧mv 	 del then return 〈mk,del,del〉;16

else return⊥;17

else ifψ.k exists then18

if mk 	 del∧mv 	 del then return 〈del,md,del〉;19

else return⊥;20

if m′
d = &{}τ thenm′

d = md;21

return 〈!k′,m′
d,m

′
v〉;22

Module objects. In the figure, the rectangles aresynchronizer holdersand the
circles arevariables. Synchronizer holders, as the name suggests, store synchro-
nizers. Variables are artifacts being synchronized or artifacts for intermediate data.
We distinguish the artifacts being synchronized and the artifacts for intermediate
data by denoting the former with solid circles and the latter with hollow circles.
We also call the formerparameters. If a synchronizer connects to some variables
by hand-like lines, we consider that the synchronizer synchronizes thevariables.
A number on a line shows the index in the tuple of artifacts that the synchronizer
synchronizes. A number on a parameter shows the index of the parameter.

Formally, we define a synchronizer graph~g as a 5-tuple〈V,H, ~p, γ, ϕ〉 :
• V is a set of variables.
• H is a set of synchronizer holders.V andH form the vertexes of the graph.
• ~p ∈ V+ is a sequence of variables that are used as the parameters of the

synchronizer graph.~p does not contain duplicated elements.
• γ : H → V+ is a function mapping each synchronizer holder to a sequence

of variables. For anyh ∈ H, (γ h) does not contain duplicated elements.γ

denotes the edges of the graph.
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Figure 3: The Synchronizer Graph~g1

• ϕ ∈ H → X maps each synchronizer holder to a synchronizer.
Given a synchronizer graph~g, we turn it into a synchroninzer by thegraph

combinator. The resulted synchronizer is denoted bygcJ~gK. The consistency rela-
tion, the state set and the start state ofgcJ~gK is defined as follows.

~g = 〈V,H, ~p, γ, ϕ〉
gcJ~gK.R = {~v | ∃f ∈ V → U : f . ~p = ~v ∧

∀h ∈ H : f . (γ h) ∈ (ϕ h).R}
gcJ~gK.Θ = {θ | ∀h ∈ H : (θ h) ∈ (ϕ h).Θ}
gcJ~gK.ϑ = λh ∈ H : (ϕ h).ϑ

The consistency relation ofgcJ~gK is the conjunction of consistency relations of
inner synchronizers. The state ofgcJ~gK is a function that maps each synchronizer
holder to a state of the corresponding synchronizer, and the start state maps each
synchronizer holder to the start state.

The algorithm ofgcJ~gK.sync is given in Algorithm 3. The algorithm uses a
functionfm to map each variable to the modification operation on the variable. At
the beginning, all synchronizers are put into a setH (Line 2). In every iteration,
the algorithm chooses a synchronizer inH that has the highest priority (explained
below) and uses the synchronizer to synchronize its connected variables (Line 6-
8). If the synchronizer modifies a variable, then all synchronizers connecting to the
variable are added toH (Line 10-11). Then the process repeats untilH is empty.

We use priority to ensure that we invoke more determined synchronizer first
to reduce unnecessary failures. First, a synchronizer has the lowestpriority if it
does need to be invoked (e.g. no modification on its variables). Second, themore
choices the synchronizer(ϕ h) has to synchronize the artifacts, the lower the pri-
ority is. For example,dgetψ θ 〈!k, τ, !v〉 has higher priority thandgetψ θ 〈τ, τ, !v〉
because the latter has choices to modifyk while the former does not have. In this
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Algorithm 3 : gcJ~gK.sync

Input : θ, ~m
Data: fm ∈ V →M, H ⊆ H
fm ← {}τ ;1

H ← H;2

foreach i ∈ {1, 2, . . . ,gcJ~gK.len} do3

fm ← fm[~p.i← ~m.i];4

while H 6= ∅ do5

h← the synchronizer holderh′ ∈ H whereϕ h′ has the highest priority;6

if (ϕ h).sync(θ h) (fm . (γ h)) = ⊥ then return ⊥;7

〈θh, ~mh〉 ← (ϕ h).sync(θ h) (fm . (γ h));8

foreach j ∈ {1, 2, . . . , (ϕ h).len} do9

if ~mh.j 6= fm (γ h).j then10

H ← H ∪ {h | h connects to v by γ};11

fm ← fm[(γ h).j ← ~mh.j] ;12

θ ← θ[h← θh];13

H ← H\{h};14

~m← fm . ~p ;15

return 〈θ, ~m〉;16

way we reduce the chance that an inner synchronizer make wrong choiceand there-
fore reduce the chance of failure. The priority can be calculated inO(1) time by
examining the type of the synchronizer and the types of modification operations.

Note in the algorithm, an inner synchronizer can be invoked again when the
modification operations on the connected variables are changed. In this way it is
possible to propagate modification back into the same artifact, addressing inner
dependency.

Dictionary Map Combinator The dictionary map combinatorsynchronizes
several dictionaries using an inner synchronizers. In the simplest situation, we
synchronize two dictionariesd, d′ by matching the items in the two dictionaries by
key and synchronizing the matched pairs usings.

In a more complex situation, the two domains of keys are not equal, and we
use a bijective mappingRk to relate the keys of the two dictionaries. That is, we
uses to synchronized k andd′ k′ for each〈k, k′〉 ∈ Rk.

Additionally, the inner synchronizer may need some “global artifacts” that can-
not be obtained from the two dictionaries. For example, we need theModule
dictionary when we are synchronizing anEJB object and aPersistentEJB
object in Figure 3. In this case, we restart the whole synchronization whenever the
“global artifacts” are modified by the inner synchronizers, so that all items in the
dictionaries are consistent with the “global artifacts”.

Furthermore, sometimes we want to use the keys in the inner synchronization.
For example, we may need to use theURI attributes when we are synchronizing
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aModule object. However, we do not want the inner synchronizer to modify the
keys because this will make the matched keys not in the relationRk, so we put a
!k on the keyk before invoking the inner synchronizer.

Finally, we sometimes synchronize more than two dictionaries and we achieve
this by extendingRk over any number of domains. Formally, asymmetric relation
Rk ⊂ P

n satisfies∀~a,~b ∈ Rk, i ∈ I : ~a.i = ~b.i =⇒ ~a = ~b and∀a ∈ P, i ∈
{1, . . . , n} : ∃~k ∈ Rk : a = ~k.i. We write||Rk|| for n, the number of domains.

Now putting the above all together, we get the dictionary map combinator. We
usedcJs,RkK to denote the synchronizer obtained by combining an inner synchro-
nizers and a symmetric relationRk using a dictionary map combinator. The inner
synchronizer is assumed to synchronize a set of keys, the values mapped by the
keys in the dictionaries, and “global artifacts” in turn. The consistency relation, the
state set and the start state ofdcJs,RkK are defined below.

s ∈ X , Rk is a symmetric relation
dcJs,RkK.R = R1 ∪ {〈⊥ . . .⊥〉

s.len−||Rk||}

R1 = {~d⊕ ~v | ~d ∈ D||Rk|| ∧ ~v ∈ Us.len−2||Rk||

∧∀~k ∈ Rk : ~k ⊕ (~d ~k)⊕ ~v ∈ s.R}
dcJs,RkK.Θ = Rk → s.Θ
dcJs,RkK.ϑ = λ ~a : s.ϑ

In the consistency relationR, the artifacts being synchronized are divided into
two groups.~d are dictionaries and~v are “global artifacts” used by the inner syn-
chronizer. Their relationships are defined by the consistent relation of the inner
synchronizer. The state ofdcJs,RkK is a function mapping each~k ∈ Rk to a state
of the inner synchronizer. Initially the function maps any~k to the start state.

The algorithm of thedcJs,RkK.syncfunction is described in Algorithm 4. The
algorithm first deals with the situation where all artifacts are deleted (Line 1-5).
Then the algorithm initializes a setK to store all key tuples that need to be syn-
chronized (Line 7-9). For each key tuple inK, the algorithm invokes thesync
function of the inner synchronizer and stores the result (Line 12-22).If the “global
artifacts” are changed, the algorithm resynchronizes from the beginning to ensure
items in the dictionaries are consistent with the “global artifacts” (Line 23-26).

6 Bridging On-Site and Off-Site

When performing an on-site synchronization, we assume the synchronizeris tightly
integrated into the system and its state is always compatible with the artifacts.
However, this assumption does not always hold. One exception occurs when we
allow disjunction of synchronizers, that is, the artifacts can either be synchronized
by a synchronizera or by a synchronizerb. For example, when thePersistent
property of anEJB object istrue, we may use the synchronizer in Figure 3 to
synchronize. When users modify thePersistent property tofalse, we may
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Algorithm 4 : The algorithm ofdcJs,RkK.sync

Input : 〈θ, ~md ⊕ ~mv〉, where| ~md| = ||Rk||
if ~md contains delthen1

if ~md ⊕ ~mv only contains del andτ then2

return 〈dcJs,RkK.ϑ, 〈del. . .del〉dcJs,RkK.len〉;3

else4

return ⊥;5

replace allτ in ~md with &{}τ ;6

K ← {~k | ~k ∈ Rk ∧ ~md
~k 6= 〈τ . . . τ〉||Rk||};7

if ~mv 6= 〈τ . . . τ〉
|~mv | then8

K ← K ∪ dom(θ);9

resync all:10

foreach~k ∈ K do11

~mk ← (λv :!v) . ~k;12

~ms ← ~mk ⊕ (~md
~k)⊕ ~mv;13

θs ← θ ~k;14

if s.syncθs ~ms = ⊥ then return ⊥;15

〈θs, ~ms〉 ← s.syncθs ~ms;16

θ ← θ[~k ← θs];17

foreach i ∈ {1, . . . , ||Rk||} do18

~md ← ~md[i← ~md.i[~k.i← ~ms.(i+ ||Rk||)]];19

~m′
v ← ~mv;20

foreach i ∈ {1, . . . ,dcJs,RkK.len− ||Rk||} do21

~m′
v ← ~m′

v[i← ~ms.(2||Rk||+ i)];22

if ~m′
v 6= ~mv then23

~mv ← ~m′
v;24

K ← K ∪ dom(θ);25

gotoresync all;26

~mv ← ~m′
v;27

replace&{}τ in ~md with τ if it is originally τ ;28

return 〈θ, ~md ⊕ ~mv〉;29

want to switch to the synchronizer in Figure 4. When we switch to the latter syn-
chronizer, the state of the synchronizer may not be compatible with the artifacts.

To deal with such a situation, we add an off-site synchronization function
s.resync∈ Us.len → Ms.len → s.Θ ×Ms.len to a synchronizers. The func-
tion, like s.sync, takes and produces modification operations. However, it also
takes all artifacts as input and constructs a new state based on the artifacts. In this
sense, we say that it is an off-site synchronization.

We would expect thes.resyncsynchronization to exhibit a consistent behavior
like thes.syncfunction. To ensure this, we extend the properties of synchronizers
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Figure 4: The Synchronizer Graph~g2

to constrain the behavior ofs.resync. Specifically, we add the following construc-
tion rule tos.data in the propagation property to ensure the artifacts are consistent
after synchronization:

∀~v : (s.resync~v ~m = 〈θ, ~m′〉 =⇒ (~m′ ~v) ∈ (s.dataθ))

Besides, we add the rule below to the preservation property to ensure users’ modi-
fication operations are preserved:

s.resync~v ~m = 〈θ, ~m′〉 =⇒ ∀i ∈ {1, . . . , s.len} : ~m.i v ~m′.i

Theresyncfunction of existing primitive synchronizers and combinators can be
similarly defined like thesyncfunction. Here we give the definitions ofid.resync
anddgetψ.resyncas examples:

id.resync〈v1, v2〉 〈m1,m2〉 =

{

〈ε, 〈m,m〉〉 m1 	m2

⊥ else
wherem = merge v2 v1 m2 m1

dgetψ.resync~v ~m = dgetψ.sync~v ~m

The Switch Combinator Based on theresyncfunction, we can achieve disjunc-
tion of synchronizations through theswitch combinator. The switch combinator
allows users to choose between a set of inner synchronizers. If an inner synchro-
nizer fails to synchronize the artifacts (returning⊥), the switch combinator will try
another synchronizer until the artifacts are synchronized or all synchronizers fail.

Let ~s be a tuple of synchronizers. We usescJ~sK to denote the synchronizer
obtained by combining~s using a switch combinator.scJ~sK is defined as follows.
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m ∈ I ∧m > 1
~s ∈ Xm ∧ ∀i ∈ {1, . . . ,m} : ~s.i.len = scJ~sK.len
scJ~sK.R =

⋃

k∈{1,...,m} ~s.k.R

scJ~sK.Θ = {〈~v, i, θ〉 | i ∈ I ∧ ~v ∈ ~s.i.dataθ ∧ θ ∈ ~s.i.Θ}
scJ~sK.ϑ = 〈〈⊥ . . .⊥〉scJ~sK.len, 1, ~s.1.ϑ〉
scJ~sK.sync〈~v, i, θ〉 ~m =






























〈〈~m′ ~v, i, θ′〉, ~m′〉 if ~s.i.syncθ ~m 6= ⊥
where 〈θ′, ~m′〉 = ~s.i.syncθ ~m

〈〈~m′ ~v, k, θ′〉, ~m′〉 elif
∃k ≤ m : ~s.k.resync~v ~m 6= ⊥ ∧
∀j∈{1, . . . , k−1} : ~s.j.resync~v ~m = ⊥

where 〈θ′, ~m′〉 = ~s.k.resync~v ~m
⊥ else

scJ~sK.resync~v ~m =














〈〈~m′ ~v, k, θ〉, ~m′〉 if
∃k ≤ m : ~s.k.resync~v ~m 6= ⊥ ∧
∀j∈{1, . . . , k−1} : ~s.j.resync~v ~m = ⊥

where 〈θ, ~m′〉 = ~s.k.resync~v ~m
⊥ else

Intuitively, a switch combinator remembers in its state the current values of
the artifacts, the index of the inner synchronizer used in the last synchronization
and the state of the inner synchronizer. InscJ~sK.sync, the switch combinator first
invokes thesyncfunction of the inner synchronizer used in the last time. If the func-
tion fails, the switch combinator invokes theresyncfunction of inner synchronizers
one by one. InscJ~sK.resync, the switch combinator invokes theresyncfunction of
inner synchronizers one by one until one synchronizer synchronizes the artifacts.

7 Application: Synchronizing the EJB Design Tool

As we have introduced all synchronizers, we can use them to constructthe syn-
chronizers for the EJB design tool. The definition ofs is shown below.

s = dcJs′,=K s′ = scJ〈s1, s2〉K
s1 = gcJ~g1K s2 = gcJ~g2K

That is, we first use the dictionary map combinator to match theEJB objects
and theEntityBean objects and synchronize each pair with allModule ob-
jects usings′. The synchronizers′ switching betweens1 ands2 to deal with the
situations whereEJB.Persistent = true andEJB.Persistent = false,
respectively. The synchronizerss1 ands2 are constructed using the graph combi-
nator and the two synchronizer graphs have already been shown in Figure 3 and
Figure 4.

As mentioned before, when users delete aModule object, we may not want
to remove objects but want to set the related attributes tonull. We can achieve
this by changing theprop v del options tofalse on four inner synchronizers:
sgetψJModuleK, sgetψJModuleNameK, andsgetψJModuleURIK in Figure 3 and
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sgetψJModuleK in Figure 4. In this way we can customize the global behavior by
adjusting the behavior of local synchronizers.

8 Performance Evaluation

We evaluate the performance of our approach by experimenting with the synchro-
nizer for the EJB design tool. We also compare our results with an off-site incre-
mental synchronizer, medini QVT v1.1.23, which is a state-of-art implementation
of the model transformation standard [Obj05]. Our experiments are carried out on
a laptop with an 1.70 GHz Intel(R) Pentium(R) M processor and 1.25 GB RAM.

Before carrying out the experiments, we prepare some common data. We first
construct a large number ofEJB andModule objects, where every 100EJB ob-
jects belong to aModule object and the attributes are randomly assigned. Then
we synchronize to get a consistent set ofEntityBean objects.

In the first set of experiments we randomly choose a set ofEJB objects, set
their Name attributes to new values, and record the synchronization time. The
result is shown in Table 1. The third column shows the time our tool takes and the
forth column shows the time medini QVT takes. To be fair, we exclude the time
during which medini QVT loads and saves XMI files, and only use the in-memory
evaluation time reported by medini QVT.

Table 1: Modifying theNameAttribute
Modification

Size
Number of
EJB objects

Time(ms)
(Synchronizers)

Time(ms)
(QVT)

500 1000 20 901
500 2000 20 2083
500 3000 20 6048
500 4000 20 10155
500 5000 20 16594
500 6000 20 23785
1000 6000 40 23894
1500 6000 60 24706
2000 6000 90 24575
2500 6000 130 25427

From the table we can see, the synchronization time of our tool is a linear
function of the modification size. The time remains constant when we increase
the number ofEJB objects and increases linearly when we increase the size of
modification operations.

The time of medini QVT is much longer than our approach and is mainly re-
lated to the number ofEJB objects. This is probably because QVT works off-site.
When synchronizing, medini QVT has to re-check whether all applied rules are
still valid and the number of rules is related to the number ofEJB objects.

3http://projects.ikv.de/qvt
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However, the synchronization time cannot always be a linear function of modi-
fication operations. In the second set of experiments we randomly choosean object
of theEntityBean class and modify itsModuleName attribute to a new value,
just like the first example in Section 2. To synchronize, we have to iterate all
EntityBean objects to find the objects in the same module for modifying their
ModuleName attributes, and the time of the iteration is related to the number of
objects. The result of the experiment is shown in Table 2. Note medini QVT cannot
synchronize this modification because it does not handle inner dependency.

Table 2: Modifying theModuleNameAttribute

Number ofEJB objects Time(ms)

1000 50
2000 80
3000 101
4000 190
5000 250

From the table we can see that the synchronization time increases as the number
of EJB objects increases. Nevertheless, the synchronization time is still short and
we believe that it is efficient enough to support real applications.

9 Related Work

The mainstream work of off-site synchronization is work on bidirectional transfor-
mation [FGM+07, KH06, KW07, LHT07, Obj05]. In these approaches, a bidirec-
tional language is used to describe a consistency relationR between two artifacts
a ∈ A, b ∈ B, a forward functionf : A × B → B and a backward function
g : A × B → A at the same time [Ste07]. Bidirectional transformation cannot
directly support modifying the two artifacts at the same time. Benjamin and et
al. [PSG03] proposed a framework, Harmony, to support this with bidirectional
transformation by designing a common artifact and use a reconciler to reconcile
different versions of the common artifact.

Some bidirectional transformation approaches also target at synchronizing soft-
ware artifacts. Two among them are Triple Graph Grammars (TGGs) [KW07], a
model transformation approach applying early work in graph grammars to mod-
eling environments [NNZ00, AKRS06], and QVT relations [Obj05], the standard
of model transformation. The two approaches have been proved structurally sim-
ilar by Greenyer and Kindler [GK07]. They are both rule-based, and can support
incremental synchronization by re-checking applied rules. However, the TGGs
approach is based on non-deleting graph grammars, and so far there is no well-
defined semantics for object deletion and attribute modification in TGGs. On the
other hand, QVT defines a clear semantics for object deletion and attribute modi-
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fication by allowing only direct mapping between attributes. As a result, complex
synchronization, like those involving string concatenation, cannot be supported by
QVT. On the contrary, our approach can support string concatenationby defining
a new synchronizer for concatenating strings.

Some researchers focus on the view consistency problem, which is a typical
application of on-site synchronization. Amor and et al. [AHM95] design a declar-
ative language which focuses on bijective mappings between views and provides
powerful support to expressions. Some other work [GHM98, FGH+94] provides
general frameworks for view consistency, where users write code for identifying
and handling inconsistency. Compared to these frameworks, our approach only
requires users to composite synchronizers once and users automatically get the
ability of handling inconsistency.

Our work started from our previous attempt [XLH+07] on synchronizing mod-
els from a forward transformation program. However, later we found thatit is dif-
ficult to fully present the semantics of synchronization just in a forward program,
and then we designed synchronizers, to provide a precise and flexible foundation
for synchronization.

10 Conclusion and Future Work

In this paper we have proposed a compositional approach to on-site synchroniza-
tion. Our approach is incremental, handles inner dependency and allows users to
customize the behavior, making our approach suitable for on-site synchronization
of software artifacts.

The set of synchronizers we proposed is growable in the sense that users can
add new synchronizers, combinators, even new data types and new modification
operations when the problem cannot be well tackled by existing ones. If the new
synchronizers satisfy the three properties, they can work well with existing ones.
We are actively exploring more synchronization scenarios in software engineering
and designing new synchronizers when necessary.
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