MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

A Numerical Algorithm for Block-Diagonal
Decomposition of Matrix x-Algebras with
General Irreducible Components

Takanori MAEHARA and Kazuo MUROTA

METR 2008-26 May 2008

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY
THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html



The METR technical reports are published as a means to ensure timely dissemination of
scholarly and technical work on a non-commercial basis. Copyright and all rights therein
are maintained by the authors or by other copyright holders, notwithstanding that they
have offered their works here electronically. It is understood that all persons copying this
information will adhere to the terms and constraints invoked by each author’s copyright.
These works may not be reposted without the explicit permission of the copyright holder.



A Numerical Algorithm for Block-Diagonal
Decomposition of Matrix x-Algebras with
General Irreducible Components

Takanori Maehara* and Kazuo Murotal

May 2008

Abstract

An algorithm is proposed for finding the finest simultaneous block-
diagonalization of a finite number of square matrices, or equivalently
the irreducible decomposition of a matrix x-algebra given in terms of its
generators. This is an extension of the algorithm of Murota—Kanno—
Kojima—Kojima, which is targeted to a special case of the problem.
The algorithm, composed of numerical-linear algebraic computations,
does not require any algebraic structure to be known in advance. The
main ingredient of the algorithm is the Schur decomposition and its
skew-Hamiltonian variant for eigenvalue computation.

Keywords: matrix *-algebra, block-diagonalization, group symmetry,
Schur decomposition, skew-Hamiltonian Schur decomposition,

AMS Classifications: 15A21, 65F15, 68W20, 90C22

*Department of Mathematical Informatics, Graduate School of Informa-
tion Science and Technology, University of Tokyo, Tokyo 113-8656, Japan.
maehara@misojiro.t.u-tokyo.ac.jp

tDepartment of Mathematical Informatics, Graduate School of Informa-
tion Science and Technology, University of Tokyo, Tokyo 113-8656, Japan.
murota@mist.i.u-tokyo.ac.jp



1 Introduction

In this paper we consider the following problem: Given a finite set of n x n
real matrices Aq,..., Ay, find an n x n orthogonal matrix P that pro-
vides them with a simultaneous block-diagonal decomposition, i.e., such
that PTA,P,...,P" AxP become block-diagonal matrices with a common
block-diagonal structure. For this problem two different but closely related
theoretical frameworks are available. One is group representation theory
[11, 14] and the other matrix x-algebra [15]. They are not only necessary
to answer the fundamental theoretical question about such block-diagonal
decomposition but also useful in its actual computation.

In the literature of semidefinite programming, the above problem has re-
cently been studied quite intensively with its application to efficient solution
of semidefinite programs (SDPs) with group symmetry, where Aq,..., Ay
are symmetric matrices representing the objective function and the con-
straints of an SDP. If A;,..., Ay are block-diagonalized, the associated
SDP is decomposed accordingly into smaller SDPs, and therefore can be
solved efficiently. Kanno, Ohsaki, Murota and Katoh [9] introduced a class
of group symmetric SDPs, which arise from topology optimization problems
of trusses. Gatermann and Parrilo [8] investigated the problem of minimiz-
ing a group symmetric polynomial. They proposed to reduce the size of
SOS and SDP relaxations for the problem by exploiting the group symme-
try and decomposing the SDP. On the other hand, de Klerk, Pasechnik and
Schrijver [5] applied the theory of matrix *-algebra to reduce the size of a
class of group symmetric SDPs. Very recently, de Klerk and Sotirov [6] dealt
with quadratic assignment problems, and showed how to exploit the group
symmetry to reduce the size of the SDP relaxations.

As for the block-diagonal decomposition itself, Murota, Kanno, Kojima
and Kojima [12] have proposed an algorithm that is composed solely of
numerical linear-algebraic computations such as eigenvalue computations.
Their idea is to consider the matrix *-algebra 7 generated by the given
symmetric matrices Aq,..., Ay and to make use of the standard structure
theorem (see Theorem 2.1). Then the finest block-diagonal decomposition
corresponds to the decomposition of 7 into irreducible components. Though
under a restrictive assumption that each irreducible component of 7 is iso-
morphic to a full matrix algebra of some order, the algorithm of [12] suc-
cessfully constructs an eligible orthogonal matrix P for a given family of
symmetric matrices Ai,...,Ay. The key algorithmic observation is that
the decomposition into simple components can be computed from the eigen-
value decomposition of a single generic element of 7.

This fact was also observed earlier by Eberly and Giesbrecht [7] in de-
signing an algorithm for the simple-component decomposition of a separa-
ble matrix algebra (not a x-algebra) over an arbitrary infinite field. To be
specific, the “self-centralizing element” in [7] corresponds to the “generic el-



ement” in [12]. Treating a general matrix algebra, however, they considered
a transformation of the form S~'AS with a nonsingular matrix S instead of
an orthogonal transformation of the form PT AP, and they used compan-
ion forms and factorization of minimum polynomials instead of eigenvalue
decomposition.

The objective of this paper is to extend the algorithm of [12] to cope
with all possible types of irreducible components. According to the structure
theorem, an irreducible component of a matrix x-algebra 7 is isomorphic to
an algebra of the following three types: a full matrix algebra over the field
of real numbers (Case R), a faithful real x-representation of a full matrix
algebra over the field of complex numbers (Case C) and a faithful real *-
representation of a full matrix algebra over the (noncommutative) field of
quaternion numbers (Case H); see Section 2 for details. The algorithm of
[12] is targeted exclusively to Case R, while the other two cases, Case C
and Case H, do occur even when 7 is generated by symmetric matrices. In
engineering applications, Case C occurs, for example, in the stiffness matrix
of a cyclically-symmetric truss dome such as the Schwedler dome; see [13]
for various domes.

The proposed algorithm consists of two stages. One is for the simple-
component decomposition and the other for the irreducible-component de-
composition. The notion of genericity in [12] is refined here to S-genericity
for the simple-component decomposition and I-genericity for the irreducible-
component decomposition. Our simple-component decomposition algorithm
is essentially the same as that of [12]. As for the irreducible-component de-
composition, the algorithm of [12] based on the diagonalization of a generic
element of 7 works also in our Case R, although some minor modifications
are needed. New algorithms are devised for Case C and Case H. We resort
to the Schur decomposition for Case C and the Schur decomposition and its
skew-Hamiltonian variant for Case H.

Our algorithm, similarly to [12], finds the finest block-diagonalization
without knowing any algebraic structure, such as group symmetry, in ad-
vance and is based on purely linear algebraic computations such as eigen-
value computation. In other words, our algorithm will automatically exploit
the underlying algebraic structure, which is often an outcome of physical or
geometrical symmetry, sparsity, and structural or numerical degeneracy in
the given matrices.

This paper is organized as follows. Section 2 describes the theoretical
background of our algorithm based on matrix *-algebra. The proposed al-
gorithm for the simple-component decomposition is given in Section 3, and
that for the irreducible-component decomposition in Section 4. The algo-
rithm is demonstrated in Section 5. Section 6 concludes the paper.



2 Matrix x-Algebras

Let R, C and H be the real number field, the complex field, and the quater-
nion field, respectively. The quaternion field H is a vector space {a + b +
Jjc+ kd : a,b,e,d € R} over R with basis 1,2,7 and k, equipped with the
multiplication defined as follows:

1=gk=—k), g=ki=—k, k=y=—-n, *=2=k=-1
and for all o, 8,7,0 € R and x,y, u,v € H,
(azx + By)(yu + ov) = ayzu + adzv + Byyu + Boyv.

For a quaternion h = a+1b+jc+kd, its conjugate is defined as h = a—1b—7jc—
kd, and the norm of h is defined as |h| = Vhh = Vhh = Va% + b2 + 2 + d2.
We can consider C as a subset of H by identifying the generator 2 of the
quaternion field H with the imaginary unit of the complex field C.

Let M,, denote the set of n x n matrices over R. A subset 7 of M,, is
said to be a *-subalgebra (or a matrix x-algebra) over R if I, € 7 and

ABeT;a,eR — aA+3B,AB,A" €T.

Obviously, M,, itself is a matrix x-algebra. There are two other basic matrix
x-algebras: the real representation of complex matrices C,, C Mo, defined
by
C(ZH) e C(Zln)
C, = :zll,zlg,...,zmeC
C(zn1) -+ Cl(2nn)
with

C(a—i—zb):[z _2},

and the real representation of quaternion matrices H,, C My, defined by

H(hy1) -+ H(hip)
Hp = shi1,hi2, ..., hpn € H
H(hnl) H(hnn)
with
a —b —c —d
b a —d c
H(a+ 1+ jc+ kd) = e d a —b
d —c b a

For two matrices A and B, their direct sum, denoted as A ® B, is defined as
A O ]

wan-[4 0
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and their tensor product, denoted as A ® B, is defined as

a11B alnB
A®B = ,
apiB -+ anpnB

where A is assumed to be n x n. Note that A® B =1IIT (B ® A)II for some
permutation matrix II.

We say that a matrix *-algebra 7 is simple if 7 has no ideal other than
{O} and T itself, where an ideal of 7 means a subalgebra Z of 7 such that

AeT,Bel — ABel.

A linear subspace W of R"™ is said to be invariant with respect to 7, or
T-invariant, if AW C W for every A € 7. We say that 7 is irreducible if
no 7 -invariant subspace other than {0} and R" exists. It is mentioned that
M., C, and ‘H, are typical examples of irreducible matrix *-algebras.

We say that matrix x-algebras 77 and 75 are isomorphic if there exists a
bijection ¢ from 7; to 75 with the following properties:

¢(aA + BB) = ad(A) + Bd(B), ¢(AB) = p(A)p(B), ¢(AT)=¢p(A)".

If 77 and 75 are isomorphic, we write 77 >~ 7. For a matrix *-algebra 7
and an orthogonal matrix P, the set

P'TP={PTAP:AcT}

forms another matrix x-algebra isomorphic to 7. For a matrix *-algebra 77,
the set

T = {diag (B,B,...,B): BT}
forms another matrix *-algebra isomorphic to 7”.

From a standard result of the theory of matrix x-algebra (e.g., [15, Chap-
ter X], [10, Theorem 5.4]) we can see the following structure theorem.

Theorem 2.1. Let 7 be a *x-subalgebra Qf M,,.
(A) There exist an orthogonal matrix ) € M,, and simple *-subalgebras
T; of My, for some n; (j =1,2,...,£) such that

QTTQ = {diag(S1,S2,...,80):S; €T; (j=1,2,...,0)}.

(B) If 7 is simple, there exist an orthogonal matrix P € M, and an
irreducible x-subalgebra 7’ of M, for some 7 such that

P'TP ={diag(B,B,...,B): Be T'}.

(C) If 7 is irreducible, there exists an orthogonal matrix P € M,, such
that PTTP = M, Cp o or Hyy [



It follows from the above theorem that, with a single orthogonal matrix
P, all the matrices in 7 can be transformed simultaneously to a block-
diagonal form as

¢ my /
PTAP =P P B; = P, @ B;) (2.1)

j=1 i=1 7j=1

with B; € 7}, where 7] denotes the irreducible *-subalgebra corresponding
to the simple subalgebra 7;; we have ’Z}’ = M, Cq, 2 or Hy,q for some
n;, where the structural indices ¢, nj, m; and the algebraic structure of ’]}-’
for j = 1,...,/ are uniquely determined by 7. It may be noted that 7; in
Theorem 2.1 (A) is equal to m;n; in the present notation. Conversely, for
any choice of B; € ’Z}’ for j =1,...,¢, the matrix of (2.1) belongs to P" 7T P.

We denote by
)4

R" =P U; (2.2)

the decomposition of R™ that corresponds to the simple components. In
other words, U; = Im(Qj) for the n x f; submatrix Qj of Q that corresponds
to 7; in Theorem 2.1 (A). Although the matrix () is not unique, the subspace
U; is determined uniquely and dimU; = n; = m;n,; for j =1,... 7.

3 Decomposition into Simple Components

An algorithm for the decomposition into simple components has been pro-
posed by Murota et al. [12] for the special case where 7 is generated by
symmetric matrices. It turns out that this algorithm also works in our gen-
eral case.

The idea of [12] is that the decomposition into simple components can
be computed from the eigenvalue decomposition of a single matrix A if it
is free from degeneracy in eigenvalues. To extend this idea to our general
case, it is convenient to make a refinement of the notion of nondegeneracy.
Let us say that A € T is S-generic (generic in eigenvalue structure with
respect to simple components) if all the matrices B, ..., By appearing in
the decomposition (2.1) of A does not share a common eigenvalue. It is
emphasized that each Bj is allowed to have multiple eigenvalues. Note that
the S-genericity of A does not depend on the choice of P in (2.1), although
the matrices By, ..., By themselves vary with P. By the structure theorem,
there exists a symmetric S-generic matrix A in 7. To be specific, choose
distinct o and set Bj = oI, for j=1,...,£in (2.1).

Let A be a symmetric S-generic matrix in 7. Let aq,...,a; be the
distinct (real) eigenvalues of A with multiplicities denoted as my, ..., my,
and Q = [Q1, ..., Q] be an orthogonal matrix consisting of the eigenvectors,



where @Q; is an n X m; matrix for ¢ = 1,..., k. Then we have

allml O O
O OéQImQ O

O (0] "
O O O ak[mk

QTAQ = diag (a1 Im,, . .., ol im,) = . (3.3)

QS |00

Let K ={1,...,k} and V; = Im(Q;), which is the eigenspace for the eigen-
value a;, where ¢ = 1,..., k. Each eigenvalue «; of A is an eigenvalue of B;
for some (uniquely determined) j and the multiplicity of «; in A is equal to
m; times the multiplicity of o; in B;.

The eigenvalue decomposition of a symmetric S-generic matrix A is con-
sistent with the decomposition into simple components of 7 as follows.

Proposition 3.1. Let A € 7 be symmetric and S-generic. For each i €
{1,...,k}, there exists j € {1,...,¢} such that V; C U;. Hence there exists
a partition of K = {1,...,k} into ¢ disjoint subsets:

K=K U---UKy (3.4)
such that
U=V, j=1..1¢ (3.5)
iGKj
||

The partition (3.4) of K can be determined as follows. Let ~ be the
equivalence relation on K defined as the symmetric and transitive closure
of the binary relation:

i~i = Fp(A<p<m):QlAQy# O, (3.6)
where ¢ ~ ¢ for all ¢ € K by convention.

Proposition 3.2. The partition (3.4) coincides with the partition of K into
equivalence classes induced by ~.

Proof. This is not difficult to see from the general theory of matrix *-algebra,
but a proof is given here for completeness. It is also mentioned that the proof
below is almost identical with the proof of Proposition 3.3 in [12]. Denote
by {Li,..., Ly} the equivalence classes induced from ~.

If i ~ ', then Q] A,Qy # O for some p. This means that for any I C K
with i € I and i’ € K\ I, the subspace @,/ ; Vi is not invariant under A,
or A; . Hence V;; must be contained in the same simple component as V;.
Therefore each L; must be contained in some K.

To show the converse, define a matrix Q; = (Q; | ¢ € L;), which is
of size n x ZieLJ_ m;, and an n X n matrix E; = QJQ;F for j =1,...,7.
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Each matrix E; belongs to 7, as shown below, and it is idempotent (i.e.,
E;> = Ej) and Fy + -+ + Ep = I,,. On the other hand, for distinct j and
j" we have Q[ A,Q; = O for all p, and hence Q] MQ; = O for all M € T.
This implies that E;M = ME; for all M € 7. Therefore Im(F}) is a union
of simple components, and hence L; is a union of some Kj’s.

It remains to show that F; € 7. Since a;’s are distinct, for any real
numbers uy, ..., u; there exists a polynomial f such that f(«;) = u; for
i=1,...,k. Let fj besuch f for (uq,...,uy) defined as u; = 1 for i € L; and
u; =0fori € K\ L;j. Then E; = Q;Q] = Q- fj(diag (1L, . .., xlm,)) -
QT =Q f;(QTAQ)- Q" = f;(A). This shows F; € 7. O

A symmetric S-generic matrix A can be obtained from a random linear
combination of generators, as follows. For a real vector r = (r1,...,rxN) put

A(r)=riA; + -+ ryAN.

We denote by span{---} the set of linear combinations of the matrices in
the braces.

Proposition 3.3. If span{/l,, A1,..., Ay} = 7, there exists an open dense
subset R of RY such that A(r)" + A(r) is S-generic for every r € R.

Proof. Let B,; denote the matrix B; in the decomposition (2.1) of A =
A;— + A, for p = 1,...,N. For j = 1,...,¢ define f;(\) = f;(N\s7) =
det(A — (r1Bij + --- + rnByj)), which is a polynomial in A, ry,...,7n.
The matrix A(r)" + A(r) is S-generic if and only if f;(\) and fj(\)
with j # j' have no common root, and the latter condition is equivalent
to the resultant of f;(A) and fj(\) being nonzero. Each resultant is a
nonzero polynomial in r1,...,75, since 7 has at least one symmetric S-
generic matrix A, which can be represented as A = rol,, + A(r)" + A(r)
for some ry € R and » € RY by the assumption on the linear span of the
generators. Letting X;;; be the zero set of the resultant of f;(\) and f;/()),
we can take R = RN \ (Uj2;3;5). O

4 Decomposition into Irreducible Components

Each simple component 7; is to be decomposed further into irreducible com-
ponents. In this section, we focus on a single 7; and omit the subscript j
for notational simplicity. In other words, we assume that 7 is a simple
x-algebra of n x n matrices.

By the structure theorem, we have three cases with some m and 7:

Case R: P'TP={B®I;:Be My}

(
Case C: P'TP={B®I;:BcCy} (n=2wn),
Case Hi: P'TP={B®1Is:BcH} (n=4nm). (4.9)



In other words, for each A € 7, there exists B such that
PTAP = B® I, (4.10)

where B € M, in Case R, B € Cj in Case C and B € Hj; in Case H.
Conversely, in Case R, for every B € Mj,, there exists A € 7 such that
(4.10) is true, and similarly in Case C and Case H. Note that in the structure
theorem we have I7 ® B in contrast to B® I here, which is more convenient
for subsequent arguments. Note that I;; ® B and B ® I are connected by
a permutation, as explained in Section 2.

4.1 I-generic matrix

Our algorithm for the decomposition into irreducible components makes full
use of the eigenvalue structures of My, C;, and Hjy, which have the following
characteristics. The eigenvalues of a matrix in My consist of a number of
reals and pairs of complex conjugates, both possibly with multiplicities.
The eigenvalues of a matrix in Cy consist of pairs of complex conjugates,
which implies in particular that the multiplicity of a real eigenvalue is even.
The eigenvalues of a matrix in Hjy consist of pairs of complex conjugates
appearing twice, which implies in particular that the multiplicity of a real
eigenvalue is even and at least four.

We introduce another kind of genericity notion as follows, where 7 is
assumed to be a simple x-algebra. Let us say that A is I-generic (generic in
eigenvalue structure with respect to irreducible components) if the following
is true for the matrix B such that PTAP = B ® I5 in (4.10): in Case R
or in Case C, all the eigenvalues of B are simple, and in Case H, all the
eigenvalues of B have multiplicity two.

In Case R, an I-generic matrix has distinct 7 real or complex eigenvalues,
each with multiplicity m. In this case, there exists a symmetric I-generic
matrix. In Case C, an I-generic matrix has distinct 272 complex (nonreal)
eigenvalues. Half of them are conjugate to the remaining half and the mul-
tiplicities of the eigenvalues are all m. In Case H, an I-generic matrix has
distinct 27 complex (nonreal) eigenvalues. Half of them are conjugate to
the remaining half and the multiplicities of the eigenvalues are all 2m.

The following proposition can be proven by the same argument as the
proof of Proposition 3.3.

Proposition 4.1. If span{l,, A;,..., Ax} = 7, there exists an open dense
subset R of R such that A(r) is I-generic for every r € R. In Case R, this
statement remains true when A(r) above is replaced by A(r)" + A(r).

Proof. Let B, denote the matrix B in the decomposition (4.10) of A = A,
ie., PTA,P = B, ® I5,. Define f(\) = f(A\;7) = det(\ — (1 By +--- +
rnNBy)), which is a polynomial in \,r1,...,ry.



In Case R or in Case C, the matrix A(r) is I-generic if and only if
f(XA) does not have multiple root, and the latter condition is equivalent to
the resultant of f(A) and f/(\) being nonzero. The resultant is a nonzero
polynomial in r1,...,ry, since 7 has at least one I-generic matrix A, which
can be represented as A = rql,, + A(r) for some rg € R and r € RV by the
assumption on the linear span of the generators. Letting ¥ be the zero set
of the resultant of f(\) and f’()\), we can take R = RV \ ¥.

In Case H, by the eigenvalue structure of H;, there exists a polynomial g
in A such that f(A) = g(\)2. The matrix A(r) is I-generic if and only if g(\)
has no multiple root, and the latter condition is equivalent to the resultant
of g(\) and ¢’(\) being nonzero. This is further equivalent to the resultant of
f(A) and f”(\) being nonzero. The resultant of f(\) and f”()\) is a nonzero
polynomial in r1,..., 7y, since 7 has at least one I-generic matrix A, which
can be represented as A = rql,, + A(r) for some rg € R and r € RV by the
assumption on the linear span of the generators. Letting ¥ be the zero set
of the resultant of f()\) and f”()\), we can take R = RV \ X.

In Case R, the above argument remains true when we replace A(r) by
A(r)T + A(r), since there exists a symmetric I-generic matrix. O

4.2 Identifying the case

In this section, we propose an algorithm that identifies the type of a sim-
ple algebra 7 as Case R, Case C or Case H. By adding transposes or
products of some of the given generators, if necessary, we can assume that
span{l,, Ay,..., AN} =T.

Our algorithm consists of two stages. At the first stage, we decide
whether 7 is in Case R or not. We conclude that 7 is in Case R, if the
multiplicity of the eigenvalues of a random linear combination, say, A of the
generators is equal to the multiplicity of the eigenvalues of AT + A. At the
second stage, we identify 7 as Case C or Case H. Let d be the dimension
of 7 as a linear space, and p be the multiplicity the eigenvalues of some
I-generic matrix. In Case C, we have n? = 2du? because n = 2im, d = 21>
and p = m, whereas in Case H, we have n? = du? because n = 4nm, d = 41>
and p = 2m. We can thus distinguish between Case C and Case H.

4.3 Case R: T ~ M,

In this section, we consider Case R, where we have n = nm. In this case,
there exists a symmetric I-generic matrix and such a matrix can be obtained
through random linear combination of symmetric matrices. By virtue of
this fact the algorithm of [12], with a slight modification, can be used in
our general case. We describe the algorithm in our present notation for
completeness and also for readers’ convenience. It also serves as a prototype
for the more complicate procedures for Case C and Case H to be treated in
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Section 4.4 and Section 4.5.

For a matrix A with rows and columns partitioned into 7 blocks of size
m, we denote by Ay; ;) the m xm submatrix in (7, j) block of A (1 <i,j < n).
It follows from (4.7) that for any A € 7, and for all (¢, 7), there exists a real
number b;; such that

We construct an orthogonal matrix P that satisfies (4.7). In view of the
nonuniqueness of such P we impose two additional conditions. The first is
that P diagonalizes a particular A. The second is that P normalizes some
blocks of PTAP,..., PT AN P to scalar matrices. For the normalization of
blocks, we consider a tree T" with vertex V = {1,...,7n}. Each edge of T is
directed and has a label from the set {1, ..., N}; accordingly (i, j; p) denotes
an edge from i to j with label p € {1,..., N}. The condition we impose is
that (PTA,,P)[M] should be a scalar matrix for every edge (7, j;p) of T.

Proposition 4.2 below states that there exists such an orthogonal matrix
P. We write R>q for the set of nonnegative real numbers.

Proposition 4.2. Let 7 be a simple matrix *-algebra isomorphic to M
generated by n x n matrices Ay, ..., Ay, where n = nm for some m, and let
A € T be a symmetric I-generic matrix.

(1) Let (a1, ...,an) be an ordering of distinct eigenvalues of A. There exists
an orthogonal matrix P that satisfies (4.7) and the condition

PTAP = diag (o1 Im, ..., anly). (4.11)

(2) Furthermore, let T' be a tree with the vertex-set V' = {1,...,7n}, each
edge of which is directed and labelled from {1,..., N}. There exists an
orthogonal matrix P that satisfies (4.7), (4.11) and the condition

V(i,7;p) € T, Icpij € R (PTAPP)[Z-J} = cpijlim. (4.12)

Proof. (1) Let R be any orthogonal matrix P in (4.7). Then R" AR = B®1,
for some B € M, which is symmetric because A is symmetric. Let ST BS =
diag (a1, ..., as;) be a diagonalization of B, where S is the orthogonal matrix
consisting of the eigenvectors of B. The matrix Q = R(S® I;,) satisfies (4.7)
and also

QTAQ = diag (a1, . .., onlm).

Hence this matrix () serves as P in the statement (1).
(2) Since @ satisfies (4.7), there exists, for each (i,j;p) € T, a real
number by;; such that (QTAPQ)[,-J] = bpijlm . For cpij = |bpij| € Rxq, we

11



have (QTAPQ)[Z'J}((QTAPQ)[M-])T = cjzm-jlm. With reference to the tree T,
we can choose m x m matrices P, ..., P; such that

Pl = Im,
P =((QAyQ) i) Pifeyis ((i,4;p) € T),
where we define P; = P; if ¢;;; = 0. We then have

PPy =P (Q"4,Q)1(QTAQ)u ) Pi/ck; = PP,

From P, = I7 and the induction with respect to the distance from the
vertex 1 on the tree T, we see that Pi,..., P, are orthogonal matrices.
Hence P = @ - diag (P, ..., Py) is an orthogonal matrix satisfying (4.7),
(4.11) and

(PT AP = P (Q" ApQ) i P
= P (Q"ApQ)i.11(QT 4pQ)ps.i1) " Pi/ i
= CpijIm.
This is (4.12). O
Next, we describe the algorithm for constructing the matrix P in Propo-
sition 4.2 above. The idea is that we first diagonalize a particular A € T
to get an orthogonal matrix that satisfies (4.11), and normalize it as in the
proof of Proposition 4.2 to make it satisfy (4.12). The correctness of our
algorithm is guaranteed by Proposition 4.4. It is a key to the algorithm
that if two orthogonal diagonalizations QT AQ and PT AP of a symmetric
I-generic matrix A have the diagonal elements (eigenvalues) in the same

order, there exist some m x m orthogonal matrices Pi,..., P; such that
P =qQ-diag(Py,...,P).

Algorithm 4.3.

Step 1: Let A € T be a symmetric I-generic matrix.

Step 2: Compute an orthogonal matrix @ such that QT AQ = diag (a1,
for some aq,...,an € R.

Step 3: Let G = (V, E) be a directed graph with vertex-set V = {1,...,n}
and edge-set E = {(7,j;p) : (QTAPQ)[Z»J-} # O}. Fix a spanning
tree T of G.

Step 4: For the tree T, let Py, ..., P; be the m x m matrices that satisfy
Pl - Im,
Pi = ((Q" A4pQ)iij)) " Pi/ewiy  ((i,5;p) € T),

e ,Oéﬁ[m)

where c,;; is the positive number such that (Q T A,Q) [6,4] (QTA,Q) [i,4] )=

2 7.
cpijIm.
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Step 5: Output P = Q - diag (Py,..., Py).
Proposition 4.4. The following are true for Algorithm 4.3.

(1) In Step 3, there exists a spanning tree of G.

(2) In Step 4, for each edge (i,7;p) of the tree T', there exists a positive
number ¢p;; such that (QTAPQ)[M((QTAPQ)[M})T =c2 I,

pijtm
(3) In Step 4, Pi,..., P, are orthogonal matrices.

(4) In Step 5, P is an orthogonal matrix.

(5) In Step 5, P satisfies (4.11) and (4.12) with respect to the ordering of
eigenvalues in Step 2 and the tree T in Step 3.

(6) In Step b, P satisfies (4.7).

Proof. (1) Let R denote the orthogonal matrix P in Proposition 4.2 (1) with
respect to the ordering of the eigenvalues (a,..., ;) in Step 2. We first
claim the following.

Claim: (QTAPQ)[M] # O if and only if (RTApR)[i’j] # 0.

Proof of Claim: Since QT AQ = RT AR, there exist m x m orthogonal
matrices Ry, ..., Ry such that R = @ -diag (Ry,..., Ry). Therefore we have
RI(QTA,Q)i;)R; = (RTALR); ;, which implies the claim.

Suppose that G does not have a spanning tree, i.e., that G is discon-
nected. Let W be one of the connected components of G. Then, for all
i€ WandjeV\W, wehave (R" A,R) i,j] = O for all p. Since T is gener-
ated by Ay,..., Ay we have (RT A’R) iy = O for all A’ € T. However, there
exists a A’ € T that satisfies (RT A'R)}; j # O because R'TR = My @ I,.
This is a contradiction.

(2) Let R denote the orthogonal matrix P in Proposition 4.2 (2) with
respect to the ordering of the eigenvalues (a1, ..., @) in Step 2 and the tree
T in Step 3. By the same argument for Claim in (1), there exist m x m
orthogonal matrices Ry,..., R; such that R = @ - diag (R, ..., Ry). For
each edge (i,7;p) of T, we have from (4.12) that

(QTApQ)i;(QTAQ)u,) " = Ri(RTApR); j(RTApR);; 1) "R

= Ri(cli;lm) R} = ¢biilm,

[i,

ij
where ¢p;; # 0 by the definition of the edges of G.
(3) From P, = I5 and

PP =P ((QTA4,Q)i;)((QTAQ) ;) Pi/cky; = B P,

we see that Py, ..., P, are orthogonal matrices by the induction with respect
to the distance from the vertex 1 on the tree T

13



(4) Since Q and P; (i = 1,...,n) are orthogonal, P = Q-diag (P, ..., Py)
is an orthogonal matrix.

(5) P satisfies (4.11) by the definition of @), and (4.12) by the definition
of Pl,...,Pﬁ.

(6) For A in Step 1, we have PT AP = R" AR. Hence there exist m x 1m
orthogonal matrices Ry, ..., Ry such that R = P - diag (]%1, e ,ﬁ’n) For
each (7, 7;p) in T, evaluating (7, j) block of RTApR, we have

A~

Cpijfm = (RTAPR)[Z-J-} = RZT(PTAPP)[Z-J]R]' = CpinlTRj.

Hence Rl == f?n = R by the induction with respect to the distance
from the vertex 1 on the tree T. Then for each 7,7 and p, there exists a real
number by;; such that

(PTApP)ij) = R(RTALR); R = R(bpijlin) RT = byijlm.
This states that PTApP € My @ Iy, holds for all generators A,. This is
(4.7). O

Two facts are noteworthy in the above arguments: (i) when we normalize
the blocks of the generators with respect to the tree, all other blocks of the
generators automatically become scalar matrices, and (ii) the orthogonal
matrix P in Proposition 4.2 (2) has the degree of freedom represented by
the m x m orthogonal matrix R. These two properties do not carry over to
Case C or Case H, i.e., (i) fails in Case H, and (ii) fails both in Case C and
in Case H. Then we have to design more complicated algorithms.

4.4 Case C: T ~C;

In this section, we consider Case C, where we have n = 2nm. For a matrix
A with rows and columns partitioned into 7 blocks of size 2m, we denote by
Aj;4) the 2m x 2m submatrix in (i, j) block of A (1 <4,j < 7). It follows
from (4.8) that for all A € 7, and for all (, j), there exists a complex number
bf; such that

(PTAP)[Z-J] = (B® In)j, ) = C(b;j) ® I

In this case, there does not exist a symmetric I-generic matrix. Accord-
ingly we use the Schur decomposition instead of the diagonalization.
The Schur decomposition of an 7 X 7 complex matrix Z is defined as

i G2 - Cin
0 0 . :
0 0 0 G

14



where U is a unitary matrix and U™ is its conjugate transpose. The diagonal
elements of U*ZU are the eigenvalues of Z. The Schur decomposition gives
a nested sequence of Z-invariant subspaces {0} = Wy C W; C Wy C -+ C
Wy = C" where V; = W; /Wi_1 is the eigenspace corresponding to the
eigenvalue (;; for i = 1,...,n. Any square matrix can be transformed into
a Schur form, but the decomposition is not unique in two ways. It depends
on the ordering of eigenspaces and also on the choice of orthogonal bases
within eigenspaces. The Schur decomposition can also be defined for a real
matrix. It is a matrix of quasi-upper triangular form, called the real Schur
form, of which the diagonal elements are 1 x 1 blocks corresponding to real
eigenvalues and 2 x 2 blocks expressed as C(z) for complex eigenvalues z.

We can construct an orthogonal matrix P that satisfies (4.8) as follows.
The idea is that we replace the diagonalization in Case R to the Schur
decomposition.

Proposition 4.5 below, to be compared with Proposition 4.2 in Case R,
states that there exists an orthogonal matrix P in (4.8) that meets two
additional conditions: (i) it brings a particular I-generic A to a Schur form
and (ii) it is normalized with respect to a tree. We write eig(-) for the
eigenvalues of a matrix.

Proposition 4.5. Let 7 be a simple matrix *-algebra isomorphic to Cj
generated by nm X n matrices Aq,..., Ay, where n = 2nm for some m, and
let A € 7 be an I-generic matrix.

(1) Let (A1, A1, ..., An, A\a) be an ordering of distinct eigenvalues of A. There
exists an orthogonal matrix P that satisfies (4.8) and the conditions

(PTAP); ;=0 (i>j), (4.13)
(PTAP); 1 = C(\1) ® I, (4.14)
eig((PTAP)[i,i]) ={\, ;\z} (1=2,...,n). (4.15)

(2) Furthermore, let T be a tree with vertex-set V' = {1,...,n}, each edge
of which is directed and labelled from {1,..., N}. There exists an or-
thogonal matrix P that satisfies (4.8), (4.13), (4.14), (4.15) and the
condition

V(i, j;p) € T, Iepij € Ruo: (PTALP) 1 = Clepis) @ Iim = cpijlam.
(4.16)

Proof. (1) Let R be any orthogonal matrix P in (4.8). Then RTAR =
B ® I for some B € C;. We have B = C(B’) for some 1 X i complex
matrix B’, where C(B’) denotes the 27 x 2n real matrix that is obtained
from B’ by replacing each entry of B’ = (b};) by C(b};). Let U*B'U be
the Schur decomposition of B’, where the diagonal elements are ordered
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as (M, ..., \s). Since C(U)TC(U) = C(U*U) = C(I3) = Iz, C(U) is an
orthogonal matrix. Then the matrix Q = R(C(U) ® I;3) satisfies (4.8) and
also

(QTAQ);; =0 (i>j),
(QTAQ)uy =CA\) ® Ly (i=1,...,7).

Hence this matrix () serves as P in the statement (1).
(2) Since @ satisfies (4.8), there exists, for each (i,7;p) € T, a complex

number by,;; such that (QTAPQ)[i’j] = C(b;;) ® I . For cpij = [b;;] € Rxo,
we have (QTAPQ)[i’j]((QTAPQ)[i’j])T = czzm-jlgm. With reference to the tree
T, we can choose 2m x 2m matrices Py, ..., P such that

Py = Iy,
P = ((QTApQ)ij) " Pifes (i, 55p) € T),
where we define P; = P; if ¢;;; = 0. We then have
P/ Py =P (QTA4,Q);(QTAQ)i5)  Pi/chy; = B Py

From P, = I»7 and the induction with respect to the distance from the
vertex 1 on the tree T, we see that Pi,..., P, are orthogonal matrices.
Hence P = @Q - diag (Py,..., Py) is an orthogonal matrix satisfying (4.8),
(4.13), (4.14), (4.15) and

(PTAPP)[i,j] = PiT(QTApQ)[i,j]Pj
= P(Q"ApQ) i (QTApQ) i) " Pi/cyi

= CpijIQm.
This is (4.16). O

Next, we describe the algorithm for constructing the matrix P in Propo-
sition 4.5 above. The idea is that we first decompose a particular A € T
into the Schur form to get an orthogonal matrix that satisfies (4.13), (4.14),
(4.15) and normalize it as in the proof of Proposition 4.5 to make it satisfy
(4.16). The correctness of our algorithm is guaranteed by Proposition 4.7.
It is a key to the algorithm that if two Schur decompositions Q" AQ and
PT AP of an I-generic matrix A have the diagonal elements (eigenvalues) in
the same order, there exist some m x m orthogonal matrices P, ..., Py such
that P = Q - diag (P1,..., Pp).

Algorithm 4.6.

Step 1: Let A € T be an I-generic matrix.
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Step 2: Compute an orthogonal matrix ¢ such that

(QTAQ)[i,j] =0 (i>}j),
by decomposing A into the real Schur form and using the permu-

tation. (It should be noted here that the diagonal blocks of the
real Schur form are I; @ C(\;).)

Step 3: Let G = (V, E) be a directed graph with vertex-set V = {1,...,7n}
and edge-set E = {(4,;p) : (QTAPQ)[Z»J] # O}. Fix a spanning
tree T' of G.

Step 4: For the tree T, let Py, ..., P; be the 2m x 2m matrices that satisfy
Py = I,
Py = ((Q"ApQ)jig) " Pifess (6, 55p) € T),
where c,;; is the positive number such that (Q T A,Q) [i,4] (QTA,Q) [i,4] )=
2. Iom.
Step 5: Output P = @ - diag (P, ..., Pp).
Proposition 4.7. The following are true for Algorithm 4.6.

(1) In Step 3, there exists a spanning tree of G.

(2) In Step 4, for each edge (i,7;p) of the tree T, there exists a positive
number cp;; such that (QTAPQ)[i,j}((QTAPQ)[M)T = C?n»jlgm.

(3) In Step 4, P, ..., P are orthogonal matrices.
(4) In Step 5, P is an orthogonal matrix.

(5) In Step 5, P satisfies (4.13), (4.14), (4.15) and (4.16) with respect to
the ordering of eigenvalues in Step 2 and the tree T' in Step 3.

(6) In Step 5, P satisfies (4.8).

Proof. (1) Let R denote the orthogonal matrix P in Proposition 4.5 (1) with
respect to the ordering of the eigenvalues (A1, A1, ..., Aa, An) in Step 2. We
first claim the following.

Claim: (QTAPQ)[M] # O if and only if (RTAPR)M-] #+ 0.

Proof of Claim: Since QT AQ = R AR, there exist 2m x 2m orthogonal
matrices Ry, ..., R; such that R = @ -diag (Ry, ..., Ry). Therefore we have
R (QTA,Q)i;)R; = (RTALR); ;, which implies the claim.

Suppose that GG does not have a spanning tree, i.e., that G is discon-
nected. Let W be one of the connected components of G. Then, for all
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i€ WandjeV\W,wehave (RTA,R) i,j) = O for all p. Since 7 is gener-
ated by Ay,..., Ay we have (RT A’'R) iy = O for all A’ € T. However, there
exists a A’ € T that satisfies (R" A'R)}; ;) # O because RTTR = C @ I,
This is a contradiction.

(2) Let R denote the orthogonal matrix P in Proposition 4.5 (2) with
respect to the ordering of the eigenvalues (A1, A1, ..., Aa, An) in Step 2 and
the tree T' in Step 3. By the same argument for Claim in (1), there exist
2m x 2m orthogonal matrices Ry, ..., Rj such that R = Q-diag (R, ..., Ry).
For each edge (i, j;p) of T, we have from (4.16) that

(QTApQ)[i,j]((QTAPQ)[Z',J'])T = R'(RTA R)[i j]((RTA R)[i 1) R/

where ¢p;; # 0 by the definition of the edges of G.
(3) From P; = Iy and

PPy =P (QT4,Q)i (QT 4,Q)i )" Pi/cpi; = B P,

we see that Py, ..., Py are orthogonal matrices by the induction with respect
to the distance from the vertex 1 on the tree T.
(4) Since Q and P; (i = 1,...,n) are orthogonal, P = @Q-diag (P,..., Ps)

is an orthogonal matrix.

(5) P satisfies (4.13), (4.14) and (4.15) by the definition of @), and (4.16)
by the definition of Pi,..., Ps.

(6) For A in Step 1, we see that PT AP and R" AR have the diagonal
elements in the same order. Hence there exist 2m x 2m orthogonal matrices
Ri,...,Rs such that R = P - diag(Ry,...,Rs). For each (i,j;p) in T,
evaluating (i, j) block of RT A, R, we have

Cpijfgm = (RTAPR) [i

i1 =R (PTAP) R = cpis R Ry

A~

Hence Ry = -+ = R, = R by the induction with respect to the distance
from the vertex 1 on the tree T. By (4.14), the definition of P and P; = 53,
we have
C()\l) ® I* == (RTAR)[LH == RT(PTAP)[LI]R

=RT(QTAQ)p R =R"(C(\) ® In)R. (4.17)
Since A; is an eigenvalue of I-generic matrix A, we have A\; € C\R. Therefore
every complex number z can be written as z = a + A1 for some «,(F € R,
and hence we have

RT(C(2) ® In)R = R (adam + BC(\1) @ In)R
= alyy + BC(N) @ Iy = C(2) @ I,
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by (4.17). Then for each 4, j and p, there exists a complex number b/ .. such

Dij
that
(PTApP)i = RIRT AR BT = R(C(H) @ La)ji R = Clby) © L
This states that PT A, P € Cy ® I 7 holds for all generators A,. This is (4.8).
O

According to this proof, the orthogonal matrix P in Proposition 4.5 (2)
has the degree of freedom represented by a 2m x 2m orthogonal matrix R
such that C(A\;) ® I, is invariant under the transformation by R. Recall
that, in Case R, the degree of freedom of P in Proposition 4.2 (2) is also
described by an orthogonal matrix R, on which no additional restrictions
are imposed. This difference may be ascribed, as we see, to the fact that the
complex field C is generated by two elements 1 and ¢, whereas R is generated
by a single element. In Case H, to be considered in the next section, we
have even smaller degree of freedom as a consequence of the fact that the
quaternion field H is generated by three elements 1,2 and .

4.5 Case H: T ~ H;

In this section, we consider Case H, where we have n = 4n/m. For a matrix
A with rows and columns partitioned into 7 blocks of size 4m, we denote by
Aj; 5 the 4m x 4m submatrix in (4,7) block of A (1 <14,j < 7). It follows
from (4.9) that for any A € 7, and for each (7, j), there exists a quaternion
number b;; such that

The argument of this case is basically parallel to Case C. Let us say
that B’ is a quaternion matrix if each entry of B’ is a quaternion number.
An 1 x 1 quaternion matrix U is called unitary if U*U = UU* = I, where
U™ is the quaternion conjugate transpose of U. A quaternion variant of the
Schur decomposition is known [4] to exist. That is, for any 7 X i quaternion
matrix B’, there exists a quaternion unitary matrix U such that U*B'U is
an upper triangular form with quaternion entries. We can choose diagonal
elements of U*B'U to be quaternions that are free from j and k components.

Proposition 4.8 below, to be compared with Proposition 4.2 in Case R
and Proposition 4.5 in Case C, states that there exists an orthogonal matrix
P in (4.9) that meets two additional conditions: (i) it brings a particular
I-generic A to a Schur form and (ii) it is normalized with respect to a tree.

Proposition 4.8. Let 7 be a simple matrix *-algebra isomorphic to Hj
generated by n X n matrices A1, ..., Ay, where n = 4nm for some m, and
let A € 7 be an I-generic matrix.
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(1) Let (A1, A1, ..., An, A\a) be an ordering of distinct eigenvalues of A. There
exists an orthogonal matrix P that satisfies (4.9) and the conditions

(PTAP); ;=0 (i>j), (4.18)
(PTAP) 1 = H(M) @ I, (4.19)
eig(PTAP) ) = {X A} (i=2,...,0). (4.20)

(2) Furthermore, let T' be a tree with vertex-set V' = {1,...,n}, each edge
of which is directed and labelled from {1,..., N}. There exists an or-
thogonal matrix P that satisfies (4.9), (4.18), (4.19), (4.20) and the
condition

V(i,5;p) € T, 3epi; € Roo: (PTALP) ;1 = H(cpij) ® Iim = cpijlam.
(4.21)

Proof. (1) Let R be any orthogonal matrix P in (4.9). Then RT AR = B®I,
for some B € Hy. We have B = H(B’) for some . x 7 quaternion matrix
B', where H(B') denotes the 4n x 4n real matrix that is obtained from
B’ by replacing each entry of B' = (b};) by H(b;;). Let U*B'U be the
quaternion variant of the Schur decomposition of B’, where the diagonal
elements are free from j and k components and ordered as (A1,...,A\).
Since H(U)TH(U) = H(U*U) = H(I;) = Iz, H(U) is an orthogonal
matrix. Then the matrix Q@ = R(H(U) ® I,) satisfies (4.9) and also

(QTAQ)[M] =0 (i>}]),
(QTAQ)[M] =HMN)®Iz (G=1,...,n).

Hence this matrix () serves as P in the statement (1).
(2) Since @Q satisfies (4.9), there exists, for each (i, j;p) € T, a quaternion

number b, such that (QTAQ)s = H (b)) @ I . For cpij = |by,;| € Rxo,
we have (QTAPQ)[,-J]((QTAPQ)M])T = cfn-jL;m. With reference to the tree
T, we can choose 4m x 4m matrices Py, ..., Py such that

P]. = I4T?L7

P =((QAyQ)ig) Pifeyis ((i,j;p) € T),
where we define P; = P; if ¢;;; = 0. We then have
PP = B(QTAQ)i1((QTAQ)s)  Pi/cyij = B Pi.

From P; = I47 and the induction with respect to the distance from the
vertex 1 on the tree T, we see that P,..., P, are orthogonal matrices that
can be written as P; = H(Uj) for some quaternion unitary matrix U;. Hence
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P = @Q -diag(Py,...,P,) is an orthogonal matrix satisfying (4.9), (4.18),
(4.19), (4.20) and

(PTAP) ;5 =P (QTAQ)u ;P
=P (QTApQ);i ;) ((QT 4Q) 151 " Pi/cpi
= Cpijlam.
This is (4.21). O

We now propose an algorithm which constructs the matrix P in Proposi-
tion 4.8 above. In Case C, we have seen that an orthogonal matrix satisfying
the conditions (4.13), (4.14), (4.15) and (4.16) in Proposition 4.5 is good for
(4.8). In Case H, however, the conditions (4.18), (4.19), (4.20) and (4.21)
specified in Proposition 4.8 are not sufficient for (4.9), and we use the skew-
Hamiltonian Schur decomposition [3] to make the matrix satisfy (4.9).

Let J be a 4m x 4m matrix defined as

| O Iy
J_[bm ) ]

We call a matrix S symplectic if STJS = SJST = J, and a matrix W skew-
Hamiltonian if W.J = —(WJ)T. Note that ST'WS is skew-Hamiltonian for
a symplectic matrix S and a skew-Hamiltonian matrix W.

The next proposition states that every skew-Hamiltonian matrix can
be transformed to the so-called skew-Hamiltonian Schur form (see (4.22)
below) by an orthogonal symplectic matrix. See [2, 3] for an algorithm for
computing the skew-Hamiltonian Schur decomposition.

Proposition 4.9 ([3]). For every skew-Hamiltonian matrix W, there exists
an orthogonal symplectic matrix S such that

Wi Wia ]

T _
SWS—[ o Wy

(4.22)
where Wi is a quasi-upper triangular matrix (the real Schur form) and Wiq
is a skew-symmetric matrix (Wi = —W}}). ]

Let II denote the 4m x 4m permutation matrix representing the following
permutation:

1 2 3 --- 2m 2m+1 2m+2 2m+3 --- 4m
1 35 --- 4m—1 2 4 6 - 4m )
We have
O -1 O O
. T _ o I, @) (0] @)
J =TJII' =H()® Iz = 0 0 o —I. |
0] O I; 0O



and for a matrix W in the skew-Hamiltonian Schur form (4.22) with Wy, =
Iy, ® C(2) and Wiy = O, we have

Iy, ® C(1) O

"0 7 _nec

" =H() @ In.

By using J’ instead of J we say that S is a permuted symplectic matrix if
STJ'S = S8J'ST = J'Oand W is a permuted skew-Hamiltonian matrix if
WJ' = —(WJ")T. Note that IT" STI is symplectic if S is permuted symplec-
tic and IITWII is skew-Hamiltonian if W is permuted skew-Hamiltonian.

Proposition 4.10. For a matrix X = R(H(h)®I,)R" with an orthogonal
permuted symplectic R and a quaternion h = a + @b + jc + kd, there exists
an orthogonal permuted symplectic matrix S such that

STXS=H(a+wb+ )V +d?) @ I,

Proof. Put X = XM + X@ where XV = R(H(a 4 ) ® I;)R" and
X® = R(H(je + kd) @ I,)RT. Since J' = H(1) ® I, we have X2 J =
R(H(=ke+ 3d) @ I;)RT = —(X@J)) T and therefore X? is a permuted
skew-Hamiltonian matrix. Since X () is normal (i.e., X®?T X = xX® x@T)
and the eigenvalues of X(?) are +1v/c2 + d2, the skew-Hamiltonian Schur de-
composition of II'" X 1T is given by

ST XIS = /2 + 2 m®c) OC()
—1m @ C(2

with some orthogonal symplectlc matrix S. Then we have STX®§ =
cc + & lm, where mce an are orthogona
VE T+ d2H()) @ I;,, where § = TISIT. Since R and S hogonal

permuAted sAymplectic, we have STXMG = H(a + 1) ® I5,. Therefore we
have STXS = H(a + 1+ 3V +d?) @ I, . O

The above proof shows how to compute the orthogonal permuted sym-
plectic matrix S when we know that X = R(H(h) ® I)R" with some
(unknown) permuted symplectic matrix R and some (unknown) h = a +
1b + jc + kd. The value of a is obtained as the (1,1) component of X, since
H(1),H(y) and H(k) are skew-symmetric matrices. The value of b is ob-
tained as the negative of the (1,1) component of X .J', since J' = H(1)®1I5 =
R(H(1) ® I;)RT and XJ' = R(H(ja — b — ke +1d) ® I,)RT. Then we let

XV = alym +bJ' = R(H(a + 1) ® In)RT,

where X is a permuted skew-Hamiltonian. Let STIIT X P1LS be a skew-
Hamiltonian Schur decomposition of II'" X ) TI. Then we obtain S in Propo-
sition 4.10 by S = ILSII'.
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If S is an orthogonal permuted symplectic matrix in Proposition 4.10 for
X = R(H(h) ® I,)R" with a particular h = a + b + jc + kd with ¢ # 0
or d # 0, then, for every matrix Y = R(H (W) ® I;)R" with i’/ € H, we
have STY'S = H(h") ® I for some quaternion h”. This follows from the
fact that the quaternion field is generated by three elements 1,7 and h as
algebra, and that

STR(H(h) @ In)RTS = H(a+1b+ )V 2 + d2) @ I,

Next, we propose an algorithm for constructing the matrix P in (4.9).
The algorithm can be divided into two major stages. The first stage, con-
sisting of Steps 1-5 below, is the same as Algorithm 4.6 for Case C, and
constructs an orthogonal matrix P = Q - diag (Py, ..., P;). This matrix P
is then modified to P = P - diag (S’, cee 5’) at the second stage consisting of
Steps 6—7, where we make use of the skew-Hamiltonian Schur decomposition

[3].
Algorithm 4.11.
Step 1: Let A € T be an I-generic matrix.
Step 2: Compute an orthogonal matrix @ such that
(QTAQ)i; =0 (i> 1),
QTAQ) g =HN)®In (i=1,...,7)

by decomposing A into the real Schur form and using the permu-
tation. (It should be noted here that the diagonal blocks of the
real Schur form are I @ H(\;).)

Step 3: Let G = (V, E) be a directed graph with vertex-set V = {1,...,n}
and edge-set E = {(7,;p) : (QTAPQ)[M-] # O}. Fix a spanning
tree T of G.

Step 4: For the tree T, let ]51, el P, be the 4m x 4/m matrices that satisfy
Pp = Iy,
Pj = ((QTAPQ)[z’,j])TPi/Cpij ((i,j;p) € T),

where c,;; is the positive number such that (Q T A,Q) [i,4] (QTA,Q) [1,4] )=

2
sz’lem-

Step 5: Let P = Q - diag (Pl,...,ﬁﬁ).
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Step 6: Take i,j,p (where 1 < i,j5 <0, 1 < p < N) such that X =
(PTApP)[iJ] cannot be written as H(z) ® I, for any z € C and

let X®) = X — alyy — bJ', where a is the (1,1) entry of X and
—b is the (1,1) entry of XJ'. Let S be an orthogonal symplectic
matrix which decomposes IIT X@1II into the skew-Hamiltonian
Schur form.

Step 7: Output P = P - diag (S’, ce S*), where § = I1T SII.
Proposition 4.12. The following are true for Algorithm 4.11.

(1) In Step 3, there exists a spanning tree of G.

(2) In Step 4, for each edge (i,7;p) of the tree T, there exists a positive
number c¢p;; such that (QTAPQ)[M}((QTAPQ)[M})T = Czij—@m-

(3) In Step 4, Py,..., P, are orthogonal matrices.
(4) In Step 5, P is an orthogonal matrix.

(5) In Step 5, P satisfies (4.18), (4.19), (4.20) and (4.21) with P replaced
by P with respect to the ordering of eigenvalues in Step 2 and the tree
T in Step 3.

(6) In Step 5, there exists an orthogonal permuted symplectic matrix R
such that, for each 4, j and p,

(PTAP) ;) = RT(H(by;) ® In) R

pij

: /
for some quaternion bm-j7

(7) In Step 6, there exists X = (PTA,P)
H(z) ® I, for any z € C.

where 1 <17,7 <n,1 <p<N.

[i.] that cannot be written as

(8) In Step 7, P is an orthogonal matrix.

(9) In Step 7, P satisfies (4.18), (4.19), (4.20) and (4.21) with respect to
the ordering of eigenvalues in Step 2 and the tree T' in Step 3.

(10) In Step 7, P satisfies (4.9).

Proof. (1)-(5) can be proven in the similar way as Proposition 4.7.

(1) Let R denote the orthogonal matrix P in Proposition 4.8 (1) with
respect to the ordering of the eigenvalues (A1, A1, ..., Aa, An) in Step 2. We
first claim the following.

Claim: (QTAPQ)[Z-J] # O if and only if (RTAPR)H’]-] # 0.

Proof of Claim: Since QT AQ = R" AR, there exist 47 x 47 orthogonal
matrices Ry, ..., R; such that R = @ -diag (Ry,..., Rs). Therefore we have
R (QTA,Q)i;)R; = (RT ALR); ;, which implies the claim.
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Suppose that G does not have a spanning tree, i.e., that G is discon-
nected. Let W be one of the connected components of G. Then, for all
i€ WandjeV\W,wehave (RTA,R) ;] = O for all p. Since 7 is gener-
ated by Ay, ..., Ay we have (RT A'R) i) = O for all A’ € T. However, there
exists a A’ € 7 that satisfies (RT A’R); 1 # O because R' TR = H; @ Iy
This is a contradiction.

(2) Let R denote the orthogonal matrix P in Proposition 4.8 (2) with
respect to the ordering of the eigenvalues (A1, A1, ..., As, An) in Step 2 and
the tree T in Step 3. By the same argument for Claim in (1), there exist
4m x 4m orthogonal matrices Ry, ..., R such that R = Q-diag (Ry, ..., Ry).
For each edge (i, j;p) of T, we have from (4.21) that

(QTAQ)u1(QTA4Q);,) " = Ri(RTAR); j(RTAR); 1) " R}

2 T 2
= RT(Cp’LjI4m)R1, = Cpijl4m7

[4,5]

where ¢p;; # 0 by the definition of the edges of G.
(3) From Py = I and

PPy =P (QTAQ)i1(QT A4Q)0)  Bi/cpiy = B B

we see that 151, e P;, are orthogonal matrices by the induction with respect
to the distance from the vertex 1 on the tree 7'

(4) Since Q and P; (i = 1,...,7) are orthogonal, P = Q-diag (Py, ..., Py)
is an orthogonal matrix.

(5) P satisfies (4.18), (4.19) and (4.20) by the definition of Q, and (4.21)
by the definition of Py, ..., Ps.

For A in Step 1, we see that PT AP and R" AR have the diagonal ele-
ments in the same order. Hence there exist 4m x 4m orthogonal matrices
Ri,...,R; such that R = P - diag(Rl,...,Rh). For each (i,j;p) in T,
evaluating (i, j) block of RT A, R, we have

Cpijf4m = (RTAPR)H’]-] = RZT(]STApP)[LJ]R] = sz‘jRiTRj.

Hence Ry = -+ = Ry, = R by the induction with respect to the distance
from the vertex 1 on the tree T. Therefore, for all 4, j,p with 1 < 4,5 < n,
1 <p < N, there exists a quaternion number b;n-j such that

(PTA,P);i ;)= R(RTA,R); jRT = R(H(b,;) @ In)R'.
The (1,1) block of RT AR is evaluated as

H()\l) R Iy = (RTAR)[L” = RT(PTAP)[LHR
=RTN(QTAQ)u R =RT(H\) & Iz)R (4.23)
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by (4.19), the definition of R and P, = I4m. Since )\; is an eigenvalue of
I-generic matrix A, we have A\; € C\ R. Therefore the imaginary unit 2 can
be written as 1 = a + G\ for some «, 3 € R, and hence we have

RTJR=RT(HG) ® In)R = R (alym + BH(A) ® In)R
= alymn + BH(A) @ Iy, = J'

by (4.23). This says that R is an orthogonal permuted symplectic matrix.
(7) This follows from (6) and 7 ~ Hj.
(8) Since P and S are orthogonal, P = P-diag (S’, ce 5’) is an orthogonal
matrix.
(9) This follows from (5) and that S is orthogonal permuted symplectic.
(10) The construction of S is consistent with the description given after
Proposition 4.10. By Proposition 4.10, which is applicable by (6), we see
that for all 4,7,p with 1 < 14,57 <n, 1,< p < N, there exists a quaternion
number by, such that

pij

This states that PTApP € Hp ® Iy holds for all generators A,. This is
(4.9). O

5 Numerical Examples

In this section we demonstrate the proposed algorithm for the irreducible
decomposition in Case C and Case H. Case R is not included here as it is
almost the same as the algorithm of [12]. Recall also that our algorithm for
the simple decomposition is essentially the same as that of [12].
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5.1 Example for Case C

We consider the x-algebra 7" generated by A; and As below:

[ 3.98 1.55
—-3.38 3.40
2.54 —0.32
—-0.29 0.20

1.48 —1.29
1.81 291
3.10 —3.32
1.67 1.91
0.23 5.02
—-0.70 2.35
2.66 1.48

r7.17 3.14
—4.26 5.89
3.33  1.32
147 234
0.52 —0.13
-0.99
—1.40 4.06
3.31 —4.18
0.65 —0.90
142 2.58
—0.46
3.05 —0.39

2.14 0.69
0.18
4.36
1.15
—2.64 —0.17 —0.05
—2.72
—0.47 —2.43
—0.04
—0.51

1.61
—3.61

0.94 0.43
-3.09 0.93 —-0.16
—4.10 294 091
4.78 —4.44 —3.16
—-0.60 3.02 1.53
0.71 —1.06 1.48
1.39 —1.56
—1.10 2.10 0.46
—0.96 —1.38 —0.79
0.43 0.71 0.56
3.48 1.71 1.68

-0.64 —0.10 —0.17 0.85

1.39
—0.33
4.58
0.61
—1.93
0.30 —3.22
1.62
2.04

—-0.50 0.78 1.50
—-3.45 1.67 —0.13
—-3.93 4.43 0.62
5.75 —3.78 —1.36
-3.95 4.10 1.97
2.70 0.20 2.15
—0.43 1.80 —0.84
0.20 —0.12 —-0.83

2.17 —1.02 -0.93 —-0.70

1.39
1.24 —4.02
0.63

—0.89 —1.49 —3.30
3.07 —=2.20 1.98
0.38 0.01 1.58

2.96
2.23
0.50
2.49
—1.71
—1.64
2.03
0.99
0.37
-0.19
1.14
0.63

3.84
0.70
0.85
0.76
—-1.14
1.28
3.23
—-0.97
0.32
3.43
—0.46
0.74

—1.49 —0.60
—1.52 —0.81
0.35 0.51
1.00 0.86
—0.82 —1.49
—2.42
—2.21 —-1.60
4.27 1.57
2.22 0.40
—-0.30 2.16
—1.29 —1.57
—1.51 —1.64

—1.62 —0.91
—2.83 —0.31
0.25 —0.83
0.15 2.09
-0.09 0.03
—0.50 —1.11
—-3.08 —1.53
3.98 —0.14
0.84 1.58
—-0.55 —0.21
—4.10 —1.76
—2.78 0.10

COEWOOOOWUO o —
OWHDHO UL N B O i =]

1.22
—0.21
1.60
3.90
—1.96

1.97 —-1.55

1.24
0.14
1.76
2.47 —1.06 —0.84
0.61

.87

3
4
2
0
1
0
3
3
8
0
3
2

3.91 1.287
—2.23 —4.25
0.52 0.09
—-0.55 0.44
213 254
3.27  0.53
0.55 —0.28
—-1.19 1.86
—-0.84 1.22

4.06 —1.23
1.38 3.98

3.22  2.937
~1.87 —1.38
0.06 1.36
—0.95 0.18
2.45 0.16
3.59  0.03
1.11 —1.30
0.11 4.46
—0.98 —1.71
—3.45 —0.77
530 1.21
2.84 2.39 |

According to the procedure of Section 4.2 we can recognize this case as Case
C with 7 = 3 and m = 2. This means that we have PTTP = C3 ® I, with
a suitable choice of an orthogonal matrix P.
Step 1: As an I-generic matrix A, we take the following matrix:

3.61
—2.68
2.04
0.15
—1.29
0.66
0.67
2.34
1.02
0.42
—-0.47
2.05

\
CHWONNOOOOWH
U0 oy i &t i= O i
COORNINBR =D — &

CNHOoONOOWo

N RO BRINO R
RO O ONWEREJWN

0.26 0.66 0.54
—2.36 0.84 —0.11
-3.00 249 0.61

3.73 =3.14 —1.96
—1.14 246 1.22

0.94 —0.52 1.24
—1.38 1.11 —1.00
—-0.54 1.09 0.07
—-0.72 —0.92 —0.56

0.04 0.06 —0.39

248 044 1.30

0.03 —0.09 0.78

2.37
1.32
0.44
1.48
—1.15
—0.60
1.75
0.32
0.26
0.62
0.50
0.49

—1.13 —-0.51

—1.40 —0.49 —

0.24 0.10
0.56 0.89
—0.45 —0.78
—-1.39 0.81
—1.81 —1.17
3.09 0.80
1.35 0.55
—-0.27 1.10
—1.54 —1.20
—1.38 —0.85

2.75  1.297
—1.57 —2.54
0.29 0.33
—-0.49 0.27
1.64 1.38
249 0.29

Step 2: By decomposing A into the real Schur form and using the permu-
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tation, we obtain a quasi-upper triangular matrix

[6.53 0 —4.92 0] 0.37 0.79 —0.48 —0.44| 0.25 —0.27 0.32 1.287
0 6.53 04.92|-0.39 0.58 0.81 —0.18| 0.57 0.17 1.18 —0.37
4.92 0 6.53 0] 048 —0.44 0.37 —0.79|—-0.32 —1.28 0.25 —0.27
0 —4.92 06.53] 0.81 0.18 0.39 0.58| 1.18 —0.37 —0.57 —0.17
0 0 0 0] I.85 0 1.25 0[{—0.46 0.29 —0.36 0.63
QTAQ _ 0 0 0 0 0 1.85 0 —1.25] 0.38 0.51 —0.58 —0.28
- 0 0 0 0/—-1.25 0 1.85 0| 0.36 —0.63 —0.46 0.29 |~
0 0 0 0 0 1.25 0 1.85/—0.58 —0.28 —0.38 —0.51
0 0 0 0 0 0 0 0[—0.70 0 —1.01 0
0 0 0 0 0 0 0 0 0 —0.70 0 —1.01
0 0 0 0 0 0 0 0| 1.01 0 —0.70 0
0 0 0 0 0 0 0 0 0 1.01 0 —0.70 |
where @ is an orthogonal matrix given as
[ 0.32 —-0.20 —0.59 —0.14|-0.31 —-0.13 0.14 —0.15| 0.34 0.37 —0.21 0.237
—0.42 0.52 —0.20 —0.06| 0.05 0.08 —0.02 —0.28|—0.34 0.46 —0.31 —0.08
0.31 0.23 —0.40 0.32|-0.28 0.27 0.03 0.48/—-0.33 —0.16 —0.06 —0.27
0.31 0.01 0.21 —-0.67|—0.00 —0.09 —0.29 0.26|—0.07 0.24 —0.12 —0.42
—-0.25 —0.14 —-0.17 0.36| 0.28 0.04 —0.53 0.27| 0.46 0.23 —0.10 —0.24
_ |1 —0.16 —0.44 —0.06 —0.04|—-0.02 0.46 0.35 —0.16|—0.05 0.28 0.35 —0.47
Q= -0.10 0.19 -0.44 —0.13|-0.00 —0.44 —-0.16 —0.26| 0.04 —0.30 0.49 —0.36
0.48 —0.11 0.11 0.32| 0.02 0.06 —0.48 —0.47|—-0.32 0.22 0.18 0.05
0.19 0.13 0.00 —0.07| 0.09 0.39 —0.01 —0.45| 0.33 —0.44 —0.44 —0.30
0.09 0.33 —0.16 —0.31| 0.20 0.54 —0.17 0.10f 0.20 0.03 0.44 0.39
—0.37 —0.43 —0.21 —0.26|/—-0.29 0.19 —0.44 —0.02|—0.30 —0.31 —0.15 0.20
0.15 —0.25 —0.34 —0.09| 0.78 —0.08 0.15 0.06/—0.32 —0.10 —0.16 0.07 |
Step 3: Since
r 8.19 0 —6.29 0] 0.81 1.15 —0.67 —1.04| 0.29 —0.63 0.50 1.787
0 8.19 0 6.29/-0.98 091 1.21 —0.53] 0.59 0.30 1.79 —0.49
6.29 0 8.19 0| 0.67 —1.04 0.81 —1.15|—-0.50 —1.78 0.29 —0.63
0 —6.29 0 819/ 121 053 098 0.91] 1.79 —0.49 —0.59 —0.30
—0.14 0.14 —0.22 —-0.36] 3.43 0 T1.99 0[—-1.3T 1.12 —0.49 1.23
TAO = —0.35 —0.25 0.16 —0.06 0 343 0 —1.99| 0.45 0.96 —1.60 —1.02
Q AQ= 0.22 —0.36 —0.14 —0.14|—-1.99 0 343 0| 0.49 —1.23 —1.31 1.12
0.16 0.06 0.35 —0.25 0 1.99 0 3.43|—-1.60 —1.02 —0.45 —0.96
—0.13 —0.28 0.19 —0.71] 0.69 0.29 0.19 0.80]—2.06 0 —2.06 0
0.21 -0.11 0.73 0.21|—-0.84 —0.09 0.18 0.71 0 —2.06 0 —2.06
—-0.19 -0.71 —0.13 0.28|—-0.19 0.80 0.69 —0.29| 2.06 0 —2.06 0
. -0.73 0.21 0.21 0.11|-0.18 0.71 —0.84 0.09 0 2.06 0 —2.06 |
r 10.50 0 —7.58 0]—0.28 0.85 —0.63 0.55| 0.44 0.28 0.26 1.627
0 10.50 0 7.58] 0.9 049 0.82 0.48| 1.21 0.02 1.11 —0.51
7.58 0 10.50 0] 0.63 0.5 —0.28 —0.85|—0.26 —1.62 0.44 0.28
0 —7.58 0 10.50| 0.82 —0.48 —0.59 0.49| 1.11 —0.51 —1.21 —0.02
0.36 —0.36 0.5 0.90| 0.16 0 092 0 T1.12 —1.45 —0.48 —0.10
QTA 0= 0.88 0.64 —0.41 0.15 0 0.16 0 —-0.92] 0.68 0.01 1.29 1.22
2% = | —=0.55 0.90 0.36 0.36|/—0.92 0 0.16 0| 0.48 0.10 1.12 —1.45
—0.41 —0.15 —0.88 0.64 0 0.92 0 0.16] 1.29 1.22 —0.68 —0.01
0.33 0.70 —0.49 1.78|—-1.75 —0.74 —0.48 —2.03] 1.86 0 037 0
—0.53 0.28 —1.84 —0.52| 2.11 0.23 —0.45 —1.80 0 1.86 0 0.37
0.49 1.78 0.33 —0.70| 0.48 —2.03 —1.75 0.74|—-0.37 0 1.86 0
1.84 —0.52 —0.53 —0.28| 0.45 —1.80 2.11 —0.23 0 —0.37 0 1.86 ]

we can take T'= {(1,2;1),(1,3;1)} as a spanning tree of G = (V, E).
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Step 4: With reference to the tree T, we choose P, = Iy,
0.43 0.61 —0.36 —0.55

Py =

8.19
6.29

0.36 —0.55 0.43 —0.61
—0.52

0.48 0.64 —0.28
0.64 0.28 0.52 048

Step 5: The orthogonal matrix P = @ - diag (Py, P», P3) gives the decom-
position PTTP = C3 ® I as follows:

0 —6.29
0
8.19
0

0 819
0
0 —6.29

0
6.29
0
8.19

)

0.15 —
—0.25 —

Ps=| 030

0.32
0.90
0.15

0.25
0.15 —0.32
0.91 —0.25

0.

90

0.91 —-0.25 —-0.30 —0.15

1.88
0
0
0

1.88
0
0

1.97
0
0
0

0
1.97
0
0

1.97

0
0

0
0
0

0 1.97

PTAP=

—-0.44
0.14

0
0 —0.44
0
0 —-0.14

—0.14
0
—0.44
0

0

0.14
0
—0.44

3.43

0
—-1.99
0

0
3.43
0
1.99

3.43

—0.68
0

2.06

0

0
—0.68
0
—2.06

—2.06
—0.68

0
2.06

0
—0.68

0
0

—0.79
0.05

M 10.50
7.58

0
0 —0.79
0
0 —0.05

0
0 10.50
0
0 —7.58

—0.05
0
-0.79
0

—7.58
0
10.50
0

0

0.05

0
-0.79

0
7.58
0
10.50

0.91
0
0.66
0

0.32
0
1.18
0

0

0.91

0
—0.66

0

0.32

0
—1.18

0
0.66
0
0.91

0
1.18
0
0.32

—2.06
0

2.06

0

1.50
0
0.83
0

0
—2.06
0
—2.06

0

1.50

0
—0.83

—2.06
—2.06

—0.83
1.50

0
2.06
0
~2.06 |
0-
0.83
0
1.50

0
0

0
0

PTAP =

1.12
—0.35

0
1.12
0
0.35

0.35
0
1.12
0

0
0

0
—0.35
0

1.12

0.16
0
-0.92
0

0
0.16
0
0.92

0.92
0.16

0
0 —-0.92
0

0 0.16

1.68
0
-0.89
0

0
1.68
0
0.89

0.89
1.68

0
—0.89
0

1.68

0
0

2.00
—0.11

0 0.1II
2.00 0
0 2.00
0.11 0

0
0

0
—0.11
0

2.00

—2.29
0
—1.66
0

0
—2.29

1.66

1.66
0 —-2.29

0
0 —1.66
0
0 —2.29

1.86
0
—0.37
0

0
1.86
0
0.37

With a permutation matrix II, explicit block diagonal forms can be obtained:

O'PTA, Pl =

n'PTA,PII =

8.19 —6.29
6.29 8.19
—0.44 —0.14
0.14 —0.44
-0.79
0.05

1.88
0
3.43

—1.99

0.91
0.66

—0.66

0
1.88
1.99
3.43

1.97 0
0 197
—0.68 —2.06
2.06 —0.68
—2.06 —2.06

0.91 2.06 —2.06

0.37
1.86

0
—0.37

0
1.86 |

0

0
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5.2 Example for Case H
We consider the *x-algebra 7 generated by A; and Ay below:
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Alp)[1,1]7 which contains 7 and k& components:
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Step 6: Put X
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We have a = 8.16, b = 13.40, and hence

J

0.01
1.44
0.84

0 065 1.61 0.50 —0.42
0 0.12 —0.84 —0.49
0-049 1.44 —0.12

0.49 0 —0.72 0 0.15
0 —-0.15

0.12 0 0.15 0 0.72
0 —0.72

0 —0.65
0 —0.34

0 —0.34
—1.61 —0.12 0.42

0.34
0 0.65

—0.50 0.84 —0.01 —1.44 0.72
0.42 049 1.61 .
—0.01 —1.44 0.50 —0.84 —0.15

—0.65

By using the permutation and the skew-Hamiltonian Schur decomposition,
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we obtain
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where S is a orthogonal permuted symplectic matrix given by

S’:

0.81

0.41

0.00 0.00 —0.08 0.41

0.00 0.00

—-0.47 0.27 0.15 —0.03 —0.34 0.61 —0.29 —0.33

0.00 0.00 0.81

—0.15

0.41

0.03 —0.47 0.27

0.02 —0.34 0.26 —0.42
-0.09 0.07 —0.11
—-0.26 0.42 0.02 -0.34

0.11 -0.68 —0.09 0.07

0.68

0.00 0.00 —0.08 0.41
0.29 0.33 —0.34 0.61
0.66 0.43 0.08 —0.09
0.28 0.17 0.52 —0.35
0.08 0.09 0.66 0.43
0.52 0.35 0.28 0.17

Step 7: The orthogonal matrix P = P-diag (S, S) gives the de
PTTP =Hy® I, as follows:

composition

PTAP=
r 8.16 0 13.40 0 1.89 0 0 0| 5.68 0 0 0 0 0 0 07
0 816 0 13.40 0 1.89 0 0 0 5.68 0 0 0 0 0 0
—13.40 0 8.16 0 0 0 —1.89 0 0 0 5.68 0 0 0 0 0
0 —13.40 0 8.16 0 0 0 —1.89 0 0 0 5.68 0 0 0 0
—~1.89 0 0 0 8.6 0 13.40 0 0 0 0 0 b5.68 0 0 0
0 —1.89 0 0 0 8.16 0 13.40 0 0 0 0 0 5.68 0 0
0 0 1.89 0 —13.40 0 8.16 0 0 0 0 0 0 0 5.68 0
0 0 0 1.89 0 —13.40 0 8.16 0 0 0 0 0 0 0 5.68
0.29 0 125 0 —1.44 0 1.50 0[—2.74 0 2.87 0 —4.39 0 3.12 0
0 029 0 1.25 0 —1.44 0 150 0 —2.74 0 287 0 —4.39 0 3.12
-1.25 0 0.29 0 1.50 0 1.44 0|—2.87 0 —2.74 0 3.12 0 4.39 0
0 —1.25 0 0.29 0 1.50 0 1.44 0 —2.87 0 —2.74 0 3.12 0 4.39
1.44 0 —1.50 0 0.29 0 1.25 0| 4.39 0 —3.12 0 —2.74 0 287 0
0 1.44 0 —1.50 0 0.29 0 1.25 0 4.39 0 —3.12 0 —2.74 0 287
—~1.50 0 —1.44 0 —1.25 0 029 0]—3.12 0 —4.39 0 —2.87 0 —2.74 0
i 0 —1.50 0 —1.44 0 —1.25 0 0.29 0 —3.12 0 —4.39 0 —2.87 0 —2.74 |
P AP =
r 10.30 0 13.20 0 —2.97 0 0 0| 0.91 0 —3.95 0 026 0 297 07
0 10.30 0 13.20 0 —2.97 0 0 0 091 0 —3.95 0 0.26 0 297
—13.20 0 10.30 0 0 0 297 0| 3.95 0 0091 0 297 0 —0.26 0
0 —13.20 0 10.30 0 0 0 297 0 3.9 0 091 0 297 0 —0.26
2.97 0 0 0 10.30 0 13.20 0]—0.26 0 —2.97 0 0091 0 —3.95 0
0 297 0 0 0 10.30 0 13.20 0 —0.26 0 —2.97 0 091 0 —3.95
0 0 —2.97 0 —13.20 0 10.30 0|—2.97 0 0.26 0 3.95 0 0091 0
0 0 0 —2.97 0 —13.20 0 10.30 0 —2.97 0 0.26 0 3.95 0 091
—0.45 0 —1.96 0 2.96 0 —2.36 0] 1.44 0 175 0 221 0 —0.73 0
0 —0.45 0 —1.96 0 2.26 0 —2.36 0 1.44 0 1.75 0 221 0 —0.73
1.96 0 —0.45 0 —2.36 0 —2.26 0|-1.75 0 1.44 0 —0.73 0 —2.21 0
0 1.96 0 —0.45 0 —2.36 0 —2.26 0 —1.75 0 1.44 0 —0.73 0 —2.21
2.7 0 236 0 —0.45 0 —1.96 0|-2.21 0 0.73 0 1.44 0 175 0
0 —2.26 0 236 0 —0.45 0 —1.96 0 —2.21 0 0.73 0 1.44 0 1.75
2.36 0 226 0 1.96 0 —0.45 0| 0.73 0 221 0 —1.75 0 1.44 0
i 0 236 0 226 0 1.96 0 —0.45 0 0.73 0 221 0 —1.75 0 1.44 |

With a permutation matrix II, explicit block diagonal forms can be obtained:

o' PTAPII =
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8.16 —1.89 13.40 0 5.68 0 0 0 0 0 0 0 0 0 0 07

1.89 8.16 0 13.40 0 5.68 0 0 0 0 0 0 0 0 0 0

—13.40 0 816 1.89 0 0 5.68 0 0 0 0 0 0 0 0 0

0 —13.40 —1.89 8.16 0 0 0 5.68 0 0 0 0 0 0 0 0

0.290 1.44 125 —1.50 —2.74 4.39 2.87 —3.12 0 0 0 0 0 0 0 0

—1.44  0.29 150 1.25 —4.39 —2.74 3.12 2.87 0 0 0 0 0 0 0 0

~125 —1.50 0.29 —1.44 —2.87 —3.12 —2.74 —4.39 0 0 0 0 0 0 0 0

1.50 —1.25 1.44 0.29 3.12 —2.87 4.39 —2.74 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0] 816 —1.80 13.40 0 5.6% 0 0 0

0 0 0 0 0 0 0 0| 1.89 8.16 0 13.40 0 5.68 0 0

0 0 0 0 0 0 0 0]—13.40 0 816 1.89 0 0 5.68 0

0 0 0 0 0 0 0 0 0 —13.40 —1.89 8.16 0 0 0 5.68

0 0 0 0 0 0 0 0] 029 144 1.25 —1.50 —2.74 4.39 2.87 —3.12

0 0 0 0 0 0 0 0| —1.44 029 1.50 1.25 —4.39 —2.74 3.12 2.87

0 0 0 0 0 0 0 0] —1.25 —150 0.29 —1.44 —2.87 —3.12 —2.74 —4.39

i 0 0 0 0 0 0 0 0| 150 —1.25 1.44 0.29 3.12 —2.87 4.39 —2.74 |
O'PTAPI =

10.30 13.20 —2.97 0 091 —3.95 0.26 2.97 0 0 0 0 0 0 0 07

—13.20 10.30 0 297 395 091 297 —0.26 0 0 0 0 0 0 0 0

2.97 0 10.30 13.20 —0.26 —2.97 0.91 —3.95 0 0 0 0 0 0 0 0

0 —2.97 —13.20 10.30 —2.97 0.26 3.95 0.91 0 0 0 0 0 0 0 0

045 —1.96 2.26 —2.36 1.44 1.75 2.21 —0.73 0 0 0 0 0 0 0 0

1.96 —0.45 —2.36 —2.26 —1.75 1.44 —0.73 —2.21 0 0 0 0 0 0 0 0

~2927 236 —045 —1.96 —2.21 0.73 1.44 1.75 0 0 0 0 0 0 0 0

236 226 1.96 —0.45 0.73 2.21 —1.75 1.44 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0] 10.30 13.20 —2.97 0 091 —3.95 0.26 207

0 0 0 0 0 0 0 0/—13.20 10.30 0 297 395 091 297 —0.26

0 0 0 0 0 0 0 o| 297 0 10.30 13.20 —0.26 —2.97 0.91 —3.95

0 0 0 0 0 0 0 0 0 —2.97 —13.20 10.30 —2.97 0.26 3.95 0.91

0 0 0 0 0 0 0 0| —045 —1.96 2.26 —2.36 1.44 1.75 2.21 —0.73

0 0 0 0 0 0 0 0| 1.96 —0.45 —2.36 —2.26 —1.75 1.44 —0.73 —2.21

0 0 0 0 0 0 0 0] —2.26 236 —0.45 —1.96 —2.21 0.73 1.44 1.75

i 0 0 0 0 0 0 0 0| 236 226 196 —045 0.73 2.21 —1.75 1.44 |

6 Conclusion

We have considered the problem of simultaneous block-diagonal decompo-
sition, which is to find an orthogonal matrix P in the structure theorem
for the matrix x-algebra generated by a given set of real square matrices
Aq,...,Ayn. For this problem, we have proposed an algorithm, which is an
extension of the algorithm given by [12]. While the algorithm of [12] is tar-
geted to a special case (Case R), our algorithm can cope with all possible
cases, Case R, Case C and Case H.

In [12] a variant of the algorithm is suggested for practical efficiency in
relation to the following two technical conditions:

1. T =span{l,, A1,..., AN},
2. 7 € R, where R is an open dense set,

which also appear in Proposition 3.3 and Proposition 4.1 of the present
paper to ensure genericity of A(r) = riA; +--- +ryAy and A(r)" 4+ A(r).
The variant suggested in [12] executes the original algorithm without regard
to the first condition, and in case of any inconsistency during the execution,
restarts by adding transposes or products of some of the generators to the
current set { A1, ..., Ay}. A similar variant is conceivable for our algorithm,
which we report elsewhere along with applications to practical problems.
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