
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Algorithms for Finding an Induced Cycle
in Planar Graphs

Ken-ichi KAWARABAYASHI and Yusuke KOBAYASHI

(Communicated by Kazuo MUROTA)

METR 2008–23 May 2008

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

Algorithms for Finding an Induced Cycle in Planar Graphs

Ken-ichi KAWARABAYASHI ∗ Yusuke KOBAYASHI †

May 2008

Abstract

In this paper, we consider the problem for finding an induced cycle passing through k given
vertices, which we call the induced cycle problem. The significance of finding induced cycles
stems from the fact that precise characterization of perfect graphs would require structures of
graphs without an odd induced cycle, and its complement. There has been huge progress in
the recent years, especially, the Strong Perfect Graph Conjecture was solved in [6]. Concerning
recognition of perfect graphs, there had been a long-standing open problem for detecting an
odd hole and its complement, and finally this was solved in [4].

Unfortunately, the problem of finding an induced cycle passing through two given vertices
is NP-complete in a general graph [2]. However, if the input graph is constrained to be planar
and k is fixed, then the induced cycle problem can be solved in polynomial time [11, 12, 13].

In particular, an O(n2) time algorithm is given for the case k = 2 by McDiarmid, Reed,
Schrijver and Shepherd [14], where n is the number of vertices of the input graph.

Our main results in this paper are to improve their result in the following sense.

1. The number of vertices k is allowed to be non-trivially super constant number, up to
k = o((log n

log log n)
2
3). More precisely, when k = o((log n

log log n)
2
3), then the ICP can be solved

in O(n2+ε) time for any ε > 0.

2. The time complexity is linear if k is fixed.

We note that the linear time algorithm (the second result) is independent from the first result.
Let us observe that if k is as a part of the input, then the problem is still NP-complete.

We need to impose some condition on k.

1 Introduction

1.1 The Induced Cycle Problem

For a graph G = (V,E) and a vertex set X ⊆ V we consider the problem of finding a cycle passing
through all vertices in X. The most famous problem of this type is the Hamiltonian path problem,
in which X = V . It is well-known that the Hamiltonian path problem is NP-complete, and it
remains NP-complete even if G is constrained to be planar. On the other hand, if the number of
vertices in X is fixed, this problem can be reduced to the disjoint paths problem and is solvable
in polynomial time with the aid of the seminal result of Robertson and Seymour’s algorithm for
the disjoint paths problem [20].

∗National Institute of Informatics, Tokyo 101-8430, Japan (E-mail: k keniti@nii.ac.jp)
†University of Tokyo, Tokyo 113-8656, Japan (E-mail: Yusuke Kobayashi@mist.i.u-tokyo.ac.jp, Telephone and

Fax: +81-3-5841-6924)

1

In this paper, we focus on the problem for finding an induced cycle through all given vertices,
which we call the induced cycle problem (ICP). Here we say that a subgraph H = (VH , EH) of G

is induced if EH is a set of all edges in E with both ends in VH .

Induced cycle problem (ICP)

Input: A graph G = (V,E) and a vertex set X ⊆ V with |X| = k, whose elements are called
terminals.

Output: An induced cycle C passing through all vertices in X.

Finding induced cycles has been studied for many years by many researchers, because precise
characterization of perfect graphs would require structure of graphs without odd holes and their
complements, where induced cycles are called holes in this literature. Therefore, detecting an
induced cycle is significant in the context of the recognition of the perfect graphs. In particular,
it had been a long-standing open question whether or not there is a polynomial time algorithm
to test if a graph is perfect. There has been huge progress in recent years. Beside the solution
of the Strong Perfect Graph Conjecture [6], detecting either an odd hole or its complement can
be done in polynomial time [4], thereby it gives rise to a recognition of perfect graphs. On the
other hand, it is unknown whether we can detect induced cycles of odd length in a given graph in
polynomial time or not, while detection of induced cycles of even length can be done in polynomial
time [5, 7, 8]. In fact, this motivation creates some of work for a similar concept “induced minor”,
see [9, 10].

Let us now discuss the complexity issues for the ICP. Although we can find a cycle through k

specified vertices in polynomial time for fixed k, the ICP in a general graph is NP-complete even
if k = 2 [2]. However if the given graph is constrained to be planar, McDiarmid, Reed, Schrijver
and Shepherd [14] gave the following result.

Theorem 1.1. Suppose an input graph is planar. Then there is an O(n2) time algorithm for the
ICP with k = 2, where n is the number of vertices of the given graph.

Our research is motivated by Theorem 1.1. Natural questions arising from the result by
McDiarmid, Reed, Schrijver and Shepherd [14] are the following:

1. What if k is as a part of input ?

2. What about general case (namely, fixed constant k) ?

3. Can we get a faster algorithm for k = 2 or even general case (for fixed k) ?

Concerning the first question, it is still NP-complete. To see this, suppose G is a planar graph,
and X = V (G). We now subdivide each edge once (that is, add a vertex of degree 2 to each edge).
Let G′ be the resulting graph. Then finding an induced cycle through all the vertices of X in G′

corresponds to finding a Hamiltonian cycle in G, which is still NP-complete. Therefore, in order

2

to get a polynomial time algorithm for the first question, we need to impose some condition on
the input k.

Concerning the second question, it is known that the ICP in a planar graph can be solved in
polynomial time [11, 12, 13].

Theorem 1.2 ([11, 12, 13]). The ICP is solvable in polynomial time when k is fixed and the input
graph is planar.

This theorem comes from polynomial time algorithms for the induced disjoint paths problem
(IDPP), which is the induced version of the disjoint paths problem and introduced in [11, 12, 13].
If the number of terminals k is fixed, there exists a polynomial-time reduction from the ICP to
the IDPP, and hence the ICP is solvable in polynomial time. However, by a naive reduction
algorithm, an instance of the ICP is reduced to O(n2k) instances of the IDPP, and so the time
complexity of the algorithm for the ICP seems too expensive, even for k = 2.

Therefore, in order to answer the second and the third questions, we need to find a faster and
more efficient algorithm.

1.2 Main Results

First we show the following theorem:

Theorem 1.3. If k = o((log n
log log n)

2
3), then the ICP can be solved in O(n2+ε) time for any ε > 0,

where n is the number of vertices of the input graph.

Obviously, Theorem 1.3 generalizes Theorem 1.2 and answers the first and second questions.
In fact, we show that the ICP is solvable in O(h(k)n2) time and h(k) = O(nε) for any ε > 0 when
k = o((log n

log log n)
2
3). Therefore, when k is fixed this algorithm runs in O(n2) time, which generalizes

Theorem 1.1 and answers the second question.

Corollary 1.4. If k is fixed, then the time complexity is O(n2).

On the other hand, since the IDPP in planar graphs is solvable in linear time, we expect that
the ICP in a planar graph is also solvable in linear time when k is fixed. By this motivation, we
give a more efficient algorithm for the ICP when k is fixed:

Theorem 1.5. The ICP is solvable in linear time when k is fixed and the input graph is planar.

This theorem is a generalization of Theorem 1.2 and gives the best answer for the third
question.

Our proofs of Theorems 1.2 and 1.5 basically follow the same line of the proof of the disjoint
paths problem by Robertson and Seymour [20], together with some arguments in [16, 17], which
improves the time complexity of the algorithm of the disjoint paths by Robertson and Seymour
(O(n3) time algorithm) to linear time when an input graph is planar. Since we only consider
planar graphs, we do not need the full power of Robertson and Seymour’s proof [20] (but we still
need a deep topological result in Graph Minors XI [19]). On the other hand, our cycle must be

3

induced, so some of arguments in [20] must be extended to induced paths, which needs much
more involved arguments. In addition, we are also interested in the case when k is as a part of the
input. Therefore, we need to sharpen the function of k. This needs nontrivial amount of work,
since both Robertson-Seymour’s proof [20] and Reed, Robertson, Schrijver, Seymour’s proof [17]
do not care much about sharpening the hidden constant of k. These proofs just guarantees the
existence of the function of k, therefore, it is highly expensive, and nonpractical. Our proofs,
though, give fairly small function of k. Therefore, we believe that this result may be viewed as
a much more practical result. Price to pay is to need to analyze the structure of planar graphs
more closely.

The rest of this paper is devoted to proofs for Theorems 1.3 and 1.5. In Sections 2 and 3, we
give proofs for Theorems 1.3 and 1.5, respectively.

Most of notations and terminologies used in this paper for planar graphs are described in [15].

2 Polynomial Time Algorithm for the Case k = o((log n
log log n)

2
3)

2.1 Deletable Vertex for the ICP

Suppose we are given an instance of the ICP with terminal set X ⊆ V . A vertex v ∈ V \ X is
called deletable if G has a desired induced cycle, then G − v also has one. A vertex v ∈ V \ X

is l-isolated if there exist l disjoint cycles C1, C2, . . . , Cl and disks ∆1,∆2, . . . , ∆l such that Ci

bounds ∆i for i = 1, . . . , l, v ∈ ∆1 − C1, ∆1 ⊆ ∆2 ⊆ · · · ⊆ ∆l, and ∆l does not intersect X. We
say that such C1, C2, . . . , Cl are nested cycles surrounding v.

The following theorem gives a sufficient condition for a vertex to be deletable, and plays an
important role in our first algorithm for the ICP.

Theorem 2.1. For any instance of the ICP with k terminals every (22k + 2)-isolated vertex is
deletable.

The rest of this subsection is devoted to the proof of Theorem 2.1.
Suppose v is a (22k+2)-isolated vertex. Since there exist 22k+2 disjoint nested cycles, there ex-

ist 11k+1 induced nested cycles surrounding v. We take induced nested cycles C1, C2, . . . , C11k+1

such that each disk ∆t bounded by Ct is as small as possible for t = 1, . . . , 11k+1. More precisely,
we assume the following:

Assumption 1. For t = 1, 2, . . . , 11k + 1, there is no cycle C ′
t ̸= Ct contained in ∆t −∆t−1 such

that C ′
t does not pass through a vertex adjacent to Ct−1, where ∆0 = C0 = {v}.

By this assumption, we can easily see the following.

Claim 2.2. Let P be a path whose end vertices are on the outside of ∆11k+1. For t = 1, 2, . . . , 11k+
1, each connected component of P ∩ (∆t −Ct) intersects Ct−1 or passes through a vertex adjacent
to Ct−1, where C0 = {v}.

4

Ct

P

P1

P2 P3

P4

Ct−1

P ′

Ct

P

P1

P2
P4 P3

Ct−1

Figure 1: Paths crossing Ct more than twice.

For t = 1, 2, . . . , 11k + 1, we say that a path or a cycle P = (v0, e1, v1, e2, . . . , vl) crosses Ct if
there exist integers q, r with 0 < q ≤ r < l such that a subpath P ′ = (vq, eq+1, . . . , vr) is contained
in Ct, eq and er+1 are not in Ct, and exactly one of eq and er+1 is in ∆t. In this case, we say that
P crosses Ct at P ′.

Let R be an induced cycle through all vertices in X satisfying the following assumption:

Assumption 2. The sum over all t of the number of crossing of R with Ct is as small as possible.

We may assume that R passes through v, because otherwise v is deletable. Now we observe
some properties of R.

Claim 2.3. For t = 1, 2, . . . , 11k, every path of R ∩ ∆11k+1 crosses Ct at most twice.

Proof. We prove the claim by induction on t.
If a path P of R ∩ ∆11k+1 crosses C1 more than twice, P ∩ ∆1 has at least two components.

Then, at least one of such components Q does not passes through v, and Q passes through a
vertex adjacent to v by Claim 2.2. This contradicts that R is induced and passes through v.

Suppose that a path P = (v0, e1, v1, e2, . . . , vl) of R ∩ ∆11k+1 crosses Ct more than twice for
t ≥ 2. Then, P crosses Ct at least four times. We may assume that P crosses Ct at P1, P2, . . . , Pj ,
where Pi = (vqi , eqi+1, . . . , vri) for i = 1, . . . , j and q1 ≤ r1 < q2 ≤ r2 < · · · < qj ≤ rj .

Now we consider the positional relationship among P1, P2, P3, and P4. Since P3 and P4 are
contained in a same component of Ct − P1 − P2, there are the following two cases: P1, P2, P3,
and P4 lie on Ct clockwise or counterclockwise in this order, or they lie on Ct clockwise or
counterclockwise in the order P1, P2, P4, P3 (see Fig. 1).

In either case, let Q1 and Q2 be subpaths of P between P1 and P2, and between P3 and P4,
respectively. Let Q be the subpath of Ct connecting P2 and P3 which does not intersect with
P1. By the assumption that R crosses C1, . . . , C11k+1 as few as possible, there exists a path
P ′ ⊆ R ∩ ∆11k+1 different from P which intersects Q or passes through a vertex adjacent to Q.
On the other hand, by Claim 2.2, each of Q1 and Q2 intersects Ct−1 or passes through a vertex
adjacent to Ct−1. Thus, P ′ crosses Ct−1 more than twice by the planarity of G, which completes
the proof by induction on t.

For a path or a cycle L, each connected component B of L − (∆11k+1 − C11k+1) such that
B ∩ X = ∅ and B ̸⊆ C11k+1 is called a bridge of ∆11k+1 in L. A curve is a subset of Σ which

5

x+
1 x−

1 x−
2

x−
h

x+
2

x+
h

C11k+1

B1

B2

Bh

Figure 2: Bridges with the same homotopy type.

is an image of some continuous mapping defined on [0, 1]. Let B be a bridge of ∆11k+1 with
end vertices x and y, and JB be a non-selfintersecting curve connecting x and y whose interior is
contained in ∆11k+1 − C11k+1. Since B ∪ JB forms a closed curve, the plane is divided into two
parts Σ+

B and Σ−
B, which are inside and outside B ∪ JB, respectively. Thus, B defines a partition

(X ∩ Σ+
B, X ∩ Σ−

B) of terminals. If X ∩ Σ+
B = ∅ or X ∩ Σ−

B = ∅, B is said to be null-homotopic.
We say that two bridges B1 and B2 have a same homotopy type if they define a same partition of
terminals.

Claim 2.4. No bridge of ∆11k+1 in R is null-homotopic.

Proof. If there exists a null-homotopic bridge, then there exists a bridge B such that B is null-
homotopic and Σ+

B or Σ−
B does not contain any edges in R by the planarity of G. Since B cannot

be rerouted using edges in C11k+1, by a similar argument as the proof for Claim 2.3, some path
of R ∩ ∆11k+1 crosses C11k more than twice. This contradicts Claim 2.3.

Claim 2.5. At most 5 bridges of ∆11k+1 in R have a same homotopy type.

Proof. Suppose that there exist more than 5 bridges B1, B2, . . . , Bh which have a same homotopy
type. We may assume that these bridges B1, B2, . . . , Bh in order from “inside” to “outside”, that
is, these bridges satisfy that for j = 1, 2 . . . , h one of Σ+

Bj
and Σ−

Bj
contains B1, B2, . . . , Bj−1

and the other contains Bj+1, Bj+2, . . . , Bh (see Fig. 2). Let x+
j and x−

j be end vertices of Bj for
j = 1, . . . , h such that vertices x+

h , x+
h−1, . . . , x

+
2 , x+

1 , x−
1 , x−

2 , . . . , x−
h lie on C11k+1 clockwise in this

order.
By the planarity of G, there exists subpaths P+ and P− of R from x+

3 to x+
4 and from x−

3 to
x−

4 , respectively. Without loss of generality, we may assume that P+ does not pass through B2.
For t = 1, 2, . . . , 11k + 1 and for x, y ∈ Ct, we denote by Ct[x, y] a path traveling from x

to y clockwise along Ct. For i = 1, 2, . . . , 6, let Ti be a connected component of R ∩ ∆11k+1

containing x−
i . Since h ≥ 6, T2 and T5 cross C11k, and T3 and T4 cross C11k−1 by Claim 2.2. For

6

B1 B2 B3 B5B4 B6

v2,11k+1

v2,11k

v4,11k+1v3,11k+1

v3,11k

v3,11k−1 v4,11k−1

v4,11k

B1 B2 B3 B5B4 B6

v2,11k+1

v2,11k

v4,11k+1v3,11k+1

v3,11k

v3,11k−1 v4,11k−1

v4,11k

C11k+1

C11k

C11k−1

C11k−2

C11k+1

C11k

C11k−1

C11k−2

: edges in R.

: edges in R′′.

Figure 3: Construction of R′′.

i = 1, 2, . . . , 6 and for u, v ∈ Ti, let Ti[u, v] denote the subpath of Ti from u to v. For a concise
description, we only discuss the case when Ti and Ct intersects only two vertices ui,t and vi,t for
(i, t) = (2, 11k), (2, 11k + 1), (3, 11k − 1), (3, 11k), (3, 11k + 1), (4, 11k − 1), (4, 11k), (4, 11k + 1),
where vi,t is nearer to x−

i than ui,t. We note that other cases can be dealt with in a similar way
by Claim 2.3.

As shown in Fig. 3, define subgraphs R′ and R′′ by

R′ = (R − T3[v3,11k−1, v3,11k] − T4[v4,11k−1, v4,11k])

∪ C11k[v3,11k, v4,11k] ∪ C11k−1[v3,11k−1, v4,11k−1],

R′′ = (R′ − T2[v2,11k, v2,11k+1] − T3[v3,11k, v3,11k+1])

∪ C11k+1[v2,11k+1, v3,11k+1] ∪ C11k[v2,11k, v3,11k].

Then, R′ consists of two cycles: one contains T2[v2,11k, v2,11k+1] and the other contains T3[v3,11k, v3,11k+1],
because P+ does not contain B2. Thus, R′′ forms a cycle.

If R′′ is not induced, i.e. there exist v1, v2 ∈ R′′ with (v1, v2) ∈ E − R′′, then we replace
a subpath of R′′ from v1 to v2 containing no terminals by an edge (v1, v2). While R′′ is not
induced, we execute this procedure repeatedly. Then the obtained induced cycle passes through
all terminals and crosses C1, C2, . . . , C11k+1 less than R, which contradicts Assumption 2.

Proof for Theorem 2.1. Since the graph is planar, the number of homotopy types of bridges is at
most 2k. Thus, by Claims 2.4 and 2.5, R−(∆11k+1−C11k+1) has at most 5·2k+k = 11k connected
components not contained in C11k+1. Then, R∩∆11k+1 has at most 11k components not contained

7

in C11k+1. Therefore, R ∩ ∆11k+1 can be rerouted using edges in 11k cycles C1, C2, . . . , C11k so
that R passes through all vertices in X and does not pass through v, which means that v is
deletable.

2.2 Tree Width and Algorithm

A tree-decomposition of a graph G = (V,E) is a pair (T,W), where T = (VT , ET) is a tree and
W = {Wt | t ∈ VT } is a family of subsets of V satisfying the followings:

1.
∪

t∈VT
Wt = V .

2. For every edge e ∈ E there exists t ∈ VT such that Wt contains both ends of e.

3. If t, t′, t′′ ∈ VT and t′ lies on the path of T between t and t′′, then Wt ∩ Wt′′ ⊆ Wt′ .

The width of (T,W) is defined as maxt∈VT
(|Wt| − 1), and the tree-width of G is the minimum

width of a tree-decomposition of G.
Tree-width is a good measure of algorithmic tractability of graphs. It is known that a number

of hard problems on graphs, such as “Hamiltonian cycle” and “chromatic number”, can be solved
efficiently when the given graph has small tree-width [1].

In [20], Robertson and Seymour gave an O(n2) time algorithm for a generalization of the
disjoint paths problem called folio when the tree-width of the input graph is bounded, where n is
the number of vertices of the input graph. Note that although the result in [20] is stated in terms
of “branch-width”, it does not cause any problems because branch-width differs only a constant
factor from tree-width. An improvement of the running time is shown in [3].

For the ICP, the following theorem holds by using almost the same algorithm as (3.3) and
(4.1) in [20]. Here poly(x) is a polynomial of x and n is the number of vertices of the input graph.
Since the proof is the same as in [20], we omit it.

Theorem 2.6. If the tree-width of a graph G is at most w, then the ICP with k terminals in G

is solvable in O(poly((k + w)(k+w))n2) time.

It is known that tree-width of a planar graph is closely related with the size of a grid minor.
A t × t grid is a simple graph with t2 vertices {(i, j) | 1 ≤ i, j ≤ t}, where (i, j) and (i′, j′) are
adjacent if |i− i′|+ |j − j′| = 1. A graph H is a minor of a graph G if H can be obtained from a
subgraph of G by contracting edges.

Theorem 2.7 ([22]). Let t be a positive integer. If a planar graph G has no t × t grid minor,
then the tree-width of G is at most 6t − 5.

On the other hand, the following relation holds between the size of a grid minor and l-isolated
vertices.

Lemma 2.8. Let l be a positive integer. If a planar graph G has k terminals and a (2l+1)⌊
√

k +
1⌋ × (2l + 1)⌊

√
k + 1⌋ grid minor, there exists an l-isolated vertex in G.

8

Proof. Suppose that G has a (2l + 1)⌊
√

k + 1⌋ × (2l + 1)⌊
√

k + 1⌋ grid minor. Since the number
of terminals is k, G has a (2l + 1)× (2l + 1) grid minor H enclosing no terminals. More precisely,
H is obtained from a subgraph H ′ of G by contracting edges, and all terminals are contained in
the unbounded outer face of H ′. Then, the central vertex of H ′ is an l-isolated vertex in G.

By combining these results, we obtain the following theorem.

Theorem 2.9. The ICP with k terminals in a planar graph can be solved in O(poly(ww)n2) time,
where w = O(k

3
2).

Proof. We consider the following algorithm which consists of two steps.

Step 1. For a given planar graph G, if G has a (22k+2)-isolated vertex v ∈ V \X, then remove
v from G. Execute this procedure repeatedly while G has a (22k + 2)-isolated vertex.

Step 2. We may assume that G has no (22k+2)-isolated vertex. By Theorem 2.7 and Lemma 2.8,
there exists a constant c1 such that the tree-width of G is at most w ≤ c1k

3
2 . Then, solved

the ICP as shown in Theorem 2.6.

It is obvious that Step 1 does not affect the solution of the ICP by Theorem 2.1. For each vertex
v ∈ V \X, we can determine whether there are 22k+2 nested cycles surrounding v or not in linear
time. Thus, Step 1 can be done in O(n2) time in total. Step 2 can be done in O(poly(ww)n2)
time by Theorem 2.6, which shows the theorem.

Now, we are ready to prove Theorem 1.3.

Proof for Theorem 1.3. Let c1 be an integer such that w ≤ c1k
3
2 as in Theorem 2.9. When

k = o((log n
log log n)

2
3), it holds that

w ≤ c1k
3
2 = o

(
log n

log log n

)
.

Since
log(ww) = w log w = o

(
log n

log log n
log log n

)
= o(log n),

we have that log(poly(ww)) = o(log n). Thus, for any ε > 0 there exists N > 0 such that
log(poly(ww)) < ε log n for any n > N . Then, poly(ww) = O(nε), and so the ICP is solvable in
O(n2+ε) time by Theorem 2.9.

3 Linear Time Algorithm for the ICP in a Planar Graph

In this section, we give a linear time algorithm that solves the ICP in a planar graph when k is
fixed. Our algorithm is inspired by the algorithm in [11, 12] for the IDPP, which is based on the
algorithms of [16, 17] for the disjoint paths problem in a planar graph.

9

3.1 The c-embedded Induced k-linkage-realizations

The ICP is closely related to a problem called induced disjoint paths problem (IDPP). Let G be a
graph and P1, . . . , Pk be connected subgraphs in G. We say that P1, . . . , Pk are mutually induced
if Pi and Pj have neither common vertices nor adjacent vertices for any distinct i, j. We note
that even if P1, . . . , Pk are mutually induced, each Pi is not necessarily induced by some vertex
set. The induced disjoint paths problem is to find k mutually induced paths P1, . . . , Pk such that
Pi connects given vertices si and ti for i = 1, . . . , k.

In [11, 12], a new problem called c-embedded induced k-realizations is introduced, which is
a generalization of the IDPP in a planar graph. Let G = (V,E) be a graph and X ⊆ V be
a terminal set. A subpartition X = {X1, X2, . . . , Xp} of X (i.e. a partition of a subset of X)
is induced-realizable if there are mutually induced trees T1, . . . , Tp in G such that Xi ⊆ Ti and
(X \ Xi) ∩ Ti = ∅ for i = 1, . . . , p. In this case, we say that a subgraph T consisting of T1, . . . , Tp

induced-realizes X . Let Σ be a surface obtained by removing from the plane c open disks whose
closures are disjoint. Such a surface is called a punctured plane and each disk is called a cuff.
The boundary of Σ is denoted by bd(Σ). The c-embedded induced k-realizations is the following
problem:

c-embedded induced k-realizations

Input: A graph G = (V,E) embedded on a punctured plane Σ with at most c cuffs, and a
terminal set X ⊆ V ∩ bd(Σ) with |X| = k.

Output: All induced-realizable partitions of X in G.

This problem is known to be solvable in linear time [11, 12], which leads a linear time algorithm
for the IDPP in a planar graph when k is fixed.

To give a linear time algorithm for the ICP, we introduce a new problem which we call the c-
embedded induced k-linkage-realizations. Let G = (V,E) be a graph and X ⊆ V be a terminal set.
Let X = {(X1, s1, t1), (X2, s2, t2), . . . , (Xp, sp, tp)} be a set of triples, where X1, X2, . . . , Xp are
mutually disjoint subsets of X and si and ti are vertices in Xi (possibly si = ti) for i = 1, 2, . . . , p.
We say that X is induced-linkage-realizable if there are paths or cycles L1, . . . , Lp in G such that
X ∩ Li = Xi, end vertices of Li are si and ti for i = 1, 2, . . . , p, where si = ti if Li is a cycle or a
single vertex, and a subgraph L consisting of L1, . . . , Lp is induced. In this case, we say that L

induced-linkage-realizes X . The c-embedded induced k-linkage-realizations is described as follows:

c-embedded induced k-linkage-realizations

Input: A graph G = (V,E) embedded on a punctured plane Σ with at most c cuffs, and a
terminal set X ⊆ V ∩ bd(Σ) with |X| = k.

Output: All induced-linkage-realizable sets of triples.

In this section, we show that this problem is solvable in linear time when c and k are fixed.

10

Theorem 3.1. The c-embedded induced k-linkage-realizations can be solved in linear time for any
fixed c and k.

When we are given an instance of the ICP in a graph G, there exists a desired induced cycle
if and only if X = {(X, s, s)} is induced-linkage-realizable in G for a terminal s ∈ X. Thus,
Theorem 1.5 is immediately derived from Theorem 3.1.

3.2 Deletable Vertex

Suppose we are given an instance of the c-embedded induced k-realizations (resp. c-embedded
induced k-linkage-realizations). We say that a vertex v ∈ V \ X is deletable if any partition
(resp. set of triples) X is induced-realizable (resp. induced-linkage-realizable) in G if and only if
X is induced-realizable (resp. induced-linkage-realizable) in G − v.

The following theorem plays an important role in algorithms for the c-embedded induced k-
realizations, whereas non-induced version is a part of the main result of [21] and used in the
algorithms for the disjoint paths problem [16, 17, 20] (see also [18]).

Theorem 3.2 ([11, 12]). For any k, there exists an integer f(k) such that for any instance of the
c-embedded induced k-realizations every f(k)-isolated vertex is deletable.

We present the following theorem for the c-embedded induced k-linkage-realizations, which is
similar to Theorems 2.1 and 3.2 and will be used in our algorithm. Our proof for Theorem 3.3 is
based on Theorem 3.2, in which the c-embedded induced k-linkage-realizations is reduced to the
c-embedded induced k-realizations.

Theorem 3.3. For any k, there exists an integer g(k) such that for any instance of the c-embedded
induced k-linkage-realizations every g(k)-isolated vertex is deletable.

Proof. We show that g(k) = f(2k) + 1 satisfies the condition, where f is the function described
in Theorem 3.2. Let v ∈ V \X be a g(k)-isolated vertex. It is obvious that if a set of triples X is
induced-linkage-realizable in G − v, then X is induced-linkage-realizable in G.

Suppose that X is induced-linkage-realizable in G and a subgraph L consisting of p paths
L1, . . . , Lp induced-linkage-realizes X . For i = 1, . . . , p, let (vi,1, vi,2, . . . , vi,li) be a sequence of
terminals lying on Li in this order from vi,1 = si to vi,li = ti. Let v−i,j (resp. v+

i,j) be a vertex
adjacent to vi,j in Li which is between vi,j−1 and vi,j (resp. vi,j and vi,j+1) for i = 1, . . . , p and
for j = 2, . . . , li (resp. j = 1, . . . , li − 1).

Define X ′ = {v+
i,j , v

−
i,j+1 | i = 1, . . . , p, j = 1, . . . , li − 1} and G′ = G − X − (N(X) − X ′),

where N(X) is a set of all vertices adjacent to X. Then, L−X induced-realizes a partition X ′ of
X ′ consisting of {{v+

i,j , v
−
i,j+1} | i = 1, . . . , p, j = 1, . . . , li − 1} in G′ (see Fig. 4).

Since |X ′| ≤ 2k and v is an f(2k)-isolated vertex in G′, by Theorem 3.2, X ′ is induced-
realizable in G′ − v. This means that X is induced-linkage-realizable in G − v.

Note that v+
i,j and v−i,j in the above proof are unknown when we are given an instance of the

c-embedded induced k-linkage-realizations or the ICP. Thus, the above reduction does not lead
an efficient algorithm for the c-embedded induced k-linkage-realizations or the ICP.

11

: terminal : terminal

Figure 4: Reduction to c-embedded induced k-realizations.

3.3 Algorithm

Building on the ideas in [11, 12] (see also [16, 17]), we give a linear time algorithm for the c-
embedded induced k-linkage-realizations.

For a description of our algorithm for the c-embedded induced k-linkage-realizations, we give
some preliminaries. A curve J ⊆ Σ is proper if J ∩G ⊆ V , and its length is defined as |J ∩G|. An
I-arc is a proper non-self-intersecting curve in Σ. We say that J ⊆ Σ is an O-arc if J is a proper
non-self-intersecting (except for its end vertices) closed curve in Σ such that each component of
Σ − J contains a cuff.

When c ≥ 2, we can transform an instance of the c-embedded induced k-linkage-realizations
into some instances with fewer cuffs by executing Algorithm Cuff Reduction described below.

Algorithm Cuff Reduction

Input: An instance of the c-embedded induced k-linkage-realizations, where c ≥ 2.

Output: Some instances of the c′-embedded induced k′-linkage-realizations, where c′ < c and k′

is at most a constant depending on c and k.

Step 1. If there exists an O-arc J with length at most 4g(k) + 2 such that each component of
Σ − J contains at least two cuffs, then consider the inside and the outside of J separately
(see Fig. 5). More precisely, let D1, D2 be components of Σ− J , and consider the following
two instances: one is in D1 ∪J with terminals (X ∩D1)∪ (J ∩V) and the other is in D2 ∪J

with terminals (X ∩ D2) ∪ (J ∩ V). Then, we can reduce the instance into two instances
with fewer cuffs, and stop the algorithm. We note that the solution of the original instance
is obtained by unifying the solutions of two small instances in constant time.

If such O-arc does not exist, go to Step 2.

Step 2. If there exists an O-arc J with length at most 4g(k) + 2 such that one component of
Σ − J contains exactly one cuff C, then take the shortest one among such O-arcs. If there
exist some shortest O-arcs, choose such an O-arc bounding a minimal disk. As the same way
as Step 1, we reduce the instance into two instances: one is an instance with two cuffs and

12

J

cuffs

J J

cuffs

cuffs

Figure 5: Reduction to instances with fewer cuffs.

J

cuffs

one cuff

Figure 6: “Open” Σ along J .

the other is an instance with c cuffs in a smaller graph. For each obtained graph, execute
Step 2 repeatedly, and if such O-arc does not exist in every graph, then execute Step 3 for
each resulting graph.

Step 3. It suffices to consider the case when there is no O-arc with length at most 4g(k) + 2.
Denote the cuffs by C1, . . . , Cc, and find the shortest I-arc Ji,j connecting Ci and Cj for
distinct 1 ≤ i, j ≤ c. Let J be the shortest I-arc among all Ji,j .

3-1. If the length of J is at most 2g(k) + 2, then “open” Σ along J and reduce the instance
into an instance with c − 1 cuffs (see Fig. 6). More precisely, for each vertex v on J ,
split v into two vertices v1, v2 and replace every edge vu incident to v by v1u or v2u

so that J is contained in a new face. Furthermore, add all vertices in {v1, v2 | v ∈ J}
to terminals. Then, the instance is reduced into an instance with c− 1 cuffs, and stop
the algorithm.

3-2. If the length of J is more than 2g(k)+2, delete all vertices of J except the first g(k)+1
and the last g(k)+1. Then, since the length of J becomes 2g(k)+2, execute the same
procedure as Step 3-1.

To see the correctness of Algorithm Cuff Reduction, we prove that all vertices deleted in Step
3-2, say Q, are deletable.

13

Proposition 3.4. Deleting Q does not affect induced-linkage-realizability of the original instance.

For a proof of this proposition, we use the following characterization of l-isolated vertices. For
a vertex v in a graph G, let dG(v) denote the minimum number of vertices of G on the interior
of an I-arc J , where J is taken over all I-arcs of Σ with one endpoint v and the other in bd(Σ).
Then, the following theorem holds.

Theorem 3.5 ([16, 19]). Suppose that G has no O-arc with length at most 2l for some positive
integer l. Then, a vertex v is l-isolated if and only if dG(v) ≥ l.

Now we are ready to show Proposition 3.4. Note that when we execute Step 3-2, we assume
that the graph has no O-arc with length at most 4g(k) + 2 and J is the shortest I-arc with its
endpoints in bd(Σ).

Proof for Proposition 3.4. By Theorem 3.3, it suffices to show that each vertex v is g(k)-isolated
in G − (Q \ {v}).

First, we show that G − Q has no O-arc with length at most 2g(k). Let C be an O-arc in
G−Q with minimum length. We may assume that C intersects G only in its vertices. Note that,
by this assumption, C can also be regarded as an O-arc in G which might passes through some
vertices in Q. Then, there exist x, y ∈ Q such that two components K,K ′ of C − {x, y} satisfy
that K ∩ V ⊆ Q and K ′ ∩ Q = {x, y}. Since J is the shortest I-arc, the length of K is less than
or equal to that of K ′. Thus, if the length of C is at most 2g(k) in G − Q, then C is an O-arc in
G with length at most 4g(k) + 2, which contradicts the assumption.

On the other hand, as J is the shortest I-arc, we can see that dG−(Q\{v})(v) ≥ g(k) holds for
each vertex v ∈ Q.

Thus, by Theorem 3.5, each vertex v ∈ Q is g(k)-isolated in G − (Q \ {v}).

Proposition 3.6. Algorithm Cuff Reduction runs in linear time.

Proof. In Steps 1 and 2, by using the augmenting path method of Ford and Fulkerson in G, we
can find O-arcs with length at most 4g(k) + 2 in linear time. We note that since the number of
repetition of Step 2 is at most |V |, the total number of vertices increases by at most 2(4g(k)+2)|V |.

In Step 3, by adding cuffs to Σ, we regard G = (V,E) as a graph embedded on a plane. Let
F be a face set of G and F1, F2, . . . , Fc ∈ F be faces containing cuffs C1, C2, . . . , Cc, respectively.
We consider an auxiliary graph whose vertex set is V ∪ F and whose edge set is

{(v, F) | v ∈ V, F ∈ F , v is on the boundary of F}.

Then, by finding the shortest path from Fi to Fj in the auxiliary graph for each 1 ≤ i, j ≤ c, we
can find J . Since the number of vertices in the auxiliary graph is |V | + |F| ≤ 3|V | − 4, it can be
done in linear time.

We note that since the number of vertices increases by at most 2(2g(k) + 2) in Step 3,
by executing Algorithm Cuff Reduction, the total number of vertices of obtained graphs is at

14

most |V | + (2(4g(k) + 2) + 2(2g(k) + 2))|V | = (12g(k) + 9)|V |. Thus, by repeating Algorithm
Cuff Reduction, we can reduce the original instance into some instances with one cuff in linear
time, and the total number of vertices is at most a constant multiple of |V |. Although the original
instance may be reduced into O(|V |) instances, the running time is O(|V |) in total, because the
total number of vertices is at most O(|V |).

When c = 1, we can determine whether a given set of triples X = {(X1, s1, t1), (X2, s2, t2), . . . , (Xp, sp, tp)}
is induced-linkage-realizable or not in linear time. It can be done by finding a path from si to ti

passing through all vertices in Xi as close to the cuff as possible for each i, and we omit the detail
of the algorithm.

As a consequence of the above arguments, we can solve the c-embedded induced k-linkage-
realizations in linear time, which completes Theorem 3.1.

References

[1] S. Arnborg and A. Proskurowski: Linear time algorithms for NP-hard problems restricted to
partial k-trees, Discrete Applied Math., 23 (1989), pp. 11-24.

[2] D. Bienstock: On the complexity of testing for even holes and induced odd paths, Discrete
Math., 90 (1991), pp. 85–92.

[3] H. L. Bodlaender: A linear time algorithm for finding tree-decompositions of small treewidth,
SIAM Journal on Computing, 25 (1996), pp. 1305–1317.

[4] M. Chudnovsky, G. Cornuéjols, X. Liu, P. D. Seymour and K. Vuskovic: Recognizing Berge
graphs, Combinatorica, 25 (2005), pp. 143–186.

[5] M. Chudnovsky, K. Kawarabayashi and P. D. Seymour: Detecting even holes, Journal of
Graph Theory, 48 (2005), pp. 85–111.

[6] M. Chudnovsky, N. Robertson, P. D. Seymour and R. Thomas: The strong perfect graph
theorem, Annals of Mathematics, 64 (2006), pp. 51–219.

[7] G. Cornuéjols, M. Conforti, A. Kapoor and K. Vusksvic: Even-hole-free graphs. I. Decom-
position theorem, Journal of Graph Theory, 39 (2002), pp. 6–49.

[8] G. Cornuéjols, M. Conforti, A. Kapoor and K. Vusksvic: Even-hole-free graphs. II. Recogni-
tion algorithm, Journal of Graph Theory, 40 (2002), pp. 238–266.

[9] M. R. Fellows: The Robertson-Seymour Theorems: a survey of applications, Comtemporary
Mathematics 89, American Mathematical Society, 1987, pp. 1–18.

[10] M. R. Fellows, J. Kratochvil, M. Middendorf and F. Pfeiffer: The complexity of induced
minors and related problems, Algorithmica, 13 (1995), pp. 266–282.

15

[11] K. Kawarabayashi and Y. Kobayashi: A linear time algorithm for the induced disjoint paths
problem in planar graphs, manuscript.

[12] K. Kawarabayashi and Y. Kobayashi: The induced disjoint paths problem, Proceedings of
the 13th Integer Programming and Combinatorial Optimization Conference, 2008, to appear.

[13] Y. Kobayashi: An extension of the disjoint paths problem, METR 2007-14, Department of
Mathematical Informatics, University of Tokyo (2006).

[14] C. McDiarmid, B. Reed, A. Schrijver and B. Shepherd: Induced circuits in planar graphs.
Journal of Combinatorial Theory Ser. B, 60 (1994), pp. 169–176.

[15] B. Mohar and C. Thomassen: Graphs on Surfaces, The Johns Hopkins University Press,
Baltimore and London, 2001.

[16] B. Reed: Rooted routing in the plane, Discrete Applied Math., 57 (1995), pp. 213–227.

[17] B. A. Reed, N. Robertson, A. Schrijver and P. D. Seymour: Finding disjoint trees in planar
graphs in linear time, Contemporary Mathematics 147, American Mathematical Society, 1993,
pp. 295–301.

[18] N. Robertson and P. D. Seymour: Graph minors. VII. Disjoint paths on a surface, Journal
of Combinatorial Theory Ser. B, 45 (1988), pp. 212–254.

[19] N. Robertson and P. D. Seymour: Graph minors. XI. Circuits on a surface, Journal of
Combinatorial Theory Ser. B, 60 (1994), pp. 72–106.

[20] N. Robertson and P. D. Seymour: Graph minors. XIII. The disjoint paths problem, Journal
of Combinatorial Theory Ser. B, 63 (1995), pp. 65–110.

[21] N. Robertson and P. D. Seymour: Graph minors. XXII. Irrelevant vertices in linkage prob-
lems, manuscript.

[22] N. Robertson, P. D. Seymour, and R. Thomas: Quickly excluding a planar graph, Journal
of Combinatorial Theory Ser. B, 62 (1994), pp. 323–348.

16

