
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Solving the Irregular Strip Packing Problem
via Guided Local Search for Overlap

Minimization

Shunji UMETANI, Mutsunori YAGIURA,
Shinji IMAHORI, Takashi IMAMICHI,
Koji NONOBE, Toshihide IBARAKI

METR 2008–22 May 2008

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

Solving the irregular strip packing problem

via guided local search for overlap minimization

Shunji Umetani∗ Mutsunori Yagiura† Shinji Imahori‡ Takashi Imamichi§

Koji Nonobe¶ Toshihide Ibaraki∥

May 6, 2008

Abstract

The irregular strip packing problem (ISP) requires a given set of non-convex polygons to
be placed without overlap within a rectangular container having a given width and a variable
length which is to be minimized. As a core subproblem to solve ISP, we consider an overlap
minimization problem (OMP) whose objective is to place all polygons into a container with
given width and length so that the total amount of overlap between polygons is made as small
as possible. We propose to use directional penetration depths to measure the amount of overlap
between a pair of polygons, and present an efficient algorithm to find a position with the
minimum overlap for each polygon when it is translated in a specified direction. Based on this,
we develop a local search algorithm for OMP that translates a polygon in horizontal and vertical
directions alternately. Then we incorporate it in our algorithm for OMP, which is a variant of
the guided local search algorithm. Computational results show that our algorithm improves the
best known values of some well known benchmark instances.

Keywords: Cutting, Packing, Irregular strip packing, Nesting, Guided local search.

1 Introduction

The irregular strip packing problem (ISP), or often called the nesting problem, is one of the cut-
ting and packing problems, which deals with polygons (or arbitrary shapes) that can be neither
rectangular nor convex. Given a set of polygons and a rectangular container called a strip with a
constant width and a variable length, this problem requires a feasible placement of the polygons
into the container such that its length is minimized. A placement is feasible if no two polygons
overlap with each other and no polygon protrudes from the container (Figure 1). This problem has
three variations depending on rotations of polygons: (1) rotations of any angles are allowed, (2)
rotations of finite number of angles are allowed, and (3) no rotation is allowed. (Note that case (3)
is a special case of (2) in which the number of given orientations of each polygon is one.) Among
them, we deal with case (2) in this paper. In many practical applications such as textile industry,
rotations are usually restricted to 0 or 180 degrees because textiles have the grain and may have a
drawing pattern.

The ISP is much harder than the rectangle strip packing problem because the intersection test
between polygons is considerably more complex. However, due to rapid innovation in computing

∗Graduate School of Information Science and Technology, Osaka University, Suita 565-0871, Japan
†Graduate School of Information Science, Nagoya University, Nagoya 464-8603, Japan
‡Graduate School of Information Science and Technology, University of Tokyo, Tokyo 113-8656, Japan
§Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
¶Faculty of Engineering and Design, Hosei University, Tokyo 102-8160, Japan
∥School of Science and Technology, Kwansei Gakuin University, Sanda 669-1337, Japan

1

L (to be minimized)

W

(fixed)

Figure 1: An instance of the irregular strip packing problem and a feasible solution.

power and in theory of computational geometry, many approaches to ISP have been developed in
recent years.

A standard approach for designing heuristics is to specify a construction method that places
polygons one by one into the container in a given sequence. Albano and Sapuppo (1980) proposed a
construction algorithm of this type, which places each polygon to the left-most feasible position on
the right envelope of the set of already placed polygons, breaking ties by preferring the bottom-most
one. BÃlȧzewicz et al. (1993) proposed an extension of this algorithm by allowing to place a polygon
into a hole surrounded by placed polygons, in addition to the right envelope of the set of placed
polygons. Dowsland et al. (2002) and Gomes and Oliveira (2002) independently developed heuristic
algorithms that place each polygon at the left-most feasible position in the whole container (i.e.,
candidate positions are not restricted to those on the right envelope of the set of already placed
polygons), breaking ties by preferring the bottom-most one. In these algorithms, they used a
geometric technique called the no-fit polygon to find such positions efficiently. Gomes and Oliveira
(2002) then applied local search to find a good sequence of given polygons for their construction
algorithm. Burke et al. (2006) considered a generalized problem that can deal with irregular shapes
having circular edges. They proposed an efficient construction algorithm that searches for the left-
most feasible position of each shape approximately by restricting the search on vertical lines with
sufficiently small gaps between them, and they incorporated it with hill climbing and tabu search
algorithms to find a good sequence of given objects.

Another heuristic approach is to resort to an improvement method that relocates polygons by
solving one of the following subproblems: (1) the overlap minimization problem, (2) the compaction
problem, and (3) the separation problem. The overlap minimization problem (OMP) requires a
placement (not necessarily feasible) of given polygons to minimize the overlap penalty for all pairs
of polygons under the constraint that they are placed in the container with given width and length.
The compaction problem relocates polygons from a given feasible placement so as to minimize the
container length, and the separation problem relocates polygons from a given infeasible placement so
as to make it feasible while minimizing the total amount of polygon translations. Li and Milenkovic
(1995) developed heuristic algorithms to solve the compaction and separation problems based on
linear programming (LP). Bennell et al. (2001) and Gomes and Oliveira (2006) combined tabu
search and simulated annealing algorithms with LP based compaction and separation algorithms,
respectively.

Egeblad et al. (2007) proposed a heuristic algorithm for ISP via OMP, where they used the
intersection area for each pair of polygons as the overlap penalty. They developed a guided local
search algorithm for OMP, in which the neighborhood consists of placements obtainable by any
horizontal or vertical translation of a polygon from its current position. Imamichi et al. (2007)
proposed another OMP algorithm by using a measure of overlap amount called the penetration
depth, which is the minimum translational distance to separate a given pair of polygons, and
they incorporated a nonlinear programming technique into their iterated local search algorithm.

2

Algorithms for the compaction, separation and overlap minimization problems are surveyed in
Ibaraki et al. (2008).

In this paper, we first propose a new OMP algorithm which is based on another measure
of overlap amount called the directional penetration depth, which is the minimum translational
distance in a specified direction to separate a given pair of polygons. Exploiting characteristics of
this penalty function, we develop an efficient algorithm to find a position with the minimum overlap
penalty for each polygon when it is translated in a specified direction. Based on this, we devise
a local search algorithm for OMP that translates a polygon in horizontal and vertical directions
alternately until no better position is found in either direction. This is incorporated into a variant
of the guided local search algorithm for OMP. Using this as a main component, we propose a
heuristic algorithm for ISP, which we call the fast iterative translation search (FITS).

This paper is organized as follows. We first formulate ISP and OMP in Section 2. We then
explain the intersection test and the no-fit polygon in Section 3. We illustrate the outline of our
algorithm FITS for ISP in Section 4. We explain our construction algorithm to generate an initial
placement for ISP in Section 5, and our guided local search algorithm for OMP in Section 6. Finally,
we report computational results in Section 7 and make concluding remarks in Section 8.

2 Formulation

2.1 Irregular strip packing problem

We are given a list of polygons P = (P1, P2, . . . , Pn) with a list of their possible orientations
O = (O1, O2, . . . , On), where Oi (1 ≤ i ≤ n) is the set of all orientations which a polygon Pi

can be rotated (i.e., Pi can be rotated by o degrees for all o ∈ Oi), and a rectangular container
C = C(W,L) with a width W and a length L, where W is a nonnegative constant and L is a
nonnegative variable. We denote a polygon Pi rotated by o ∈ Oi degree by Pi(o), which may be
written as Pi for simplicity when its orientation is not specified or clear from the context. We
describe a position of a polygon Pi by a coordinate vi = (xi, yi) of its reference point, which is a
point of Pi (e.g., a vertex or the center of gravity of Pi). For convenience, we regard all polygons
Pi and the container C as closed regions. To be more precise, we regard Pi or C as the set of all
interior points and those points on the boundary, when its reference point is put at the origin (0, 0).
For a polygon S, let int(S) be the interior of S, cl(S) be the closure of S, ∂S be the boundary of
S and S̄ be the complement of S. For each polygon Pi, we assume without loss of generality that
zero degree is included in the set of orientations Oi, and its width

wi(o) = max{y | (x, y) ∈ Pi(o)} − min{y | (x, y) ∈ Pi(o)} (1)

satisfies wi(o) ≤ W for all orientations o ∈ Oi. We describe a polygon Pi placed at vi by the
Minkowski sum

Pi ⊕ vi = {p + vi | p ∈ Pi}. (2)

Then the irregular strip packing problem (ISP) is formally described as follows:

(ISP) minimize L
subject to int(Pi(oi) ⊕ vi) ∩ (Pj(oj) ⊕ vj) = ∅, (1 ≤ i < j ≤ n),

(Pi(oi) ⊕ vi) ⊆ C(W,L), (1 ≤ i ≤ n),
L ≥ 0,
oi ∈ Oi, (1 ≤ i ≤ n),
vi ∈ R2, (1 ≤ i ≤ n).

(3)

We describe a solution of ISP by lists of positions v = (v1, v2, . . . , vn) and orientations o =
(o1, o2, . . . , on) of all polygons Pi (1 ≤ i ≤ n). Note that a solution (v, o) uniquely determines a
placement of the polygons. The length L of the container C is determined by

L(v, o) = max{x | (x, y) ∈ (Pi(oi)⊕vi), 1 ≤ i ≤ n}−min{x | (x, y) ∈ (Pi(oi)⊕vi), 1 ≤ i ≤ n} (4)

3

and (Pi(oi) ⊕ vi) ⊆ C(W,L(v, o)) holds for all polygons Pi (1 ≤ i ≤ n) if and only if

W ≥ max{y | (x, y) ∈ (Pi(oi) ⊕ vi), 1 ≤ i ≤ n} − min{y | (x, y) ∈ (Pi(oi) ⊕ vi), 1 ≤ i ≤ n}. (5)

2.2 Overlap minimization problem

We use the overlap minimization problem (OMP) as a subproblem of ISP to find a feasible placement
(v, o) of given polygons for the container C with a given length LUB. In this problem, a solution
may have a number of overlapping polygons, and the total amount of overlap is penalized in such a
way that a solution with no penalty gives a feasible placement. Let fij(vi, vj , oi, oj) be a function
that measures the overlap amount of a pair of polygons Pi(oi) and Pj(oj) placed at vi and vj ,
respectively. The objective of OMP is to find a solution (v, o) that minimizes the total amount of
the overlap penalty F (v, o) =

∑
1≤i<j≤n fij(vi, vj , oi, oj) under the constraint that all polygons Pi

(1 ≤ i ≤ n) are placed inside the container C with given width W and length LUB. The problem
is formally described as follows:

(OMP(LUB)) minimize F (v, o) =
∑

1≤i<j≤n

fij(vi, vj , oi, oj)

subject to (Pi(oi) ⊕ vi) ⊆ C(W,LUB), (1 ≤ i ≤ n),
oi ∈ Oi, (1 ≤ i ≤ n),
vi ∈ R2, (1 ≤ i ≤ n).

(6)

In this paper, we use the directional penetration depth to define the overlap penalty function
fij(vi, vj , oi, oj) of a pair of polygons Pi and Pj . The penetration depth (also known as the intersec-
tion depth) is an important measure used in robotics, computer vision and so on (Agarwal et al.,
2000; Dobkin et al., 1993; Kim et al., 2004). The penetration depth δ(Pi(oi) ⊕ vi, Pj(oj) ⊕ vj) of
a pair of overlapping polygons Pi(oi) and Pj(oj) placed at vi and vj is defined as the minimum
translational distance to separate them. If they do not overlap, then their penetration depth is
zero. The formal definition of the penetration depth is given by

δ(Pi(oi) ⊕ vi, Pj(oj) ⊕ vj) = min{||u|| | int(Pi(oi) ⊕ vi) ∩ (Pj(oj) ⊕ vj ⊕ u) = ∅, u ∈ R2}, (7)

where || · || denotes the Euclidean norm.
The directional penetration depth ρ(Pi(oi)⊕vi, Pj(oj)⊕vj , d) of a pair of overlapping polygons

Pi(oi) and Pj(oj) placed at vi and vj is defined as the minimum translational distance in a given
direction d = (dx, dy) (||d|| = 1, d ∈ R2) to separate them (Dobkin et al., 1993). If they do not
overlap, then their directional penetration depth is zero. The formal definition of the directional
penetration depth is given by

ρ(Pi(oi) ⊕ vi, Pj(oj) ⊕ vj , d) = min{|t| | int(Pi(oi) ⊕ vi) ∩ (Pj(oj) ⊕ vj ⊕ td) = ∅, t ∈ R}. (8)

In this paper, we define the overlap penalty fij(vi, vj , oi, oj) for a pair of polygons Pi(oi) and Pj(oj)
placed at vi and vj by

fij(vi, vj , oi, oj) = min{ρ(Pi(oi) ⊕ vi, Pj(oj) ⊕ vj ,d) | d ∈ {ex, ey}}, (9)

where ex = (1, 0) and ey = (0, 1); i.e., they are unit vectors of the horizontal and vertical directions,
respectively.

Egeblad et al. (2007) used as the overlap penalty the intersection area for each pair of polygons
Pi and Pj . Imamichi et al. (2007) considered another formulation of OMP that allows in addition to
overlap of polygons the protrusion of polygons from the container. For this problem, they used the
penetration depth of each pair of polygons Pi and Pj as the overlap penalty, and the penetration
depth of Pi to the outer region C̄ as the protrusion penalty.

4

Reference points NFP(Pi , Pj)

Pi

Pj

Figure 2: The no-fit polygon NFP(Pi, Pj) of two convex polygons Pi and Pj .

3 Intersection test and no-fit polygon

One of the geometric techniques commonly used for the intersection test is the no-fit polygon (NFP),
which is often used in algorithms for ISP (Adamowicz and Albano, 1976; Albano and Sapuppo,
1980; Bennell et al., 2001; Gomes and Oliveira, 2002; Gomes and Oliveira, 2006; Imamichi et al.,
2007; Oliveira et al., 2000). It is also used for other applications such as robot motion planning and
image analysis, and has various names such as the Minkowski difference and the configuration-space
obstacle.

The no-fit polygon NFP(Pi, Pj) of an ordered pair of polygons Pi and Pj is defined by

NFP(Pi, Pj) = int(Pi) ⊕ (−Pj) = {u − w | u ∈ int(Pi), w ∈ Pj}, (10)

and has the following important properties:

• Pj ⊕ vj overlaps with Pi ⊕ vi if and only if vj − vi ∈ NFP(Pi, Pj).

• Pj ⊕ vj touches Pi ⊕ vi if and only if vj − vi ∈ ∂NFP(Pi, Pj).

• Pi ⊕ vi and Pj ⊕ vj are separated if and only if vj − vi ̸∈ cl(NFP(Pi, Pj)),

where ∂S and cl(S) denote the boundary and the closure of a polygon S, respectively. Hence
the problem of checking whether a pair of polygons overlap or not becomes an easier problem of
checking whether a point is included in a polygon or not.

Let pi and pj be the number of edges of non-convex polygons Pi and Pj , respectively. Although
it takes O(p2

i p
2
j) time to compute NFP(Pi, Pj) in the worst case (de Berg et al., 2000), several

practical algorithms to compute it have been proposed (Bennell and Dowsland, 2001; Burke et al.,
2007; Dean et al., 2006). When polygons Pi and Pj are both convex, ∂NFP(Pi, Pj) can be computed
by the following simple procedure: We first place the reference point of the polygon Pi at the origin
(0, 0), and slide the other polygon Pj around the polygon Pi having it keep touching with the
polygon Pi. Then the trajectory of the reference point of the polygon Pj is ∂NFP(Pi, Pj). This
procedure takes O(pi+pj) time. Figure 2 shows an example of NFP(Pi, Pj) for two convex polygons.
Even if polygons Pi and Pj are non-convex, they can often be decomposed into a small number
(i.e., O(1)) of convex polygons in practical applications, and in such cases, NFP(Pi, Pj) can still be
computed in O(pi + pj) time.

We can also check whether a polygon Pi protrudes from the container C or not similarly by
using

NFP(C̄, Pi) = int(C̄) ⊕ (−Pi) = {v − w | v ∈ R2 \ C,w ∈ Pi}, (11)

which is the complement of a rectangle whose boundary is the trajectory of the reference point of
the polygon Pi when we slide it inside the container C having it keep touching with the container C.

5

To check whether Pi ⊕ vi protrudes from the container C or not, Gomes and Oliveira (2002; 2006)
introduced the inner-fit rectangle IFR(C,Pi), which is equivalent to NFP(C̄, Pi) (i.e., polygon Pi⊕vi

is contained in C if and only if vi ∈ IFR(C,Pi)).

4 Outline of the entire algorithm for the irregular strip packing
problem

In this section, we give the outline of our algorithm for ISP, which we call the fast iterative transla-
tion search (FITS). It first generates an initial feasible solution (v, o) by a construction algorithm,
which we call CONSTRUCT (it is explained in Section 5), and computes the container length L so
that it contains all polygons Pi (1 ≤ i ≤ n) while keeping both vertical sides touching some poly-
gons. The algorithm then repeats the following procedures until the time limit is reached or the
best feasible solution is proved to be optimal.

It first changes the container length L by shrinking or extending the right side of the container C,
where the rates of shrinkage and extension are controlled by parameters rdec and rinc, respectively.
If the current solution (v, o) is feasible, then it shrinks the container length L to (1 − rdec)L
and relocates protruding polygons Pi at random positions in the container C(W,L); otherwise it
extends the container length L to (1 + rinc)L. If there is at least one overlapping pair of polygons
in the solution, then it tries to resolve overlap by a variant of the guided local search algorithm
for the overlap minimization problem OMP(L), which we call MINIMIZEOVERLAP. The details of
MINIMIZEOVERLAP is explained in Section 6. Algorithm FITS uses the above basic rule with slight
modifications so that the current container length L satisfies LLB ≤ L < L∗ in the search, where L∗

is the minimum container length of feasible placements obtained so far, and LLB is a lower bound
of L defined by

LLB = max
{∑n

i=1 (area of Pi)
W

, max
1≤i≤n

lmin
i

}
, (12)

where

lmin
i = min

o∈Oi

li(o), (13)

li(o) = max{x | (x, y) ∈ Pi(o)} − min{x | (x, y) ∈ Pi(o)}. (14)

Figure 3 illustrates the behavior of algorithm FITS. The algorithm is formally described as follows.

Algorithm FITS

Input: A list of polygons P = (P1, P2, . . . , Pn) with a list of their possible orientations O =
(O1, O2, . . . , On) and a rectangular container C with a width W.

Output: The container length L, and lists of positions v = (v1, v2, . . . , vn) and orientations o =
(o1, o2, . . . , on) of all polygons Pi (1 ≤ i ≤ n).

Step 1: Generate an initial solution (v, o) by CONSTRUCT, and set LLB by (12).

Step 2: If the current solution (v, o) is feasible, then set L ← L(v, o), L∗ ← L and (v∗, o∗) ←
(v, o); otherwise set L ← (1 + rinc)L. If the time limit is reached or L∗ = LLB holds, then
output L∗ and (v∗,o∗) and halt.

Step 3: If L ≥ L∗ holds, then set L ← max{(1 − rdec)L∗, LLB} and (v, o) ← (v∗, o∗), and relocate
protruding polygons at random positions in the container C(W,L).

Step 4: If the current solution (v, o) is infeasible, then compute a new solution (v′, o′) by
MINIMIZEOVERLAP(L, v, o) and set (v, o) ← (v′, o′). Return to Step 2.

6

...

initial solution

shrink

resolve overlap

shrink

Figure 3: The behavior of algorithm FITS.

5 Construction algorithm

We present a construction algorithm called CONSTRUCT that places polygons one by one into the
container according to a specified order, where the position of each polygon is determined by
iterative translations to the left and to the bottom. The algorithm first sets orientations oi ∈ Oi of
all polygons Pi (1 ≤ i ≤ n) so as to minimize their lengths li(oi) and sorts them in the descending
order of their lengths. Let the container length L be sufficiently long (e.g., L =

∑n
i=1 li(oi)). It then

locates all polygons Pi (1 ≤ i ≤ n) one by one into the container C according to the above order.
It first places each polygon Pi at the top right corner of C and then translates it to the left and
to the bottom alternately; each time translating Pi to the farthest feasible position while allowing
to pass through the polygons already placed. Figure 4 shows an example of this procedure. The
algorithm is formally described as follows.

Algorithm CONSTRUCT

Input: A list of polygons P = (P1, P2, . . . , Pn) with a list of their possible orientations O =
(O1, O2, . . . , On) and a rectangular container C with a width W.

Output: A feasible solution (v, o).

Step 1: Set the orientation oi of each polygon Pi (1 ≤ i ≤ n) to the one that satisfies li(oi) = lmin
i

(see (13)), and sort the polygons in the descending order of their lengths lmin
i . Let σ(k) be

the kth polygon in this order. Set k ← 1.

Step 2: If k > n holds, then output (v, o) and halt; otherwise set d ← ex and initialize the
position vσ(k) of the polygon Pσ(k) so that Pσ(k) is placed at the top right corner of C.

Step 3: Find the feasible position v′
σ(k) = vσ(k) + td (t ≤ 0) of Pσ(k) with the minimum t. If

v′
σ(k) = vσ(k) holds, then set k ← k + 1 and return to Step 2; otherwise set vσ(k) ← v′

σ(k).

Step 4: If d = ex holds, then set d ← ey; otherwise set d ← ex. Return to Step 3.

We now give the details of the core part of CONSTRUCT, where we assume that σ(k) = k
(1 ≤ k ≤ n) for simplicity. Let polygons P1, P2, . . . , Pk−1 be already placed in the container C, and
let vk be the current position of Pk to be translated. We now explain how the algorithm finds the

7

Figure 4: An example of alternating translations in algorithm CONSTRUCT.

IFR(C, Pk)

Pj

Pkvk

vk

NFP(Pj , Pk)

vk -vj

Pk

Pj

vk

Figure 5: Finding the left-most feasible position of a polygon Pk.

new feasible position v′
k = vk + td (t ≤ 0) with the minimum t when it is translated to the left (i.e.,

d = ex). The algorithm for d = ey is similar and is omitted. Among all positions on the half-line
vk + td (t ≤ 0), let

N−
0 = {t | vk + td ∈ IFR(C,Pk), t ≤ 0} (15)

be the set of valid t (i.e., Pk is contained in C), and for j = 1, 2, . . . , k − 1, let

N−
j = {t | vk + td − vj ̸∈ NFP(Pj , Pk), t ≤ 0} (16)

be the set of t inducing no overlap with polygon Pj . Then, the left-most feasible position of the
polygon Pk is given by the minimum t ∈

⋂k−1
j=0 N−

j . The computation time for this is O(qk log qk)
if it is implemented naively, where

qk =
k−1∑
j=1

qkj (17)

and qkj is the number of edges of no-fit polygon NFP(Pj , Pk). It can be reduced to O(qk log k) time
using a sorted list of intervals of t for each set N−

j (1 ≤ j ≤ k− 1) that is computed in O(qkj) time
using trapezoidal partition of no-fit polygon NFP(Pj , Pk) (it is explained in Section 6.2). Figure 5
shows an example of the above procedure.

6 Local search algorithm for overlap minimization

6.1 Outline of the local search algorithm

The local search (LS) is a basic component of metaheuristics, which starts from an initial solution
and repeatedly replaces the current solution with a better solution in its neighborhood until no
better solution is found in the neighborhood.

We first explain the neighborhood of our LS for OMP. Let (v, o) be the current solution. Its
neighborhood NB(v, o) is defined as the set of solutions obtainable by setting a new orientation

8

vk

vk’

Figure 6: An example of the operation SEARCHNEIGHBOR.

o′k ∈ Ok of each Pk (1 ≤ k ≤ n) and applying an operation called SEARCHNEIGHBOR to find a new
position v′

k.
Before presenting the local search algorithm, we explain how SEARCHNEIGHBOR computes a

solution. The quality of each solution (v,o) is measured by the following weighted overlap penalty
function

F̃ (v, o) =
∑

1≤i<j≤n

wij · fij(vi,vj , oi, oj), (18)

where wij > 0 are penalty weights (it is explained in Section 6.3 how to determine wij). For a
polygon Pk(o′k), SEARCHNEIGHBOR finds a new position v′

k in C such that the following weighted
overlap penalty function

F̃k(v′
k, o

′
k) =

∑
1≤j≤n,j ̸=k

wkj · fkj(v′
k, vj , o

′
k, oj) (19)

is as small as possible. For this, SEARCHNEIGHBOR repeats translating Pk(o′k) in horizontal and
vertical directions alternately until no better position is found in either direction. Figure 6 illustrates
how SEARCHNEIGHBOR proceeds. For each translation of the polygon Pk(o′k) in a specified direction
d ∈ {ex, ey}, let

N0 = {t | vk + td ∈ IFR(C,Pk(o′k)), t ∈ R} (20)

be the set of valid t (i.e., Pk(o′k) is contained in C) among all positions on the line vk + td (t ∈ R).
The SEARCHNEIGHBOR finds a new valid position v′

k = vk + td (t ∈ N0) that minimizes the overlap
penalty function F̃k(vk + td, o′k) while breaking ties by preferring the nearest one from the current
position vk. The algorithm is formally described as follows.

Algorithm SEARCHNEIGHBOR(Pk, o
′
k)

Input: A list of polygons P = (P1, P2, . . . , Pn) and a rectangular container C with a width W and
a length L. A solution (v, o) and a polygon Pk to be translated and its new orientation o′k.

Output: The new position v′
k of polygon Pk(o′k).

Step 1: Set v′
k ← vk. Find the valid position v′′

k = v′
k + tex (t ∈ N0) of Pk(o′k) that minimizes the

overlap penalty function F̃k(v′
k + tex, o′k). If F̃k(v′′

k , o′k) < F̃k(v′
k, o

′
k) holds, then set v′

k ← v′′
k .

Set d ← ey.

Step 2: Find the valid position v′′
k = v′

k +td (t ∈ N0) of Pk(o′k) that minimizes the overlap penalty
function F̃k(v′

k + td, o′k). If F̃k(v′′
k , o′k) < F̃k(v′

k, o
′
k) holds, then set v′

k ← v′′
k ; otherwise output

v′
k and halt.

Step 3: If d = ex holds, then set d ← ey; otherwise set d ← ex. Return to Step 2.

9

We now give the outline of our LS for OMP, which we call IMPROVE. The algorithm starts
from an initial solution (v, o) with some overlapping polygons, and repeatedly replaces the current
solution (v, o) with a better solution (v′, o′) (obtained by SEARCHNEIGHBOR) in the neighborhood
NB(v, o) with the first admissible move strategy. That is, if the algorithm finds an improved
solution (v′,o′) ∈ NB(v,o) with F̃ (v′, o′) < F̃ (v, o), then it immediately replaces the current
solution (v,o) with (v′, o′). If no overlapping polygon exists in the current solution (v, o) or no
better solution is found in the neighborhood NB(v, o), then it outputs the current solution (v, o)
(as a locally optimal solution) and the best solution (v∗, o∗) obtained so far, measured by the
original overlap penalty function F , and halts.

To facilitate the efficiency of IMPROVE, we incorporate the fast local search strategy (Voudouris
and Tsang, 1999). This strategy decomposes the neighborhood into a number of sub-neighborhoods,
which are labeled with active or inactive depending on whether they are being searched or not; i.e.,
it skips the evaluations of all neighbor solutions in inactive sub-neighborhoods.

We define the sub-neighborhood NBk(v, o) (1 ≤ k ≤ n) of the current solution (v, o) as the set of
solutions obtainable by trying each orientation o′k ∈ Ok and applying SEARCHNEIGHBOR to Pk. The
algorithm first sets all sub-neighborhoods NBk(v,o) (1 ≤ k ≤ n) to be active. If no improvement
has been made in an active sub-neighborhood NBk(v, o), then the algorithm inactivates it. If it
finds an improved neighbor solution (v′, o′) with F̃ (v′, o′) < F̃ (v, o) in an active sub-neighborhood
NBk(v, o) (i.e., by moving Pk), then it activates all sub-neighborhoods NBj(v, o) of those Pj

(j ̸= k) which overlap with Pk before or after moving Pk. The algorithm IMPROVE is formally
described as follows, where A denotes the set of indices k (1 ≤ k ≤ n) corresponding to the active
sub-neighborhoods NBk(v,o), and (ṽ, õ) denotes the locally optimal solution measured by the
weighted overlap penalty function F̃ .

Algorithm IMPROVE(L,v,o)

Input: A list of polygons P = (P1, P2, . . . , Pn) with a list of their possible orientations O =
(O1, O2, . . . , On) and a rectangular container C with a width W and a length L. A solution
(v, o).

Output: The best solution (v∗, o∗) by the measure of F , and the best solution (ṽ, õ) by the
measure of F̃ .

Step 1: Set (ṽ, õ) ← (v,o), (v∗, o∗) ← (v, o) and A ← {1, 2, . . . , n}.

Step 2: If A = ∅ holds, then output (v∗, o∗) and (ṽ, õ) and halt; otherwise select an index k ∈ A
and set O ← Ok.

Step 3: Apply SEARCHNEIGHBOR(Pk, o′k) for an orientation o′k ∈ O to obtain a neighbor solution
(v′,o′). If F (v′, o′) < F (v∗, o∗) holds, then set (v∗, o∗) ← (v′, o′). If F̃ (v′, o′) < F̃ (ṽ, õ)
holds, then set (ṽ, õ) ← (v′,o′) and go to Step 4; otherwise set O ← O \{o′k}. If O = ∅ holds,
then set A ← A \ {k} and return to Step 2; otherwise return to Step 3.

Step 4: If F (v∗, o∗) = 0 (i.e., no overlapping polygon exists), then output (v∗, o∗) and (ṽ, õ) and
halt; otherwise set A ← A ∪ {j} for all polygons Pj (j ̸= k) overlapping with the polygon Pk

before or after applying SEARCHNEIGHBOR(Pk, o′k) and return to Step 2.

6.2 Fast neighborhood search

In this section, we describe the core part of SEARCHNEIGHBOR, i.e., how it finds a new position when
a polygon Pk(o′k) is translated in a specified direction d. Recall that the new position v′

k = vk + td

minimizes the overlap penalty function F̃k(vk + td, o′k) while the polygon is in the container C.
We consider below the case when Pk(o′k) is translated in the horizontal direction (i.e., d = ex).
The case of d = ey is similar and is omitted. By definition (19), the overlap penalty function

10

x

yk
min

yk
max

yj
min

yj
max

Pk (ok)

Pj (oj)

y

’

Figure 7: Detecting the overlap between Pk(o′k) and Pj(oj) when Pk(o′k) moves horizontally.

F̃k(vk + td, o′k) is decomposed into fkj(vk + td, vj , o
′
k, oj) for pairs of polygons Pk(o′k) and Pj(oj)

(j ̸= k). Let
Ikj = {t | vk + td − vj ∈ NFP(Pj(oj), Pk(o′k))} (21)

be the set of positions (in terms of t) of Pk(o′k) such that it overlaps with polygon Pj(oj). If
Ikj = ∅ holds, then the overlap penalty fkj(vk + td, vj , o

′
k, oj) is zero for all t ∈ R. The algorithm

first determines whether Ikj = ∅ or not by checking the overlap between projections of Pk(o′k)
and Pj(oj) onto the y-axis: Ikj = ∅ holds if and only if the intersection of two intervals satisfies
(ymin

k , ymax
k)∩ (ymin

j , ymax
j) = ∅, where ymin

l and ymax
l (1 ≤ l ≤ n) of Pl(ol) at location vl are defined

by

ymin
l = min{y | (x, y) ∈ Pl(ol) ⊕ vl}, (22)

ymax
l = max{y | (x, y) ∈ Pl(ol) ⊕ vl}, (23)

respectively. Figure 7 illustrates an example of detecting the overlap between Pk(o′k) and Pj(oj)
when Pk(o′k) moves horizontally (in this example projections of two polygons overlap and Ikj ̸= ∅
holds).

We now consider how to compute the overlap penalty function fij(vk + td,vj , o
′
k, oj) (defined

in (9)) for a given t, where Ikj ̸= ∅ is assumed. See Figure 8. If t ̸∈ Ikj holds, then fkj(vk +
td, vj , o

′
k, oj) = 0. If t ∈ Ikj holds, then the overlap penalty fkj(vk + td,vj , o

′
k, oj) is decomposed

into the horizontal and vertical penetration depths; furthermore, the vertical penetration depth
is decomposed into the upward and downward penetration depths. Figure 8 (b) illustrates the
computation of these three directional penetration depths. We denote the horizontal penetration
depth for a given t by

ρH
kj(vk + td, vj , o

′
k, oj) = min{|s| | int(Pj(oj) ⊕ vj) ∩ (Pk(o′k) ⊕ (vk + td) ⊕ sex) = ∅}, (24)

where int(S) denotes the interior of a polygon S. The right hand side is equivalent to the minimum
horizontal distance |s| from the point vk + td − vj to the nearest boundary of no-fit polygon
∂NFP(Pj(oj), Pk(o′k)).

The set Ikj is in general decomposed into a number of separated intervals (tmin
kj1 , tmax

kj1), (tmin
kj2 , tmax

kj2),
. . . , (tmin

kjmkj
, tmax

kjmkj
) (since polygons may not be convex), where mkj(≤

qkj

2) is the number of distinct
intervals belonging to Ikj . The Ikj in the example of Figure 8 (a) is decomposed into two intervals.
If the value t belongs to an interval (tmin

kjl , tmax
kjl), then ρH

kj(vk + td,vj , o
′
k, oj) is computed by

ρH
kj(vk + td, vj , o

′
k, oj) = min{t − tmin

kjl , tmax
kjl − t}. (25)

We also denote upward and downward penetration depths by

ρU
kj(vk + td, vj , o

′
k, oj) = min{|s| | int(Pj(oj) ⊕ vj) ∩ (Pk(o′k) ⊕ (vk + td) ⊕ sey) = ∅, s ≥ 0}, (26)

11

NFP(Pj (oj) , Pk (ok))

vk -vj

t

t

t

horizontal

downward

upward

ρkj
H

ρkj
U

ρkj
D

0

0

’

(a)

(b)

(c)

t

overlap penalty

0

fkj

tkj1
min

tkj1
max t

tkj2
min

tkj2
max

0

Figure 8: Computing the overlap penalty function fkj(vk + td, vj , o
′
k, oj) when Pk(o′k) moves hori-

zontally.

ρD
kj(vk + td, vj , o

′
k, oj) = min{|s| | int(Pj(oj) ⊕ vj) ∩ (Pk(o′k) ⊕ (vk + td) ⊕ sey) = ∅, s ≤ 0}, (27)

respectively, which is equivalent to the minimum distances |s| from the point vk + td − vj to
the nearest boundary of no-fit polygon ∂NFP(Pj(oj), Pk(o′k)) in upward and downward directions,
respectively.

The algorithm first divides ∂NFP(Pj(oj), Pk(o′k)) into the upper and lower parts by the hori-
zontal line vk + td−vj (t ∈ R) (see Figure 8 (a)). It then computes ρU

kj(vk + td, vj , o
′
k, oj) by taking

the lowest edges of ∂NFP(Pj(oj), Pk(o′k)) above the horizontal line for t ∈ Ikj ; it also computes
ρD

kj(vk + td, vj , o
′
k, oj) by taking the negative of the closest edges of ∂NFP(Pj(oj), Pk(o′k)) below

the horizontal line for t ∈ Ikj . These are illustrated in Figure 8 (b). The overlap penalty function
fkj(vk + td, vj , o

′
k, oj) for t ∈ Ikj is eventually computed by the following formula:

fkj(vk + td, vj , o
′
k, oj) = min{ρH

kj(vk + td, vj , o
′
k, oj), ρU

kj(vk + td, vj , o
′
k, oj),

ρD
kj(vk + td, vj , o

′
k, oj)},

(28)

which is given by the lower envelope of the three directional penetration depths ρH
kj(vk+td, vj , o

′
k, oj),

ρU
kj(vk + td, vj , o

′
k, oj) and ρD

kj(vk + td, vj , o
′
k, oj) (Figure 8 (c)).

The horizontal penetration depth ρH
kj(vk + td,vj , o

′
k, oj) is a piecewise linear function over

the sorted lists of intervals (tmin
kjl , tmax

kjl) (1 ≤ l ≤ mkj) of Ikj along the t-axis. The upward and
downward penetration depths ρU

kj(vk + td, vj , o
′
k, oj) and ρD

kj(vk + td, vj , o
′
k, oj) are also piecewise

linear functions over the sorted lists of edges of no-fit polygon NFP(Pj(oj), Pk(o′k)) along the t-
axis. The computation time of each directional penetration depth is accordingly O(qkj log qkj) if
it is implemented naively. However, as explained below, it can be reduced to O(qkj) by using two
trapezoidal partitions of no-fit polygon NFP(Pj(oj), Pk(o′k)).

12

t

t

t

horizontal

downward

upward

ρkj
H

ρkj
U

ρkj
D

0

0

0

T1

T2
T3

T5

T7

T8

T4

T6

T1 T2 T3 T5T7 T8T4 T6(), , , , , , ,

T2

T3

T4
T5

T6

T7

T8

T1 T2 T3 T4 T5 T6 T7T8(),, , , , , ,

h

T1
v

h

h

h

h

h

h

h

h h h h h h h h

v

v v

v

v

v

v

v v v v v v v v

T h
=

T v
=

(b)

(c)

NFP(Pj (oj) , Pk (ok))

vk -vj

’

(a)

tkj1
min

tkj1
max t

tkj2
min

tkj2
max

Figure 9: Computing directional penetration depths ρH
kj(vk + td, vj , o

′
k, oj), ρU

kj(vk + td, vj , o
′
k, oj)

and ρD
kj(vk + td, vj , o

′
k, oj) using two trapezoidal partitions T h and T v of a no-fit polygon.

The computation of three directional penetration depths ρH
kj(vk+td, vj , o

′
k, oj), ρU

kj(vk+td, vj , o
′
k, oj)

and ρD
kj(vk + td,vj , o

′
k, oj) is illustrated in Figure 9. The algorithm first computes the trapezoidal

partition T h = {T h
1 , T h

2 , . . . , T h
rh
} of NFP(Pj(oj), Pk(o′k)) with horizontal lines, which we call the

horizontal partition, and another trapezoidal partition T v = {T v
1 , T v

2 , . . . , T v
rv
} with vertical lines,

which we call the vertical partition. Each T h
i (resp., T v

i) is a trapezoid with two parallel horizontal
(resp., vertical) lines, and the number of trapezoids rh (resp., rv) is at most the number of edges
qkj of NFP(Pj(oj), Pk(o′k)). These two partitions are illustrated in Figure 9 (b). We note that
T h satisfies

⋃rh
i=1 T h

i = NFP(Pj(oj), Pk(o′k)) and T h
a ∩ T h

b = ∅ (1 ≤ a < b ≤ rh), and T v satisfies
analogous conditions. The computation time of NFP(Pj(oj), Pk(o′k)) is O(qkj) (see Section 3), and
that of its trapezoidal partitions is also O(qkj) because it can be done in linear time to the number
of edges of NFP(Pj(oj), Pk(o′k)) (Chazelle, 1991).

We define a partial order ≼x for any pair of trapezoids T h
a and T h

b as follows: T h
a ≼x T h

b holds if
and only if (i) there exists a horizontal line w + tex (w ∈ R2, t ∈ R) crossing both T h

a and T h
b , and

(ii) min{t | w + tex ∈ T h
a } ≤ min{t | w + tex ∈ T h

b } holds. This partial order ≼x can be defined
for any pair of T v

a and T v
b in a similar manner. For each of T h and T v, the algorithm extends ≼x

to a total order ≼∗
x by topological sorting, which is called a linear extension of ≼x. We note that

the above computation is done only once as preprocessing for each no-fit polygon.
The algorithm then computes these three directional penetration depths using the trapezoidal

partitions T h and T v of NFP(Pj(oj), Pk(o′k)). See Figure 9 (c). For the horizontal penetration depth
ρH

kj(vk + td, vj , o
′
k, oj), the algorithm first constructs the list of intervals (tmin

kj1 , tmax
kj1), (tmin

kj2 , tmax
kj2), ...,

(tmin
kjmkj

, tmax
kjmkj

) of Ikj by scanning intersections of the horizontal line vk + td − vj (t ∈ R) with
trapezoids T h

i (1 ≤ i ≤ rh), according to the total order ≼∗
x on {T h

i }. This computation can be
done in O(qkj) time because checking the intersection between horizontal line vk + td− vj (t ∈ R)

13

and a trapezoid T h
i is done in O(1) time. It then computes function (25) on all the intervals. For

the upward penetration depth ρU
kj(vk + td, vj , o

′
k, oj), it scans all the trapezoids T v

i (1 ≤ i ≤ rv),
which cross the horizontal line vk + td−vj (t ∈ R) according to the total order ≼∗

x on {T v
i }. It then

computes function (26) by taking the upper edge of each crossing trapezoid for t ∈ Ikj . Similarly,
it computes the downward penetration depth ρD

kj(vk + td, vj , o
′
k, oj). In this way, the computation

for each directional penetration depth is done in O(qkj) time. Then the overlap penalty function
fkj(vk + td, vj , o

′
k, oj) can be computed in O(qkj) time by taking the lower envelope of these three

directional penetration depths along the t-axis.
Finally, the algorithm computes the overlap penalty function F̃k(vk + td, o′k) of (19) by sum-

ming up the overlap penalty functions fkj(vk + td, vj , o
′
k, oj) for all polygons Pj(oj) (j ̸= k) sat-

isfying Ikj ̸= ∅. Note that the number of such Pj(oj) is O(n). The time for this computation
is O((

∑
j qkj) log n) = O(qk log n), since it is carried out on the sorted list of O(qk) breakpoints

obtained by merging O(n) lists, each keeping O(qkj) number of already sorted breakpoints.

6.3 Guided local search

It is often the case that LS alone may not attain a sufficiently good solution. To improve the
situation, many variants have been developed, and their framework is called metaheuristics. The
guided local search is one of the representative metaheuristic approaches (Voudouris and Tsang,
1999), which repeatedly applies local search algorithm while updating the penalty weights of the
objective function adaptively and resumes the search from the previous locally optimal solution.

To solve OMP, we develop a guided local search algorithm based on the weighting method
(Selman and Kautz, 1993), which we call MINIMIZEOVERLAP. The algorithm starts from an initial
solution (v, o) with some overlapping polygons, where the penalty weights wij are initialized to 1.0.
Whenever IMPROVE stops at a locally optimal solution (v, o), the algorithm updates the penalty
weights wij by the following rule. If a pair of polygons Pi(oi) and Pj(oj) placed at vi and vj

overlaps (i.e., fij(vi, vj , oi, oj) > 0), the algorithm increases the penalty weight wij as follows:

wij ← wij +
fij(vi, vj , oi, oj)

max
1≤k<l≤n

fkl(vk, vl, ok, ol)
. (29)

By applying (29) repeatedly, the current solution (v, o) becomes no longer locally optimal in the
updated overlap penalty function, and it resumes the search from the current solution.

The algorithm MINIMIZEOVERLAP is formally described as follows, where iter denotes the num-
ber of calls to IMPROVE after the last improvement of the best solution, max iter (an input param-
eter given by users) specifies the upper bound on iter, and (v∗, o∗) is the best solution obtained so
far measured by the original overlap penalty function F .

Algorithm MINIMIZEOVERLAP(L,v, o)

Input: A list of polygons P = (P1, P2, . . . , Pn) with a list of their possible orientations O =
(O1, O2, . . . , On) and a rectangular container C with a width W and a length L. A solution
(v, o).

Output: The best solution (v∗, o∗) by the measure of F .

Step 1: Set iter ← 0 and initialize wij ← 1.0 for all pairs of polygons Pi and Pj (1 ≤ i, j ≤ n).
Set (ṽ, õ) ← (v,o) and (v∗,o∗) ← (v,o).

Step 2: Apply IMPROVE(L, ṽ, õ) to obtain the best solution (v′, o′) in F and the locally optimal
solution (ṽ′, õ′) in F̃ . Set (ṽ, õ) ← (ṽ′, õ′).

Step 3: Update the penalty weights wij for all overlapping pairs of polygons Pi and Pj (1 ≤ i, j ≤
n) by (29).

14

Table 1: The benchmark instances of ISP (cited from Gomes and Oliveira (2006)).

Instance #shapes #pieces avg.#vertices degrees
Albano 8 24 7.25 0,180
Dagli 10 30 6.30 0,180
Dighe1 16 16 3.87 0
Dighe2 10 10 4.70 0
Fu 12 12 3.58 0,90,180,270
Jakobs1 25 25 5.60 0,90,180,270
Jakobs2 25 25 5.36 0,90,180,270
Mao 9 20 9.22 0,90,180,270
Marques 8 24 7.37 0,90,180,270
Shapes0 4 43 8.75 0
Shapes1 4 43 8.75 0,180
Shapes2 7 28 6.29 0,180
Shirts 8 99 6.63 0,180
Swim 10 48 21.90 0,180
Trousers 17 64 5.06 0,180

Step 4: If F (v′, o′) = 0 holds, then set (v∗, o∗) ← (v′, o′), output (v∗, o∗) and halt. If F (v′, o′) <
F (v∗, o∗) holds, then set (v∗, o∗) ← (v′, o′) and iter ← 0 and return to Step 2.

Step 5: If iter ≥ max iter holds, then output (v∗, o∗) and halt; otherwise set iter ← iter + 1 and
return to Step 2.

7 Computational results

In this section, we report computational results for 15 well known benchmark instances, which
are available online at EURO special interest group on cutting and packing (ESICUP) web site1.
Table 1 summarizes the information of the instances. The second column “#shapes” shows the
number of different shapes, the third column “#pieces” shows the total number of polygons, the
fourth column “avg.#vertices” shows the average number of the vertices of different shapes, and
the fifth column “degrees” shows the permitted orientations.

We tested our algorithm FITS on an IBM-compatible personal computer (Intel Xeon 2.8GHz,
2GB memory) and compared our results with those reported by Burke et al. (2006) (denoted
as “BLF”), Gomes and Oliveira (2006) (denoted as “SAHA”), Egeblad et al. (2007) (denoted as
“2DNest”), and Imamichi et al. (2007) (denoted as “ILSQN”). Table 2 shows the best efficiency
in % of the algorithms and the average efficiency in % of the algorithms except for BLF, where
the efficiency of a solution (v,o) with the container length L = L(v, o) is measured by the ratio∑n

i=1 (area of Pi)/WL. The best results among these algorithms are marked with asterisks. Table 3
shows the computational environment and the computation time (in seconds) of the algorithms.

We set the input parameters rdec = 0.02, rinc = 0.005 and max iter = 200 for our algorithm.
We executed our algorithm 10 times for each instance with the time limit of 1200 seconds for each
run. Burke et al. (2006) tested four variations of their algorithm, and each variation were run 10
times. Their results in Table 2 are the best results of 40 runs. They did not use time limit but
stopped their algorithm by other criteria, and their computation time in Table 3 is the time spent
to find the best solution reported in Table 2 in the run that found it (i.e., the time for only one
run is reported). Since they tested their algorithm for instances Albano, Dighe1 and Dighe2 with

1ESICUP: http://paginas.fe.up.pt/∼esicup/

15

Table 2: The efficiency in % of the solutions obtained by FITS and other algorithms.

Instance BLF SAHA 2DNest ILSQN FITS
best best avg. best avg. best avg. best avg.

Albano – 87.43 84.70 87.44 86.96 ∗88.16 87.14 87.56 ∗87.28
Dagli 83.7 87.15 85.38 85.98 85.31 ∗87.40 ∗85.80 86.35 85.71
Dighe1 – ∗100.00 82.13 99.86 93.93 99.89 90.49 99.89 ∗99.84
Dighe2 – ∗100.00 84.17 99.95 93.11 99.99 84.21 ∗100.00 ∗99.99
Fu 86.9 90.96 87.17 ∗91.84 ∗90.93 90.67 87.57 91.23 90.31
Jakobs1 82.6 78.89 75.79 89.07 ∗88.90 86.89 84.78 ∗89.09 88.74
Jakobs2 74.8 77.28 74.66 80.41 80.28 ∗82.51 ∗80.50 80.84 80.26
Mao 79.5 82.54 80.72 ∗85.15 82.67 83.44 81.31 83.73 ∗82.79
Marques 86.5 88.14 86.88 89.17 88.73 89.03 86.81 ∗89.21 ∗88.80
Shapes0 60.5 66.50 63.20 67.09 65.42 ∗68.44 ∗66.49 66.50 66.20
Shapes1 66.5 71.25 68.63 73.84 71.74 73.84 ∗72.83 ∗73.88 72.60
Shapes2 77.7 83.60 81.41 81.21 79.89 ∗84.25 ∗81.72 81.68 80.87
Shirts 84.6 86.79 85.67 86.33 85.73 ∗88.78 ∗88.12 86.92 86.13
Swim 68.4 74.37 72.28 71.53 70.27 ∗75.29 ∗74.62 74.54 72.97
Trousers 88.5 ∗89.96 89.02 89.84 ∗89.29 89.79 88.69 89.40 88.78

different set of orientations from others, we do not show their results on these instances. Gomes
and Oliveira (2006) ran their algorithm 20 times for each instance and the best and average results
of 20 runs are shown in Table 2. They did not use time limit but stopped their algorithm by other
criteria, and the average computation time of 20 runs is shown in Table 3. Egeblad et al. (2007)
and Imamichi et al. (2007) executed their algorithms 20 times and 10 times for each instance,
respectively, where they set the time limit of each run as shown in Table 3.

Our algorithm FITS obtained the best results for four and five instances out of 15 instances in the
best and average efficiencies of all runs, respectively, within a reasonable amount of computation
time. It also obtained the results with almost equivalent efficiency to the best results for some
instances. The computation time of BLF is much shorter than that of FITS, but FITS obtained
better results in efficiency than BLF for all instances. Figure 10 shows the best placements obtained
by FITS for these instances.

8 Conclusion

In this paper, we proposed a heuristic algorithm for the irregular strip packing problem (ISP).
As a core subproblem to solve ISP, we presented an overlap minimization problem (OMP) whose
objective is to place all polygons into a container with fixed width and length so that the total
amount of overlap between polygons is made as small as possible. We proposed to use directional
penetration depths to measure the amount of overlap between a pair of polygons, and presented an
efficient algorithm to find a position with the minimum overlap penalty for each polygon when it is
translated in a specified direction. Based on this, we developed a local search algorithm for OMP
using the iterative translation search that translates a polygon in horizontal and vertical directions
alternately, and then we incorporated it into a variant of the guided local search algorithm. Com-
putational results show that our algorithm is quite promising and improves the best known values
of some well known benchmark instances.

16

Table 3: Computation time of FITS and other algorithms (in seconds).

Instance BLF SAHA 2DNest ILSQN FITS
Pentium4 Pentium4 Pentium4 Xeon Xeon

2.0GHz 2.4GHz 3.0GHz 2.8GHz 2.8GHz
4 × 10 runs 20 runs 20 runs 10 runs 10 runs

best avg. limit limit limit
Albano – 2257 600 1200 1200
Dagli 188.80 5110 600 1200 1200
Dighe1 – 83 600 600 1200
Dighe2 – 22 600 600 1200
Fu 20.78 296 600 600 1200
Jakobs1 43.49 332 600 600 1200
Jakobs2 81.41 454 600 600 1200
Mao 29.74 8245 600 1200 1200
Marques 4.87 7507 600 1200 1200
Shapes0 21.33 3914 600 1200 1200
Shapes1 2.19 10,314 600 1200 1200
Shapes2 21.00 2136 600 1200 1200
Shirts 58.36 10,391 600 1200 1200
Swim 607.37 6937 600 1200 1200
Trousers 756.15 8588 600 1200 1200

Acknowledgment

This research was partially supported by Grant-in-Aid for Scientific Research from the Ministry of
Education, Culture, Sports, Science and Technology of Japan.

References

Adamowicz, M., Albano, A, 1976. Nesting two-dimensional shapes in rectangular modules.
Computer-Aided Design 8, 27–33.

Agarwal, P. K., Guibas, L. J., Har-Peled, S., Rabinovitch, A., Sharir, M., 2000. Penetration depth
of two convex polytopes in 3D. Nordic Journal of Computing 7, 227–240.

Albano, A., Sapuppo, G., 1980. Optimal allocation of two-dimensional irregular shapes using heuris-
tic search methods. IEEE Transactions on Systems, Man and Cybernetics 10, 242–248.

Bennell, J. A., Dowsland, K. A., 2001. Hybridising tabu search with optimisation techniques for
irregular stock cutting. Management Science 47, 1160–1172.

Bennell, J. A., Dowsland, K. A., Dowsland, W. B., 2001. The irregular cutting-stock problem — A
new procedure for deriving the no-fit polygon. Computers and Operations Research 28, 271–287.

BÃlȧzewicz, J., Hawryluk, P., Walkowiak, R., 1993. Using a tabu search approach for solving the
two-dimensional irregular cutting problem. Annals of Operations Research 41, 313–325.

Burke, E., Hellier, R., Kendall, G., Whitwell, G., 2006. A new bottom-left-fill heuristic algorithm
for the two-dimensional irregular packing problem. Operations Research 54, 587–601.

17

Burke, E. K., Hellier, R. S. R., Kendall, G., Whitwell, G., 2007. Complete and robust no-fit polygon
generation for the irregular stock cutting problem. European Journal of Operational Research
179, 27–49.

de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O., 2000. Computational Geometry:
Algorithms and Applications (2nd edition). Springer, Berlin.

Chazelle, B., 1991. Triangulating a simple polygon in linear time. Discrete and Computational
Geometry 6, 485–524.

Dean, H. T., Tu, Y., Raffensperger, J. F., 2006. An improved method for calculating the no-fit
polygon. Computers and Operations Research 33, 1521–1539.

Dobkin, D., Hershberger, J., Kirkpatrick, D., Suri, S., 1993. Computing the intersection-depth of
polyhedra. Algorithmica 9, 518–533.

Dowsland, K. A., Vaid, S., Dowsland, W. B., 2002. An algorithm for polygon placement using a
bottom-left strategy. European Journal of Operational Research 141, 371–381.

Egeblad, J., Nielsen, B. K., Odgaard, A., 2007. Fast neighborhood search for two- and three-
dimensional nesting problems. European Journal of Operational Research 183, 1249–1266.

Gomes, A. M., Oliveira, J. F., 2002. A 2-exchange heuristic for nesting problems. European Journal
of Operational Research 141, 359–370.

Gomes, A. M., Oliveira, J. F., 2006. Solving irregular strip packing problems by hybridising simu-
lated annealing and linear programming. European Journal of Operational Research 171, 811–
829.

Ibaraki, T., Imahori, S., Yagiura, M., 2008. Hybrid metaheuristics for packing problems. In: Blum,
C., Aguilera, M. J. B., Roli, A., Sampels, M. (Eds.), Hybrid Metaheuristics: An Emergent
Approach for Optimization. Springer, Berlin.

Imamichi, T., Yagiura, M., Nagamochi, H., 2007. An iterated local search algorithm based on
nonlinear programming for the irregular strip packing problem. Technical Report 2007-009,
Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto Uni-
versity.

Kim, Y. J., Lin, M. C., Manocha, D., 2004. Incremental penetration depth estimation between con-
vex polytopes using dual-space expansion. IEEE Transactions on Visualization and Computer
Graphics 10, 152–163.

Li, Z., Milenkovic, V., 1995. Compaction and separation algorithms for non-convex polygons and
their applications. European Journal of Operational Research 84, 539–561.

Oliveira, J. F., Gomes, A. M., Ferreira, J. S., 2000. TOPOS — A new constructive algorithm for
nesting problems. OR Spektrum 22, 263–284.

Selman, B., Kautz, H., 1993. Domain-independent extensions to GSAT: Solving large structured
satisfiability problems. Proceedings of 13th International Joint Conference on Artificial Intelli-
gence, 290–295.

Voudouris, C., Tsang, E., 1999. Guided local search and its application to the traveling salesman
problem. European Journal of Operational Research 113, 469–499.

18

Jakobs1 Jakobs2 Mao Marques

Fu Shapes2 Dighe1 Dighe2

Shapes0 Shapes1 Dagli

Albano Trousers

Shirts Swim

Figure 10: The best solutions obtained by FITS.

19

	METR08-22-cover
	paper_submit20080430

