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1 Introduction

In this paper we consider the following problem: Given a finite set of n× n
real matrices A1, . . . , AN , find an n × n orthogonal matrix P that pro-
vides them with a simultaneous block-diagonal decomposition, i.e., such
that P⊤A1P, . . . , P⊤ANP become block-diagonal matrices with a common
block-diagonal structure. For this problem two different but closely related
theoretical frameworks are available. One is group representation theory
[11, 14] and the other matrix ∗-algebra [15]. They are not only necessary
to answer the fundamental theoretical question about such block-diagonal
decomposition but also useful in its actual computation.

In the literature of semidefinite programming, the above problem has re-
cently been studied quite intensively with its application to efficient solution
of semidefinite programs (SDPs) with group symmetry, where A1, . . . , AN

are symmetric matrices representing the objective function and the con-
straints of an SDP. If A1, . . . , AN are block-diagonalized, the associated
SDP is decomposed accordingly into smaller SDPs, and therefore can be
solved efficiently. Kanno, Ohsaki, Murota and Katoh [9] introduced a class
of group symmetric SDPs, which arise from topology optimization problems
of trusses. Gatermann and Parrilo [8] investigated the problem of minimiz-
ing a group symmetric polynomial. They proposed to reduce the size of
SOS and SDP relaxations for the problem by exploiting the group symme-
try and decomposing the SDP. On the other hand, de Klerk, Pasechnik and
Schrijver [5] applied the theory of matrix ∗-algebra to reduce the size of a
class of group symmetric SDPs. Very recently, de Klerk and Sotirov [6] dealt
with quadratic assignment problems, and showed how to exploit the group
symmetry to reduce the size of the SDP relaxations.

As for the block-diagonal decomposition itself, Murota, Kanno, Kojima
and Kojima [12] have proposed an algorithm that is composed solely of
numerical linear-algebraic computations such as eigenvalue computations.
Their idea is to consider the matrix ∗-algebra T generated by the given
symmetric matrices A1, . . . , AN and to make use of the standard structure
theorem (see Theorem 2.1). Then the finest block-diagonal decomposition
corresponds to the decomposition of T into irreducible components. Though
under a restrictive assumption that each irreducible component of T is iso-
morphic to a full matrix algebra of some order, the algorithm of [12] suc-
cessfully constructs an eligible orthogonal matrix P for a given family of
symmetric matrices A1, . . . , AN . The key algorithmic observation is that
the decomposition into simple components can be computed from the eigen-
value decomposition of a single generic element of T .

This fact was also observed earlier by Eberly and Giesbrecht [7] in de-
signing an algorithm for the simple-component decomposition of a separa-
ble matrix algebra (not a ∗-algebra) over an arbitrary infinite field. To be
specific, the “self-centralizing element” in [7] corresponds to the “generic el-
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ement” in [12]. Treating a general matrix algebra, however, they considered
a transformation of the form S−1AS with a nonsingular matrix S instead of
an orthogonal transformation of the form P⊤AP , and they used compan-
ion forms and factorization of minimum polynomials instead of eigenvalue
decomposition.

The objective of this paper is to extend the algorithm of [12] to cope
with all possible types of irreducible components. According to the structure
theorem, an irreducible component of a matrix ∗-algebra T is isomorphic to
an algebra of the following three types: a full matrix algebra over the field
of real numbers (Case R), a faithful real ∗-representation of a full matrix
algebra over the field of complex numbers (Case C) and a faithful real ∗-
representation of a full matrix algebra over the (noncommutative) field of
quaternion numbers (Case H); see Section 2 for details. The algorithm of
[12] is targeted exclusively to Case R, while the other two cases, Case C
and Case H, do occur even when T is generated by symmetric matrices. In
engineering applications, Case C occurs, for example, in the stiffness matrix
of a cyclically-symmetric truss dome such as the Schwedler dome; see [13]
for various domes.

The proposed algorithm consists of two stages. One is for the simple-
component decomposition and the other for the irreducible-component de-
composition. The notion of genericity in [12] is refined here to S-genericity
for the simple-component decomposition and I-genericity for the irreducible-
component decomposition. Our simple-component decomposition algorithm
is essentially the same as that of [12]. As for the irreducible-component de-
composition, the algorithm of [12] based on the diagonalization of a generic
element of T works also in our Case R, although some minor modifications
are needed. New algorithms are devised for Case C and Case H. We resort
to the Schur decomposition for Case C and the Schur decomposition and its
skew-Hamiltonian variant for Case H.

Our algorithm, similarly to [12], finds the finest block-diagonalization
without knowing any algebraic structure, such as group symmetry, in ad-
vance and is based on purely linear algebraic computations such as eigen-
value computation. In other words, our algorithm will automatically exploit
the underlying algebraic structure, which is often an outcome of physical or
geometrical symmetry, sparsity, and structural or numerical degeneracy in
the given matrices.

This paper is organized as follows. Section 2 describes the theoretical
background of our algorithm based on matrix ∗-algebra. The proposed al-
gorithm for the simple-component decomposition is given in Section 3, and
that for the irreducible-component decomposition in Section 4. The algo-
rithm is demonstrated in Section 5. Section 6 concludes the paper.
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2 Matrix ∗-Algebras

Let R, C and H be the real number field, the complex field, and the quater-
nion field, respectively. The quaternion field H is a vector space {a + ıb +
ȷc + kd : a, b, c, d ∈ R} over R with basis 1, ı, ȷ and k, equipped with the
multiplication defined as follows:

ı = ȷk = −kȷ, ȷ = kı = −ık, k = ıȷ = −ȷı, ı2 = ȷ2 = k2 = −1

and for all α, β, γ, δ ∈ R and x, y, u, v ∈ H,

(αx + βy)(γu + δv) = αγxu + αδxv + βγyu + βδyv.

For a quaternion h = a+ıb+ȷc+kd, its conjugate is defined as h̄ = a−ıb−ȷc−
kd, and the norm of h is defined as |h| =

√
hh̄ =

√
h̄h =

√
a2 + b2 + c2 + d2.

We can consider C as a subset of H by identifying the generator ı of the
quaternion field H with the imaginary unit of the complex field C.

Let Mn denote the set of n × n matrices over R. A subset T of Mn is
said to be a ∗-subalgebra (or a matrix ∗-algebra) over R if In ∈ T and

A,B ∈ T ; α, β ∈ R =⇒ αA + βB,AB,A⊤ ∈ T .

Obviously, Mn itself is a matrix ∗-algebra. There are two other basic matrix
∗-algebras: the real representation of complex matrices Cn ⊂ M2n defined
by

Cn =


 C(z11) · · · C(z1n)

...
. . .

...
C(zn1) · · · C(znn)

 : z11, z12, . . . , znn ∈ C


with

C(a + ıb) =
[

a −b
b a

]
,

and the real representation of quaternion matrices Hn ⊂ M4n defined by

Hn =


 H(h11) · · · H(h1n)

...
. . .

...
H(hn1) · · · H(hnn)

 : h11, h12, . . . , hnn ∈ H


with

H(a + ıb + ȷc + kd) =


a −b −c −d
b a −d c
c d a −b
d −c b a

 .

For two matrices A and B, their direct sum, denoted as A⊕B, is defined as

A ⊕ B =
[

A O
O B

]
,
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and their tensor product, denoted as A ⊗ B, is defined as

A ⊗ B =

 a11B · · · a1nB
...

. . .
...

an1B · · · annB

 ,

where A is assumed to be n× n. Note that A⊗B = Π⊤(B ⊗A)Π for some
permutation matrix Π.

We say that a matrix ∗-algebra T is simple if T has no ideal other than
{O} and T itself, where an ideal of T means a subalgebra I of T such that

A ∈ T , B ∈ I =⇒ AB ∈ I.

A linear subspace W of Rn is said to be invariant with respect to T , or
T -invariant, if AW ⊆ W for every A ∈ T . We say that T is irreducible if
no T -invariant subspace other than {0} and Rn exists. It is mentioned that
Mn, Cn and Hn are typical examples of irreducible matrix ∗-algebras.

We say that matrix ∗-algebras T1 and T2 are isomorphic if there exists a
bijection ϕ from T1 to T2 with the following properties:

ϕ(αA + βB) = αϕ(A) + βϕ(B), ϕ(AB) = ϕ(A)ϕ(B), ϕ(A⊤) = ϕ(A)⊤.

If T1 and T2 are isomorphic, we write T1 ≃ T2. For a matrix ∗-algebra T
and an orthogonal matrix P , the set

P⊤T P = {P⊤AP : A ∈ T }

forms another matrix ∗-algebra isomorphic to T . For a matrix ∗-algebra T ′,
the set

T = {diag (B,B, . . . , B) : B ∈ T ′}

forms another matrix ∗-algebra isomorphic to T ′.
From a standard result of the theory of matrix ∗-algebra (e.g., [15, Chap-

ter X], [10, Theorem 5.4]) we can see the following structure theorem.

Theorem 2.1. Let T be a ∗-subalgebra of Mn.
(A) There exist an orthogonal matrix Q̂ ∈ Mn and simple ∗-subalgebras

Tj of Mn̂j
for some n̂j (j = 1, 2, . . . , ℓ) such that

Q̂⊤T Q̂ = {diag (S1, S2, . . . , Sℓ) : Sj ∈ Tj (j = 1, 2, . . . , ℓ)}.

(B) If T is simple, there exist an orthogonal matrix P ∈ Mn and an
irreducible ∗-subalgebra T ′ of Mn̄ for some n̄ such that

P⊤T P = {diag (B,B, . . . , B) : B ∈ T ′}.

(C) If T is irreducible, there exists an orthogonal matrix P ∈ Mn such
that P⊤T P = Mn, Cn/2 or Hn/4.
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It follows from the above theorem that, with a single orthogonal matrix
P , all the matrices in T can be transformed simultaneously to a block-
diagonal form as

P⊤AP =
ℓ⊕

j=1

m̄j⊕
i=1

Bj =
ℓ⊕

j=1

(Im̄j ⊗ Bj) (2.1)

with Bj ∈ T ′
j , where T ′

j denotes the irreducible ∗-subalgebra corresponding
to the simple subalgebra Tj ; we have T ′

j = Mn̄j , Cn̄j/2 or Hn̄j/4 for some
n̄j , where the structural indices ℓ, n̄j , m̄j and the algebraic structure of T ′

j

for j = 1, . . . , ℓ are uniquely determined by T . It may be noted that n̂j in
Theorem 2.1 (A) is equal to m̄jn̄j in the present notation. Conversely, for
any choice of Bj ∈ T ′

j for j = 1, . . . , ℓ, the matrix of (2.1) belongs to P⊤T P .
We denote by

Rn =
ℓ⊕

j=1

Uj (2.2)

the decomposition of Rn that corresponds to the simple components. In
other words, Uj = Im(Q̂j) for the n×n̂j submatrix Q̂j of Q̂ that corresponds
to Tj in Theorem 2.1 (A). Although the matrix Q̂ is not unique, the subspace
Uj is determined uniquely and dimUj = n̂j = m̄jn̄j for j = 1, . . . , ℓ.

3 Decomposition into Simple Components

An algorithm for the decomposition into simple components has been pro-
posed by Murota et al. [12] for the special case where T is generated by
symmetric matrices. It turns out that this algorithm also works in our gen-
eral case.

The idea of [12] is that the decomposition into simple components can
be computed from the eigenvalue decomposition of a single matrix A if it
is free from degeneracy in eigenvalues. To extend this idea to our general
case, it is convenient to make a refinement of the notion of nondegeneracy.
Let us say that A ∈ T is S-generic (generic in eigenvalue structure with
respect to simple components) if all the matrices B1, . . . , Bℓ appearing in
the decomposition (2.1) of A does not share a common eigenvalue. It is
emphasized that each Bj is allowed to have multiple eigenvalues. Note that
the S-genericity of A does not depend on the choice of P in (2.1), although
the matrices B1, . . . , Bℓ themselves vary with P . By the structure theorem,
there exists a symmetric S-generic matrix A in T . To be specific, choose
distinct αj and set Bj = αjIn̄j for j = 1, . . . , ℓ in (2.1).

Let A be a symmetric S-generic matrix in T . Let α1, . . . , αk be the
distinct (real) eigenvalues of A with multiplicities denoted as m1, . . . ,mk,
and Q = [Q1, . . . , Qk] be an orthogonal matrix consisting of the eigenvectors,
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where Qi is an n × mi matrix for i = 1, . . . , k. Then we have

Q⊤AQ = diag (α1Im1 , . . . , αkImk
) =

α1Im1 O O O

O α2Im2 O O

O O
. . . O

O O O αkImk

. (3.3)

Let K = {1, . . . , k} and Vi = Im(Qi), which is the eigenspace for the eigen-
value αi, where i = 1, . . . , k. Each eigenvalue αi of A is an eigenvalue of Bj

for some (uniquely determined) j and the multiplicity of αi in A is equal to
m̄j times the multiplicity of αi in Bj .

The eigenvalue decomposition of a symmetric S-generic matrix A is con-
sistent with the decomposition into simple components of T as follows.

Proposition 3.1. Let A ∈ T be symmetric and S-generic. For each i ∈
{1, . . . , k}, there exists j ∈ {1, . . . , ℓ} such that Vi ⊆ Uj . Hence there exists
a partition of K = {1, . . . , k} into ℓ disjoint subsets:

K = K1 ∪ · · · ∪ Kℓ (3.4)

such that
Uj =

⊕
i∈Kj

Vi, j = 1, . . . , ℓ. (3.5)

The partition (3.4) of K can be determined as follows. Let ∼ be the
equivalence relation on K defined as the symmetric and transitive closure
of the binary relation:

i ∼ i′ ⇐⇒ ∃p (1 ≤ p ≤ m) : Q⊤
i ApQi′ ̸= O, (3.6)

where i ∼ i for all i ∈ K by convention.

Proposition 3.2. The partition (3.4) coincides with the partition of K into
equivalence classes induced by ∼.

Proof. This is not difficult to see from the general theory of matrix ∗-algebra,
but a proof is given here for completeness. It is also mentioned that the proof
below is almost identical with the proof of Proposition 3.3 in [12]. Denote
by {L1, . . . , Lℓ′} the equivalence classes induced from ∼.

If i ∼ i′, then Q⊤
i ApQi′ ̸= O for some p. This means that for any I ⊆ K

with i ∈ I and i′ ∈ K \ I, the subspace
⊕

i′′∈I Vi′′ is not invariant under Ap

or A⊤
p . Hence Vi′ must be contained in the same simple component as Vi.

Therefore each Lj must be contained in some Kj′ .
To show the converse, define a matrix Q̃j = (Qi | i ∈ Lj), which is

of size n ×
∑

i∈Lj
mi, and an n × n matrix Ej = Q̃jQ̃

⊤
j for j = 1, . . . , ℓ′.
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Each matrix Ej belongs to T , as shown below, and it is idempotent (i.e.,
Ej

2 = Ej) and E1 + · · · + Eℓ′ = In. On the other hand, for distinct j and
j′ we have Q̃⊤

j ApQ̃j′ = O for all p, and hence Q̃⊤
j MQ̃j′ = O for all M ∈ T .

This implies that EjM = MEj for all M ∈ T . Therefore Im(Ej) is a union
of simple components, and hence Lj is a union of some Kj′ ’s.

It remains to show that Ej ∈ T . Since αi’s are distinct, for any real
numbers u1, . . . , uk there exists a polynomial f such that f(αi) = ui for
i = 1, . . . , k. Let fj be such f for (u1, . . . , uk) defined as ui = 1 for i ∈ Lj and
ui = 0 for i ∈ K \ Lj . Then Ej = Q̃jQ̃

⊤
j = Q · fj(diag (α1Im1 , . . . , αkImk

)) ·
Q⊤ = Q · fj(Q⊤AQ) · Q⊤ = fj(A). This shows Ej ∈ T .

A symmetric S-generic matrix A can be obtained from a random linear
combination of generators, as follows. For a real vector r = (r1, . . . , rN ) put

A(r) = r1A1 + · · · + rNAN .

We denote by span{· · · } the set of linear combinations of the matrices in
the braces.

Proposition 3.3. If span{In, A1, . . . , AN} = T , there exists an open dense
subset R of RN such that A(r)⊤ + A(r) is S-generic for every r ∈ R.

Proof. Let Bpj denote the matrix Bj in the decomposition (2.1) of A =
A⊤

p + Ap for p = 1, . . . , N . For j = 1, . . . , ℓ define fj(λ) = fj(λ; r) =
det(λI − (r1B1j + · · · + rNBNj)), which is a polynomial in λ, r1, . . . , rN .

The matrix A(r)⊤ + A(r) is S-generic if and only if fj(λ) and fj′(λ)
with j ̸= j′ have no common root, and the latter condition is equivalent
to the resultant of fj(λ) and fj′(λ) being nonzero. Each resultant is a
nonzero polynomial in r1, . . . , rN , since T has at least one symmetric S-
generic matrix A, which can be represented as A = r0In + A(r)⊤ + A(r)
for some r0 ∈ R and r ∈ RN by the assumption on the linear span of the
generators. Letting Σjj′ be the zero set of the resultant of fj(λ) and fj′(λ),
we can take R = RN \

(
∪j ̸=j′Σjj′

)
.

4 Decomposition into Irreducible Components

Each simple component Tj is to be decomposed further into irreducible com-
ponents. In this section, we focus on a single Tj and omit the subscript j
for notational simplicity. In other words, we assume that T is a simple
∗-algebra of n × n matrices.

By the structure theorem, we have three cases with some m̄ and ň:

Case R: P⊤T P = {B ⊗ Im̄ : B ∈ Mň} (n = ňm̄), (4.7)
Case C: P⊤T P = {B ⊗ Im̄ : B ∈ Cň} (n = 2ňm̄), (4.8)
Case H: P⊤T P = {B ⊗ Im̄ : B ∈ Hň} (n = 4ňm̄). (4.9)

8



In other words, for each A ∈ T , there exists B such that

P⊤AP = B ⊗ Im̄, (4.10)

where B ∈ Mň in Case R, B ∈ Cň in Case C and B ∈ Hň in Case H.
Conversely, in Case R, for every B ∈ Mň, there exists A ∈ T such that
(4.10) is true, and similarly in Case C and Case H. Note that in the structure
theorem we have Im̄⊗B in contrast to B⊗Im̄ here, which is more convenient
for subsequent arguments. Note that Im̄ ⊗ B and B ⊗ Im̄ are connected by
a permutation, as explained in Section 2.

4.1 I-generic matrix

Our algorithm for the decomposition into irreducible components makes full
use of the eigenvalue structures of Mň, Cň and Hň, which have the following
characteristics. The eigenvalues of a matrix in Mň consist of a number of
reals and pairs of complex conjugates, both possibly with multiplicities.
The eigenvalues of a matrix in Cň consist of pairs of complex conjugates,
which implies in particular that the multiplicity of a real eigenvalue is even.
The eigenvalues of a matrix in Hň consist of pairs of complex conjugates
appearing twice, which implies in particular that the multiplicity of a real
eigenvalue is even and at least four.

We introduce another kind of genericity notion as follows, where T is
assumed to be a simple ∗-algebra. Let us say that A is I-generic (generic in
eigenvalue structure with respect to irreducible components) if the following
is true for the matrix B such that P⊤AP = B ⊗ Im̄ in (4.10): in Case R
or in Case C, all the eigenvalues of B are simple, and in Case H, all the
eigenvalues of B have multiplicity two.

In Case R, an I-generic matrix has distinct ň real or complex eigenvalues,
each with multiplicity m̄. In this case, there exists a symmetric I-generic
matrix. In Case C, an I-generic matrix has distinct 2ň complex (nonreal)
eigenvalues. Half of them are conjugate to the remaining half and the mul-
tiplicities of the eigenvalues are all m̄. In Case H, an I-generic matrix has
distinct 2ň complex (nonreal) eigenvalues. Half of them are conjugate to
the remaining half and the multiplicities of the eigenvalues are all 2m̄.

The following proposition can be proven by the same argument as the
proof of Proposition 3.3.

Proposition 4.1. If span{In, A1, . . . , AN} = T , there exists an open dense
subset R of RN such that A(r) is I-generic for every r ∈ R. In Case R, this
statement remains true when A(r) above is replaced by A(r)⊤ + A(r).

Proof. Let Bp denote the matrix B in the decomposition (4.10) of A = Ap,
i.e., P⊤ApP = Bp ⊗ Im̄. Define f(λ) = f(λ; r) = det(λI − (r1B1 + · · · +
rNBN )), which is a polynomial in λ, r1, . . . , rN .
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In Case R or in Case C, the matrix A(r) is I-generic if and only if
f(λ) does not have multiple root, and the latter condition is equivalent to
the resultant of f(λ) and f ′(λ) being nonzero. The resultant is a nonzero
polynomial in r1, . . . , rN , since T has at least one I-generic matrix A, which
can be represented as A = r0In + A(r) for some r0 ∈ R and r ∈ RN by the
assumption on the linear span of the generators. Letting Σ be the zero set
of the resultant of f(λ) and f ′(λ), we can take R = RN \ Σ.

In Case H, by the eigenvalue structure of Hň, there exists a polynomial g
in λ such that f(λ) = g(λ)2. The matrix A(r) is I-generic if and only if g(λ)
has no multiple root, and the latter condition is equivalent to the resultant
of g(λ) and g′(λ) being nonzero. This is further equivalent to the resultant of
f(λ) and f ′′(λ) being nonzero. The resultant of f(λ) and f ′′(λ) is a nonzero
polynomial in r1, . . . , rN , since T has at least one I-generic matrix A, which
can be represented as A = r0In + A(r) for some r0 ∈ R and r ∈ RN by the
assumption on the linear span of the generators. Letting Σ be the zero set
of the resultant of f(λ) and f ′′(λ), we can take R = RN \ Σ.

In Case R, the above argument remains true when we replace A(r) by
A(r)⊤ + A(r), since there exists a symmetric I-generic matrix.

4.2 Identifying the case

In this section, we propose an algorithm that identifies the type of a sim-
ple algebra T as Case R, Case C or Case H. By adding transposes or
products of some of the given generators, if necessary, we can assume that
span{In, A1, . . . , AN} = T .

Our algorithm consists of two stages. At the first stage, we decide
whether T is in Case R or not. We conclude that T is in Case R, if the
multiplicity of the eigenvalues of a random linear combination, say, A of the
generators is equal to the multiplicity of the eigenvalues of A⊤ + A. At the
second stage, we identify T as Case C or Case H. Let d be the dimension
of T as a linear space, and µ be the multiplicity the eigenvalues of some
I-generic matrix. In Case C, we have n2 = 2dµ2 because n = 2ňm̄, d = 2ň2

and µ = m̄, whereas in Case H, we have n2 = dµ2 because n = 4ňm̄, d = 4ň2

and µ = 2m̄. We can thus distinguish between Case C and Case H.

4.3 Case R: T ≃ Mň

In this section, we consider Case R, where we have n = ňm̄. In this case,
there exists a symmetric I-generic matrix and such a matrix can be obtained
through random linear combination of symmetric matrices. By virtue of
this fact the algorithm of [12], with a slight modification, can be used in
our general case. We describe the algorithm in our present notation for
completeness and also for readers’ convenience. It also serves as a prototype
for the more complicate procedures for Case C and Case H to be treated in
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Section 4.4 and Section 4.5.
For a matrix A with rows and columns partitioned into ň blocks of size

m̄, we denote by A[i,j] the m̄×m̄ submatrix in (i, j) block of A (1 ≤ i, j ≤ ň).
It follows from (4.7) that for any A ∈ T , and for all (i, j), there exists a real
number bij such that

(P⊤AP )[i,j] = (B ⊗ Im̄)[i,j] = bijIm̄.

We construct an orthogonal matrix P that satisfies (4.7). In view of the
nonuniqueness of such P we impose two additional conditions. The first is
that P diagonalizes a particular A. The second is that P normalizes some
blocks of P⊤A1P, . . . , P⊤ANP to scalar matrices. For the normalization of
blocks, we consider a tree T with vertex V = {1, . . . , ň}. Each edge of T is
directed and has a label from the set {1, . . . , N}; accordingly (i, j; p) denotes
an edge from i to j with label p ∈ {1, . . . , N}. The condition we impose is
that (P⊤ApP )[i,j] should be a scalar matrix for every edge (i, j; p) of T .

Proposition 4.2 below states that there exists such an orthogonal matrix
P . We write R≥0 for the set of nonnegative real numbers.

Proposition 4.2. Let T be a simple matrix ∗-algebra isomorphic to Mň

generated by n×n matrices A1, . . . , AN , where n = ňm̄ for some m̄, and let
A ∈ T be a symmetric I-generic matrix.

(1) Let (α1, . . . , αň) be an ordering of distinct eigenvalues of A. There exists
an orthogonal matrix P that satisfies (4.7) and the condition

P⊤AP = diag (α1Im̄, . . . , αňIm̄). (4.11)

(2) Furthermore, let T be a tree with the vertex-set V = {1, . . . , ň}, each
edge of which is directed and labelled from {1, . . . , N}. There exists an
orthogonal matrix P that satisfies (4.7), (4.11) and the condition

∀(i, j; p) ∈ T, ∃cpij ∈ R≥0 : (P⊤ApP )[i,j] = cpijIm̄. (4.12)

Proof. (1) Let R be any orthogonal matrix P in (4.7). Then R⊤AR = B⊗Im̄

for some B ∈ Mň, which is symmetric because A is symmetric. Let S⊤BS =
diag (α1, . . . , αň) be a diagonalization of B, where S is the orthogonal matrix
consisting of the eigenvectors of B. The matrix Q = R(S⊗Im̄) satisfies (4.7)
and also

Q⊤AQ = diag (α1Im̄, . . . , αňIm̄).

Hence this matrix Q serves as P in the statement (1).
(2) Since Q satisfies (4.7), there exists, for each (i, j; p) ∈ T , a real

number bpij such that (Q⊤ApQ)[i,j] = bpijIm̄ . For cpij = |bpij | ∈ R≥0, we
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have (Q⊤ApQ)[i,j]((Q⊤ApQ)[i,j])⊤ = c2
pijIm̄. With reference to the tree T ,

we can choose m̄ × m̄ matrices P1, . . . , Pň such that

P1 = Im̄,

Pj = ((Q⊤ApQ)[i,j])
⊤Pi/cpij ((i, j; p) ∈ T ),

where we define Pi = Pj if cpij = 0. We then have

P⊤
j Pj = P⊤

i (Q⊤ApQ)[i,j]((Q
⊤ApQ)[i,j])

⊤Pi/c2
pij = P⊤

i Pi.

From P1 = Im̄ and the induction with respect to the distance from the
vertex 1 on the tree T , we see that P1, . . . , Pň are orthogonal matrices.
Hence P = Q · diag (P1, . . . , Pň) is an orthogonal matrix satisfying (4.7),
(4.11) and

(P⊤ApP )[i,j] = P⊤
i (Q⊤ApQ)[i,j]Pj

= P⊤
i (Q⊤ApQ)[i,j]((Q

⊤ApQ)[i,j])
⊤Pi/cpij

= cpijIm̄.

This is (4.12).

Next, we describe the algorithm for constructing the matrix P in Propo-
sition 4.2 above. The idea is that we first diagonalize a particular A ∈ T
to get an orthogonal matrix that satisfies (4.11), and normalize it as in the
proof of Proposition 4.2 to make it satisfy (4.12). The correctness of our
algorithm is guaranteed by Proposition 4.4. It is a key to the algorithm
that if two orthogonal diagonalizations Q⊤AQ and P⊤AP of a symmetric
I-generic matrix A have the diagonal elements (eigenvalues) in the same
order, there exist some m̄ × m̄ orthogonal matrices P1, . . . , Pň such that
P = Q · diag (P1, . . . , Pň).

Algorithm 4.3.

Step 1: Let A ∈ T be a symmetric I-generic matrix.

Step 2: Compute an orthogonal matrix Q such that Q⊤AQ = diag (α1Im̄, . . . , αňIm̄)
for some α1, . . . , αň ∈ R.

Step 3: Let G = (V,E) be a directed graph with vertex-set V = {1, . . . , ň}
and edge-set E = {(i, j; p) : (Q⊤ApQ)[i,j] ̸= O}. Fix a spanning
tree T of G.

Step 4: For the tree T , let P1, . . . , Pň be the m̄× m̄ matrices that satisfy

P1 = Im̄,

Pj = ((Q⊤ApQ)[i,j])
⊤Pi/cpij ((i, j; p) ∈ T ),

where cpij is the positive number such that (Q⊤ApQ)[i,j]((Q⊤ApQ)[i,j])⊤ =
c2
pijIm̄.
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Step 5: Output P = Q · diag (P1, . . . , Pň).

Proposition 4.4. The following are true for Algorithm 4.3.

(1) In Step 3, there exists a spanning tree of G.

(2) In Step 4, for each edge (i, j; p) of the tree T , there exists a positive
number cpij such that (Q⊤ApQ)[i,j]((Q⊤ApQ)[i,j])⊤ = c2

pijIm̄.

(3) In Step 4, P1, . . . , Pň are orthogonal matrices.

(4) In Step 5, P is an orthogonal matrix.

(5) In Step 5, P satisfies (4.11) and (4.12) with respect to the ordering of
eigenvalues in Step 2 and the tree T in Step 3.

(6) In Step 5, P satisfies (4.7).

Proof. (1) Let R denote the orthogonal matrix P in Proposition 4.2 (1) with
respect to the ordering of the eigenvalues (α1, . . . , αň) in Step 2. We first
claim the following.
Claim: (Q⊤ApQ)[i,j] ̸= O if and only if (R⊤ApR)[i,j] ̸= O.

Proof of Claim: Since Q⊤AQ = R⊤AR, there exist m̄ × m̄ orthogonal
matrices R1, . . . , Rň such that R = Q ·diag (R1, . . . , Rň). Therefore we have
R⊤

i (Q⊤ApQ)[i,j]Rj = (R⊤ApR)[i,j], which implies the claim.
Suppose that G does not have a spanning tree, i.e., that G is discon-

nected. Let W be one of the connected components of G. Then, for all
i ∈ W and j ∈ V \W , we have (R⊤ApR)[i,j] = O for all p. Since T is gener-
ated by A1, . . . , AN we have (R⊤A′R)[i,j] = O for all A′ ∈ T . However, there
exists a A′ ∈ T that satisfies (R⊤A′R)[i,j] ̸= O because R⊤T R = Mň ⊗ Im̄.
This is a contradiction.

(2) Let R denote the orthogonal matrix P in Proposition 4.2 (2) with
respect to the ordering of the eigenvalues (α1, . . . , αň) in Step 2 and the tree
T in Step 3. By the same argument for Claim in (1), there exist m̄ × m̄
orthogonal matrices R1, . . . , Rň such that R = Q · diag (R1, . . . , Rň). For
each edge (i, j; p) of T , we have from (4.12) that

(Q⊤ApQ)[i,j]((Q
⊤ApQ)[i,j])

⊤ = Ri(R⊤ApR)[i,j]((R
⊤ApR)[i,j])

⊤R⊤
i

= Ri(c2
pijIm̄)R⊤

i = c2
pijIm̄,

where cpij ̸= 0 by the definition of the edges of G.
(3) From P1 = Im̄ and

P⊤
j Pj = P⊤

i ((Q⊤ApQ)[i,j])((Q
⊤ApQ)[i,j])

⊤Pi/c2
pij = P⊤

i Pi,

we see that P1, . . . , Pň are orthogonal matrices by the induction with respect
to the distance from the vertex 1 on the tree T .
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(4) Since Q and Pi (i = 1, . . . , ň) are orthogonal, P = Q·diag (P1, . . . , Pň)
is an orthogonal matrix.

(5) P satisfies (4.11) by the definition of Q, and (4.12) by the definition
of P1, . . . , Pň.

(6) For A in Step 1, we have P⊤AP = R⊤AR. Hence there exist m̄× m̄
orthogonal matrices R̂1, . . . , R̂ň such that R = P · diag (R̂1, . . . , R̂ň). For
each (i, j; p) in T , evaluating (i, j) block of R⊤ApR, we have

cpijIm̄ = (R⊤ApR)[i,j] = R̂⊤
i (P⊤ApP )[i,j]R̂j = cpijR̂

⊤
i R̂j .

Hence R̂1 = · · · = R̂ň =: R̂ by the induction with respect to the distance
from the vertex 1 on the tree T . Then for each i, j and p, there exists a real
number bpij such that

(P⊤ApP )[i,j] = R̂(R⊤ApR)[i,j]R̂
⊤ = R̂(bpijIm̄)R̂⊤ = bpijIm̄.

This states that P⊤ApP ∈ Mň ⊗ Im̄ holds for all generators Ap. This is
(4.7).

Two facts are noteworthy in the above arguments: (i) when we normalize
the blocks of the generators with respect to the tree, all other blocks of the
generators automatically become scalar matrices, and (ii) the orthogonal
matrix P in Proposition 4.2 (2) has the degree of freedom represented by
the m̄× m̄ orthogonal matrix R̂. These two properties do not carry over to
Case C or Case H, i.e., (i) fails in Case H, and (ii) fails both in Case C and
in Case H. Then we have to design more complicated algorithms.

4.4 Case C: T ≃ Cň

In this section, we consider Case C, where we have n = 2ňm̄. For a matrix
A with rows and columns partitioned into ň blocks of size 2m̄, we denote by
A[i,j] the 2m̄ × 2m̄ submatrix in (i, j) block of A (1 ≤ i, j ≤ ň). It follows
from (4.8) that for all A ∈ T , and for all (i, j), there exists a complex number
b′ij such that

(P⊤AP )[i,j] = (B ⊗ Im̄)[i,j] = C(b′ij) ⊗ Im̄.

In this case, there does not exist a symmetric I-generic matrix. Accord-
ingly we use the Schur decomposition instead of the diagonalization.

The Schur decomposition of an ň × ň complex matrix Z is defined as

U∗ZU =


ζ11 ζ12 · · · ζ1ň

0 ζ22 · · · ζ2ň

0 0
. . .

...
0 0 0 ζňň

 ,
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where U is a unitary matrix and U∗ is its conjugate transpose. The diagonal
elements of U∗ZU are the eigenvalues of Z. The Schur decomposition gives
a nested sequence of Z-invariant subspaces {0} = W0 ⊂ W1 ⊂ W2 ⊂ · · · ⊂
Wň = Cň where Vi = Wi/Wi−1 is the eigenspace corresponding to the
eigenvalue ζii for i = 1, . . . , ň. Any square matrix can be transformed into
a Schur form, but the decomposition is not unique in two ways. It depends
on the ordering of eigenspaces and also on the choice of orthogonal bases
within eigenspaces. The Schur decomposition can also be defined for a real
matrix. It is a matrix of quasi-upper triangular form, called the real Schur
form, of which the diagonal elements are 1 × 1 blocks corresponding to real
eigenvalues and 2 × 2 blocks expressed as C(z) for complex eigenvalues z.

We can construct an orthogonal matrix P that satisfies (4.8) as follows.
The idea is that we replace the diagonalization in Case R to the Schur
decomposition.

Proposition 4.5 below, to be compared with Proposition 4.2 in Case R,
states that there exists an orthogonal matrix P in (4.8) that meets two
additional conditions: (i) it brings a particular I-generic A to a Schur form
and (ii) it is normalized with respect to a tree. We write eig(·) for the
eigenvalues of a matrix.

Proposition 4.5. Let T be a simple matrix ∗-algebra isomorphic to Cň

generated by n × n matrices A1, . . . , AN , where n = 2ňm̄ for some m̄, and
let A ∈ T be an I-generic matrix.

(1) Let (λ1, λ̄1, . . . , λň, λ̄ň) be an ordering of distinct eigenvalues of A. There
exists an orthogonal matrix P that satisfies (4.8) and the conditions

(P⊤AP )[i,j] = O (i > j), (4.13)

(P⊤AP )[1,1] = C(λ1) ⊗ Im̄, (4.14)

eig((P⊤AP )[i,i]) = {λi, λ̄i} (i = 2, . . . , ň). (4.15)

(2) Furthermore, let T be a tree with vertex-set V = {1, . . . , ň}, each edge
of which is directed and labelled from {1, . . . , N}. There exists an or-
thogonal matrix P that satisfies (4.8), (4.13), (4.14), (4.15) and the
condition

∀(i, j; p) ∈ T, ∃cpij ∈ R≥0 : (P⊤ApP )[i,j] = C(cpij) ⊗ Im̄ = cpijI2m̄.

(4.16)

Proof. (1) Let R be any orthogonal matrix P in (4.8). Then R⊤AR =
B ⊗ Im̄ for some B ∈ Cň. We have B = C(B′) for some ň × ň complex
matrix B′, where C(B′) denotes the 2ň × 2ň real matrix that is obtained
from B′ by replacing each entry of B′ = (b′ij) by C(b′ij). Let U∗B′U be
the Schur decomposition of B′, where the diagonal elements are ordered
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as (λ1, . . . , λň). Since C(U)⊤C(U) = C(U∗U) = C(Iň) = I2ň, C(U) is an
orthogonal matrix. Then the matrix Q = R(C(U) ⊗ Im̄) satisfies (4.8) and
also

(Q⊤AQ)[i,j] = O (i > j),

(Q⊤AQ)[i,i] = C(λi) ⊗ Im̄ (i = 1, . . . , ň).

Hence this matrix Q serves as P in the statement (1).
(2) Since Q satisfies (4.8), there exists, for each (i, j; p) ∈ T , a complex

number b′pij such that (Q⊤ApQ)[i,j] = C(b′pij)⊗ Im̄ . For cpij = |b′pij | ∈ R≥0,
we have (Q⊤ApQ)[i,j]((Q⊤ApQ)[i,j])⊤ = c2

pijI2m̄. With reference to the tree
T , we can choose 2m̄ × 2m̄ matrices P1, . . . , Pň such that

P1 = I2m̄,

Pj = ((Q⊤ApQ)[i,j])
⊤Pi/cpij ((i, j; p) ∈ T ),

where we define Pi = Pj if cpij = 0. We then have

P⊤
j Pj = P⊤

i (Q⊤ApQ)[i,j]((Q
⊤ApQ)[i,j])

⊤Pi/c2
pij = P⊤

i Pi.

From P1 = I2m̄ and the induction with respect to the distance from the
vertex 1 on the tree T , we see that P1, . . . , Pň are orthogonal matrices.
Hence P = Q · diag (P1, . . . , Pň) is an orthogonal matrix satisfying (4.8),
(4.13), (4.14), (4.15) and

(P⊤ApP )[i,j] = P⊤
i (Q⊤ApQ)[i,j]Pj

= P⊤
i (Q⊤ApQ)[i,j]((Q

⊤ApQ)[i,j])
⊤Pi/cpij

= cpijI2m̄.

This is (4.16).

Next, we describe the algorithm for constructing the matrix P in Propo-
sition 4.5 above. The idea is that we first decompose a particular A ∈ T
into the Schur form to get an orthogonal matrix that satisfies (4.13), (4.14),
(4.15) and normalize it as in the proof of Proposition 4.5 to make it satisfy
(4.16). The correctness of our algorithm is guaranteed by Proposition 4.7.
It is a key to the algorithm that if two Schur decompositions Q⊤AQ and
P⊤AP of an I-generic matrix A have the diagonal elements (eigenvalues) in
the same order, there exist some m̄×m̄ orthogonal matrices P1, . . . , Pň such
that P = Q · diag (P1, . . . , Pň).

Algorithm 4.6.

Step 1: Let A ∈ T be an I-generic matrix.

16



Step 2: Compute an orthogonal matrix Q such that

(Q⊤AQ)[i,j] = O (i > j),

(Q⊤AQ)[i,i] = C(λi) ⊗ Im̄ (i = 1, . . . , ň)

by decomposing A into the real Schur form and using the permu-
tation. (It should be noted here that the diagonal blocks of the
real Schur form are Im̄ ⊗ C(λi).)

Step 3: Let G = (V,E) be a directed graph with vertex-set V = {1, . . . , ň}
and edge-set E = {(i, j; p) : (Q⊤ApQ)[i,j] ̸= O}. Fix a spanning
tree T of G.

Step 4: For the tree T , let P1, . . . , Pň be the 2m̄×2m̄ matrices that satisfy

P1 = I2m̄,

Pj = ((Q⊤ApQ)[i,j])
⊤Pi/cpij ((i, j; p) ∈ T ),

where cpij is the positive number such that (Q⊤ApQ)[i,j]((Q⊤ApQ)[i,j])⊤ =
c2
pijI2m̄.

Step 5: Output P = Q · diag (P1, . . . , Pň).

Proposition 4.7. The following are true for Algorithm 4.6.

(1) In Step 3, there exists a spanning tree of G.

(2) In Step 4, for each edge (i, j; p) of the tree T , there exists a positive
number cpij such that (Q⊤ApQ)[i,j]((Q⊤ApQ)[i,j])⊤ = c2

pijI2m̄.

(3) In Step 4, P1, . . . , Pň are orthogonal matrices.

(4) In Step 5, P is an orthogonal matrix.

(5) In Step 5, P satisfies (4.13), (4.14), (4.15) and (4.16) with respect to
the ordering of eigenvalues in Step 2 and the tree T in Step 3.

(6) In Step 5, P satisfies (4.8).

Proof. (1) Let R denote the orthogonal matrix P in Proposition 4.5 (1) with
respect to the ordering of the eigenvalues (λ1, λ̄1, . . . , λň, λ̄ň) in Step 2. We
first claim the following.
Claim: (Q⊤ApQ)[i,j] ̸= O if and only if (R⊤ApR)[i,j] ̸= O.

Proof of Claim: Since Q⊤AQ = R⊤AR, there exist 2m̄× 2m̄ orthogonal
matrices R1, . . . , Rň such that R = Q ·diag (R1, . . . , Rň). Therefore we have
R⊤

i (Q⊤ApQ)[i,j]Rj = (R⊤ApR)[i,j], which implies the claim.
Suppose that G does not have a spanning tree, i.e., that G is discon-

nected. Let W be one of the connected components of G. Then, for all
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i ∈ W and j ∈ V \W , we have (R⊤ApR)[i,j] = O for all p. Since T is gener-
ated by A1, . . . , AN we have (R⊤A′R)[i,j] = O for all A′ ∈ T . However, there
exists a A′ ∈ T that satisfies (R⊤A′R)[i,j] ̸= O because R⊤T R = Cň ⊗ Im̄.
This is a contradiction.

(2) Let R denote the orthogonal matrix P in Proposition 4.5 (2) with
respect to the ordering of the eigenvalues (λ1, λ̄1, . . . , λň, λ̄ň) in Step 2 and
the tree T in Step 3. By the same argument for Claim in (1), there exist
2m̄×2m̄ orthogonal matrices R1, . . . , Rň such that R = Q·diag (R1, . . . , Rň).
For each edge (i, j; p) of T , we have from (4.16) that

(Q⊤ApQ)[i,j]((Q
⊤ApQ)[i,j])

⊤ = Ri(R⊤ApR)[i,j]((R
⊤ApR)[i,j])

⊤R⊤
i

= Ri(c2
pijI2m̄)R⊤

i = c2
pijI2m̄,

where cpij ̸= 0 by the definition of the edges of G.
(3) From P1 = I2m̄ and

P⊤
j Pj = P⊤

i (Q⊤ApQ)[i,j]((Q
⊤ApQ)[i,j])

⊤Pi/c2
pij = P⊤

i Pi

we see that P1, . . . , Pň are orthogonal matrices by the induction with respect
to the distance from the vertex 1 on the tree T .

(4) Since Q and Pi (i = 1, . . . , ň) are orthogonal, P = Q·diag (P1, . . . , Pň)
is an orthogonal matrix.

(5) P satisfies (4.13), (4.14) and (4.15) by the definition of Q, and (4.16)
by the definition of P1, . . . , Pň.

(6) For A in Step 1, we see that P⊤AP and R⊤AR have the diagonal
elements in the same order. Hence there exist 2m̄×2m̄ orthogonal matrices
R̂1, . . . , R̂ň such that R = P · diag (R̂1, . . . , R̂ň). For each (i, j; p) in T ,
evaluating (i, j) block of R⊤ApR, we have

cpijI2m̄ = (R⊤ApR)[i,j] = R̂⊤
i (P⊤ApP )[i,j]R̂j = cpijR̂

⊤
i R̂j .

Hence R̂1 = · · · = R̂ň =: R̂ by the induction with respect to the distance
from the vertex 1 on the tree T . By (4.14), the definition of P and P1 = I2m̄,
we have

C(λ1) ⊗ Im̄ = (R⊤AR)[1,1] = R̂⊤(P⊤AP )[1,1]R̂

= R̂⊤(Q⊤AQ)[1,1]R̂ = R̂⊤(C(λ1) ⊗ Im̄)R̂. (4.17)

Since λ1 is an eigenvalue of I-generic matrix A, we have λ1 ∈ C\R. Therefore
every complex number z can be written as z = α + βλ1 for some α, β ∈ R,
and hence we have

R̂⊤(C(z) ⊗ Im̄)R̂ = R̂⊤(αI2m̄ + βC(λ1) ⊗ Im̄)R̂
= αI2m̄ + βC(λ1) ⊗ Im̄ = C(z) ⊗ Im̄
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by (4.17). Then for each i, j and p, there exists a complex number b′pij such
that

(P⊤ApP )[i,j] = R̂(R⊤ApR)[i,j]R̂
⊤ = R̂(C(b′pij) ⊗ Im̄)[i,j]R̂

⊤ = C(b′pij) ⊗ Im̄.

This states that P⊤ApP ∈ Cň⊗Im̄ holds for all generators Ap. This is (4.8).

According to this proof, the orthogonal matrix P in Proposition 4.5 (2)
has the degree of freedom represented by a 2m̄ × 2m̄ orthogonal matrix R̂
such that C(λ1) ⊗ Im̄ is invariant under the transformation by R̂. Recall
that, in Case R, the degree of freedom of P in Proposition 4.2 (2) is also
described by an orthogonal matrix R̂, on which no additional restrictions
are imposed. This difference may be ascribed, as we see, to the fact that the
complex field C is generated by two elements 1 and ı, whereas R is generated
by a single element. In Case H, to be considered in the next section, we
have even smaller degree of freedom as a consequence of the fact that the
quaternion field H is generated by three elements 1, ı and ȷ.

4.5 Case H: T ≃ Hň

In this section, we consider Case H, where we have n = 4ňm̄. For a matrix
A with rows and columns partitioned into ň blocks of size 4m̄, we denote by
A[i,j] the 4m̄ × 4m̄ submatrix in (i, j) block of A (1 ≤ i, j ≤ ň). It follows
from (4.9) that for any A ∈ T , and for each (i, j), there exists a quaternion
number b′ij such that

(P⊤AP )[i,j] = (B ⊗ Im̄)[i,j] = H(b′ij) ⊗ Im̄.

The argument of this case is basically parallel to Case C. Let us say
that B′ is a quaternion matrix if each entry of B′ is a quaternion number.
An ň × ň quaternion matrix U is called unitary if U∗U = UU∗ = Iň, where
U∗ is the quaternion conjugate transpose of U . A quaternion variant of the
Schur decomposition is known [4] to exist. That is, for any ň× ň quaternion
matrix B′, there exists a quaternion unitary matrix U such that U∗B′U is
an upper triangular form with quaternion entries. We can choose diagonal
elements of U∗B′U to be quaternions that are free from ȷ and k components.

Proposition 4.8 below, to be compared with Proposition 4.2 in Case R
and Proposition 4.5 in Case C, states that there exists an orthogonal matrix
P in (4.9) that meets two additional conditions: (i) it brings a particular
I-generic A to a Schur form and (ii) it is normalized with respect to a tree.

Proposition 4.8. Let T be a simple matrix ∗-algebra isomorphic to Hň

generated by n × n matrices A1, . . . , AN , where n = 4ňm̄ for some m̄, and
let A ∈ T be an I-generic matrix.
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(1) Let (λ1, λ̄1, . . . , λň, λ̄ň) be an ordering of distinct eigenvalues of A. There
exists an orthogonal matrix P that satisfies (4.9) and the conditions

(P⊤AP )[i,j] = O (i > j), (4.18)

(P⊤AP )[1,1] = H(λ1) ⊗ Im̄, (4.19)

eig((P⊤AP )[i,i]) = {λi, λ̄i} (i = 2, . . . , ň). (4.20)

(2) Furthermore, let T be a tree with vertex-set V = {1, . . . , ň}, each edge
of which is directed and labelled from {1, . . . , N}. There exists an or-
thogonal matrix P that satisfies (4.9), (4.18), (4.19), (4.20) and the
condition

∀(i, j; p) ∈ T, ∃cpij ∈ R≥0 : (P⊤ApP )[i,j] = H(cpij) ⊗ Im̄ = cpijI4m̄.

(4.21)

Proof. (1) Let R be any orthogonal matrix P in (4.9). Then R⊤AR = B⊗Im̄

for some B ∈ Hň. We have B = H(B′) for some ň × ň quaternion matrix
B′, where H(B′) denotes the 4ň × 4ň real matrix that is obtained from
B′ by replacing each entry of B′ = (b′ij) by H(b′ij). Let U∗B′U be the
quaternion variant of the Schur decomposition of B′, where the diagonal
elements are free from ȷ and k components and ordered as (λ1, . . . , λň).
Since H(U)⊤H(U) = H(U∗U) = H(Iň) = I4ň, H(U) is an orthogonal
matrix. Then the matrix Q = R(H(U) ⊗ Im̄) satisfies (4.9) and also

(Q⊤AQ)[i,j] = O (i > j),

(Q⊤AQ)[i,i] = H(λi) ⊗ Im̄ (i = 1, . . . , ň).

Hence this matrix Q serves as P in the statement (1).
(2) Since Q satisfies (4.9), there exists, for each (i, j; p) ∈ T , a quaternion

number b′pij such that (Q⊤ApQ)[i,j] = H(b′pij)⊗ Im̄ . For cpij = |b′pij | ∈ R≥0,
we have (Q⊤ApQ)[i,j]((Q⊤ApQ)[i,j])⊤ = c2

pijI4m̄. With reference to the tree
T , we can choose 4m̄ × 4m̄ matrices P1, . . . , Pň such that

P1 = I4m̄,

Pj = ((Q⊤ApQ)[i,j])
⊤Pi/cpij ((i, j; p) ∈ T ),

where we define Pi = Pj if cpij = 0. We then have

P⊤
j Pj = P⊤

i (Q⊤ApQ)[i,j]((Q
⊤ApQ)[i,j])

⊤Pi/c2
pij = P⊤

i Pi.

From P1 = I4m̄ and the induction with respect to the distance from the
vertex 1 on the tree T , we see that P1, . . . , Pň are orthogonal matrices that
can be written as Pj = H(Uj) for some quaternion unitary matrix Uj . Hence
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P = Q · diag (P1, . . . , Pň) is an orthogonal matrix satisfying (4.9), (4.18),
(4.19), (4.20) and

(P⊤ApP )[i,j] = P⊤
i (Q⊤ApQ)[i,j]Pj

= P⊤
i (Q⊤ApQ)[i,j]((Q

⊤ApQ)[i,j])
⊤Pi/cpij

= cpijI4m̄.

This is (4.21).

We now propose an algorithm which constructs the matrix P in Proposi-
tion 4.8 above. In Case C, we have seen that an orthogonal matrix satisfying
the conditions (4.13), (4.14), (4.15) and (4.16) in Proposition 4.5 is good for
(4.8). In Case H, however, the conditions (4.18), (4.19), (4.20) and (4.21)
specified in Proposition 4.8 are not sufficient for (4.9), and we use the skew-
Hamiltonian Schur decomposition [3] to make the matrix satisfy (4.9).

Let J be a 4m̄ × 4m̄ matrix defined as

J =
[

O −I2m̄

I2m̄ O

]
.

We call a matrix S symplectic if S⊤JS = SJS⊤ = J , and a matrix W skew-
Hamiltonian if WJ = −(WJ)⊤. Note that S−1WS is skew-Hamiltonian for
a symplectic matrix S and a skew-Hamiltonian matrix W .

The next proposition states that every skew-Hamiltonian matrix can
be transformed to the so-called skew-Hamiltonian Schur form (see (4.22)
below) by an orthogonal symplectic matrix. See [2, 3] for an algorithm for
computing the skew-Hamiltonian Schur decomposition.

Proposition 4.9 ([3]). For every skew-Hamiltonian matrix W , there exists
an orthogonal symplectic matrix S such that

S⊤WS =
[

W11 W12

O W⊤
11

]
, (4.22)

where W11 is a quasi-upper triangular matrix (the real Schur form) and W12

is a skew-symmetric matrix (W12 = −W⊤
12).

Let Π denote the 4m̄×4m̄ permutation matrix representing the following
permutation:(

1 2 3 · · · 2m̄ 2m̄ + 1 2m̄ + 2 2m̄ + 3 · · · 4m̄
1 3 5 · · · 4m̄ − 1 2 4 6 · · · 4m̄

)
.

We have

J ′ := ΠJΠ⊤ = H(ı) ⊗ Im̄ =


O −Im̄ O O
Im̄ O O O
O O O −Im̄

O O Im̄ O

 ,
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and for a matrix W in the skew-Hamiltonian Schur form (4.22) with W11 =
Im̄ ⊗ C(ı) and W12 = O, we have

Π
[

Im̄ ⊗ C(ı) O
O −Im̄ ⊗ C(ı)

]
Π⊤ = H(ȷ) ⊗ Im̄.

By using J ′ instead of J we say that S is a permuted symplectic matrix if
S⊤J ′S = SJ ′S⊤ = J ′，and W is a permuted skew-Hamiltonian matrix if
WJ ′ = −(WJ ′)⊤. Note that Π⊤SΠ is symplectic if S is permuted symplec-
tic and Π⊤WΠ is skew-Hamiltonian if W is permuted skew-Hamiltonian.

Proposition 4.10. For a matrix X = R̂(H(h)⊗Im̄)R̂⊤ with an orthogonal
permuted symplectic R̂ and a quaternion h = a + ıb + ȷc + kd, there exists
an orthogonal permuted symplectic matrix Ŝ such that

Ŝ⊤XŜ = H(a + ıb + ȷ
√

c2 + d2) ⊗ Im̄.

Proof. Put X = X(1) + X(2), where X(1) = R̂(H(a + ıb) ⊗ Im̄)R̂⊤ and
X(2) = R̂(H(ȷc + kd) ⊗ Im̄)R̂⊤. Since J ′ = H(ı) ⊗ Im̄, we have X(2)J ′ =
R̂(H(−kc + ȷd) ⊗ Im̄)R̂⊤ = −(X(2)J ′)⊤, and therefore X(2) is a permuted
skew-Hamiltonian matrix. Since X(2) is normal (i.e., X(2)⊤X(2) = X(2)X(2)⊤)
and the eigenvalues of X(2) are ±ı

√
c2 + d2, the skew-Hamiltonian Schur de-

composition of Π⊤X(2)Π is given by

S⊤Π⊤X(2)ΠS =
√

c2 + d2

[
Im̄ ⊗ C(ı) O

O −Im̄ ⊗ C(ı)

]
with some orthogonal symplectic matrix S. Then we have Ŝ⊤X(2)Ŝ =√

c2 + d2H(ȷ) ⊗ Im̄, where Ŝ = ΠSΠ⊤. Since R̂ and Ŝ are orthogonal
permuted symplectic, we have Ŝ⊤X(1)Ŝ = H(a + ıb) ⊗ Im̄. Therefore we
have Ŝ⊤XŜ = H(a + ıb + ȷ

√
c2 + d2) ⊗ Im̄ .

The above proof shows how to compute the orthogonal permuted sym-
plectic matrix Ŝ when we know that X = R̂(H(h) ⊗ Im̄)R̂⊤ with some
(unknown) permuted symplectic matrix R̂ and some (unknown) h = a +
ıb + ȷc + kd. The value of a is obtained as the (1, 1) component of X, since
H(ı),H(ȷ) and H(k) are skew-symmetric matrices. The value of b is ob-
tained as the negative of the (1, 1) component of XJ ′, since J ′ = H(ı)⊗Im̄ =
R̂(H(ı) ⊗ Im̄)R̂⊤ and XJ ′ = R̂(H(ȷa − b − kc + ıd) ⊗ Im̄)R̂⊤. Then we let

X(1) = aI4m̄ + bJ ′ = R̂(H(a + ıb) ⊗ Im̄)R̂⊤,

X(2) = X − X(1),

where X(2) is a permuted skew-Hamiltonian. Let S⊤Π⊤X(2)ΠS be a skew-
Hamiltonian Schur decomposition of Π⊤X(2)Π. Then we obtain Ŝ in Propo-
sition 4.10 by Ŝ = ΠSΠ⊤.
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If Ŝ is an orthogonal permuted symplectic matrix in Proposition 4.10 for
X = R̂(H(h) ⊗ Im̄)R̂⊤ with a particular h = a + ıb + ȷc + kd with c ̸= 0
or d ̸= 0, then, for every matrix Y = R̂(H(h′) ⊗ Im̄)R̂⊤ with h′ ∈ H, we
have Ŝ⊤Y Ŝ = H(h′′) ⊗ Im̄ for some quaternion h′′. This follows from the
fact that the quaternion field is generated by three elements 1, ı and h as
algebra, and that

Ŝ⊤R̂(H(1) ⊗ Im̄)R̂⊤Ŝ = H(1) ⊗ Im̄,

Ŝ⊤R̂(H(ı) ⊗ Im̄)R̂⊤Ŝ = H(ı) ⊗ Im̄,

Ŝ⊤R̂(H(h) ⊗ Im̄)R̂⊤Ŝ = H(a + ıb + ȷ
√

c2 + d2) ⊗ Im̄.

Next, we propose an algorithm for constructing the matrix P in (4.9).
The algorithm can be divided into two major stages. The first stage, con-
sisting of Steps 1–5 below, is the same as Algorithm 4.6 for Case C, and
constructs an orthogonal matrix P̃ = Q · diag (P̃1, . . . , P̃ň). This matrix P̃
is then modified to P = P̃ · diag (Ŝ, . . . , Ŝ) at the second stage consisting of
Steps 6–7, where we make use of the skew-Hamiltonian Schur decomposition
[3].

Algorithm 4.11.

Step 1: Let A ∈ T be an I-generic matrix.

Step 2: Compute an orthogonal matrix Q such that

(Q⊤AQ)[i,j] = O (i > j),

(Q⊤AQ)[i,i] = H(λi) ⊗ Im̄ (i = 1, . . . , ň)

by decomposing A into the real Schur form and using the permu-
tation. (It should be noted here that the diagonal blocks of the
real Schur form are Im̄ ⊗ H(λi).)

Step 3: Let G = (V,E) be a directed graph with vertex-set V = {1, . . . , ň}
and edge-set E = {(i, j; p) : (Q⊤ApQ)[i,j] ̸= O}. Fix a spanning
tree T of G.

Step 4: For the tree T , let P̃1, . . . , P̃ň be the 4m̄×4m̄ matrices that satisfy

P̃1 = I4m̄,

P̃j = ((Q⊤ApQ)[i,j])
⊤P̃i/cpij ((i, j; p) ∈ T ),

where cpij is the positive number such that (Q⊤ApQ)[i,j]((Q⊤ApQ)[i,j])⊤ =
c2
pijI4m̄.

Step 5: Let P̃ = Q · diag (P̃1, . . . , P̃ň).
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Step 6: Take i, j, p (where 1 ≤ i, j ≤ ň, 1 ≤ p ≤ N) such that X =
(P̃⊤ApP̃ )[i,j] cannot be written as H(z) ⊗ Im̄ for any z ∈ C and
let X(2) = X − aI4m̄ − bJ ′, where a is the (1, 1) entry of X and
−b is the (1, 1) entry of XJ ′. Let S be an orthogonal symplectic
matrix which decomposes Π⊤X(2)Π into the skew-Hamiltonian
Schur form.

Step 7: Output P = P̃ · diag (Ŝ, . . . , Ŝ), where Ŝ = Π⊤SΠ.

Proposition 4.12. The following are true for Algorithm 4.11.

(1) In Step 3, there exists a spanning tree of G.

(2) In Step 4, for each edge (i, j; p) of the tree T , there exists a positive
number cpij such that (Q⊤ApQ)[i,j]((Q⊤ApQ)[i,j])⊤ = c2

pijI4m̄.

(3) In Step 4, P̃1, . . . , P̃ň are orthogonal matrices.

(4) In Step 5, P̃ is an orthogonal matrix.

(5) In Step 5, P̃ satisfies (4.18), (4.19), (4.20) and (4.21) with P replaced
by P̃ with respect to the ordering of eigenvalues in Step 2 and the tree
T in Step 3.

(6) In Step 5, there exists an orthogonal permuted symplectic matrix R̂
such that, for each i, j and p,

(P̃⊤ApP̃ )[i,j] = R̂⊤(H(b′pij) ⊗ Im̄)R̂

for some quaternion b′pij , where 1 ≤ i, j ≤ ň, 1 ≤ p ≤ N .

(7) In Step 6, there exists X = (P̃⊤ApP̃ )[i,j] that cannot be written as
H(z) ⊗ Im̄ for any z ∈ C.

(8) In Step 7, P is an orthogonal matrix.

(9) In Step 7, P satisfies (4.18), (4.19), (4.20) and (4.21) with respect to
the ordering of eigenvalues in Step 2 and the tree T in Step 3.

(10) In Step 7, P satisfies (4.9).

Proof. (1)–(5) can be proven in the similar way as Proposition 4.7.
(1) Let R denote the orthogonal matrix P in Proposition 4.8 (1) with

respect to the ordering of the eigenvalues (λ1, λ̄1, . . . , λň, λ̄ň) in Step 2. We
first claim the following.
Claim: (Q⊤ApQ)[i,j] ̸= O if and only if (R⊤ApR)[i,j] ̸= O.

Proof of Claim: Since Q⊤AQ = R⊤AR, there exist 4m̄× 4m̄ orthogonal
matrices R1, . . . , Rň such that R = Q ·diag (R1, . . . , Rň). Therefore we have
R⊤

i (Q⊤ApQ)[i,j]Rj = (R⊤ApR)[i,j], which implies the claim.
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Suppose that G does not have a spanning tree, i.e., that G is discon-
nected. Let W be one of the connected components of G. Then, for all
i ∈ W and j ∈ V \W , we have (R⊤ApR)[i,j] = O for all p. Since T is gener-
ated by A1, . . . , AN we have (R⊤A′R)[i,j] = O for all A′ ∈ T . However, there
exists a A′ ∈ T that satisfies (R⊤A′R)[i,j] ̸= O because R⊤T R = Hň ⊗ Im̄.
This is a contradiction.

(2) Let R denote the orthogonal matrix P in Proposition 4.8 (2) with
respect to the ordering of the eigenvalues (λ1, λ̄1, . . . , λň, λ̄ň) in Step 2 and
the tree T in Step 3. By the same argument for Claim in (1), there exist
4m̄×4m̄ orthogonal matrices R1, . . . , Rň such that R = Q·diag (R1, . . . , Rň).
For each edge (i, j; p) of T , we have from (4.21) that

(Q⊤ApQ)[i,j]((Q
⊤ApQ)[i,j])

⊤ = Ri(R⊤ApR)[i,j]((R
⊤ApR)[i,j])

⊤R⊤
i

= Ri(c2
pijI4m̄)R⊤

i = c2
pijI4m̄,

where cpij ̸= 0 by the definition of the edges of G.
(3) From P̃1 = I4m̄ and

P̃⊤
j P̃j = P̃⊤

i (Q⊤ApQ)[i,j]((Q
⊤ApQ)[i,j])

⊤P̃i/c2
pij = P̃⊤

i P̃i

we see that P̃1, . . . , P̃ň are orthogonal matrices by the induction with respect
to the distance from the vertex 1 on the tree T .

(4) Since Q and P̃i (i = 1, . . . , ň) are orthogonal, P̃ = Q·diag (P̃1, . . . , P̃ň)
is an orthogonal matrix.

(5) P̃ satisfies (4.18), (4.19) and (4.20) by the definition of Q, and (4.21)
by the definition of P̃1, . . . , P̃ň.

For A in Step 1, we see that P̃⊤AP̃ and R⊤AR have the diagonal ele-
ments in the same order. Hence there exist 4m̄ × 4m̄ orthogonal matrices
R̂1, . . . , R̂ň such that R = P̃ · diag (R̂1, . . . , R̂ň). For each (i, j; p) in T ,
evaluating (i, j) block of R⊤ApR, we have

cpijI4m̄ = (R⊤ApR)[i,j] = R̂⊤
i (P̃⊤ApP̃ )[i,j]R̂j = cpijR̂

⊤
i R̂j .

Hence R̂1 = · · · = R̂ň =: R̂ by the induction with respect to the distance
from the vertex 1 on the tree T . Therefore, for all i, j, p with 1 ≤ i, j ≤ ň,
1 ≤ p ≤ N , there exists a quaternion number b′pij such that

(P̃⊤ApP̃ )[i,j] = R̂(R⊤ApR)[i,j]R̂
⊤ = R̂(H(b′pij) ⊗ Im̄)R̂⊤.

The (1, 1) block of R⊤AR is evaluated as

H(λ1) ⊗ Im̄ = (R⊤AR)[1,1] = R̂⊤(P̃⊤AP̃ )[1,1]R̂

= R̂⊤(Q⊤AQ)[1,1]R̂ = R̂⊤(H(λ1) ⊗ Im̄)R̂ (4.23)
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by (4.19), the definition of R and P̃1 = I4m̄. Since λ1 is an eigenvalue of
I-generic matrix A, we have λ1 ∈ C \R. Therefore the imaginary unit ı can
be written as ı = α + βλ1 for some α, β ∈ R, and hence we have

R̂⊤J ′R̂ = R̂⊤(H(ı) ⊗ Im̄)R̂ = R̂⊤(αI4m̄ + βH(λ1) ⊗ Im̄)R̂
= αI4m̄ + βH(λ1) ⊗ Im̄ = J ′

by (4.23). This says that R̂ is an orthogonal permuted symplectic matrix.
(7) This follows from (6) and T ≃ Hň.
(8) Since P̃ and Ŝ are orthogonal, P = P̃ ·diag (Ŝ, . . . , Ŝ) is an orthogonal

matrix.
(9) This follows from (5) and that Ŝ is orthogonal permuted symplectic.
(10) The construction of Ŝ is consistent with the description given after

Proposition 4.10. By Proposition 4.10, which is applicable by (6), we see
that for all i, j, p with 1 ≤ i, j ≤ ň, 1,≤ p ≤ N , there exists a quaternion
number b′′pij such that

(P⊤ApP )[i,j] = (Ŝ⊤P̃⊤ApP̃ Ŝ)[i,j] = H(b′′pij) ⊗ Im̄.

This states that P⊤ApP ∈ Hň ⊗ Im̄ holds for all generators Ap. This is
(4.9).

5 Numerical Examples

In this section we demonstrate the proposed algorithm for the irreducible
decomposition in Case C and Case H. Case R is not included here as it is
almost the same as the algorithm of [12]. Recall also that our algorithm for
the simple decomposition is essentially the same as that of [12].
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5.1 Example for Case C
We consider the ∗-algebra T generated by A1 and A2 below:

A1 =



3.98 1.55 2.14 0.69 0.94 0.43 2.96 −1.49 −0.60 1.22 3.91 1.28
−3.38 3.40 0.18 −3.09 0.93 −0.16 2.23 −1.52 −0.81 −0.21 −2.23 −4.25

2.54 −0.32 4.36 −4.10 2.94 0.91 0.50 0.35 0.51 1.60 0.52 0.09
−0.29 0.20 1.15 4.78 −4.44 −3.16 2.49 1.00 0.86 3.90 −0.55 0.44
−2.64 −0.17 −0.05 −0.60 3.02 1.53 −1.71 −0.82 −1.49 −1.96 2.13 2.54

1.48 −1.29 −2.72 0.71 −1.06 1.48 −1.64 −2.42 1.97 −1.55 3.27 0.53
1.81 2.91 −0.47 −2.43 1.39 −1.56 2.03 −2.21 −1.60 1.24 0.55 −0.28
3.10 −3.32 −0.04 −1.10 2.10 0.46 0.99 4.27 1.57 0.14 −1.19 1.86
1.67 1.91 −0.51 −0.96 −1.38 −0.79 0.37 2.22 0.40 1.76 −0.84 1.22
0.23 5.02 1.61 0.43 0.71 0.56 −0.19 −0.30 2.16 2.47 −1.06 −0.84

−0.70 2.35 −3.61 3.48 1.71 1.68 1.14 −1.29 −1.57 0.61 4.06 −1.23
2.66 1.48 −0.64 −0.10 −0.17 0.85 0.63 −1.51 −1.64 1.87 1.38 3.98


,

A2 =



7.17 3.14 1.39 −0.50 0.78 1.50 3.84 −1.62 −0.91 1.73 3.22 2.93
−4.26 5.89 −0.33 −3.45 1.67 −0.13 0.70 −2.83 −0.31 0.44 −1.87 −1.38

3.33 1.32 4.58 −3.93 4.43 0.62 0.85 0.25 −0.83 0.62 0.06 1.36
1.47 2.34 0.61 5.75 −3.78 −1.36 0.76 0.15 2.09 5.40 −0.95 0.18
0.52 −0.13 −1.93 −3.95 4.10 1.97 −1.14 −0.09 0.03 −3.21 2.45 0.16

−0.59 0.30 −3.22 2.70 0.20 2.15 1.28 −0.50 −1.11 0.30 3.59 0.03
−1.40 4.06 1.62 −0.43 1.80 −0.84 3.23 −3.08 −1.53 0.53 1.11 −1.30

3.31 −4.18 2.04 0.20 −0.12 −0.83 −0.97 3.98 −0.14 0.03 0.11 4.46
0.65 −0.90 2.17 −1.02 −0.93 −0.70 0.32 0.84 1.58 0.68 −0.98 −1.71
1.42 2.58 1.39 −0.89 −1.49 −3.30 3.43 −0.55 −0.21 3.80 −3.45 −0.77

−0.46 1.24 −4.02 3.07 −2.20 1.98 −0.46 −4.10 −1.76 −0.33 5.30 1.21
3.05 −0.39 0.63 0.38 0.01 1.58 0.74 −2.78 0.10 0.02 2.84 2.39


.

According to the procedure of Section 4.2 we can recognize this case as Case
C with ň = 3 and m̄ = 2. This means that we have P⊤T P = C3 ⊗ I2 with
a suitable choice of an orthogonal matrix P .
Step 1: As an I-generic matrix A, we take the following matrix:

A =



3.61 1.48 1.42 0.26 0.66 0.54 2.37 −1.13 −0.51 1.01 2.75 1.29
−2.68 3.04 0.03 −2.36 0.84 −0.11 1.32 −1.40 −0.49 −0.02 −1.57 −2.54

2.04 0.11 3.27 −3.00 2.49 0.61 0.44 0.24 0.10 0.98 0.29 0.33
0.15 0.59 0.74 3.73 −3.14 −1.96 1.48 0.56 0.89 3.20 −0.49 0.27

−1.29 −0.11 −0.43 −1.14 2.46 1.22 −1.15 −0.45 −0.78 −1.71 1.64 1.38
0.66 −0.62 −2.12 0.94 −0.52 1.24 −0.60 −1.39 0.81 −0.76 2.49 0.29
0.67 2.39 0.09 −1.38 1.11 −1.00 1.75 −1.81 −1.17 0.77 0.52 −0.42
2.34 −2.63 0.41 −0.54 1.09 0.07 0.32 3.09 0.80 0.08 −0.61 1.92
1.02 0.82 0.19 −0.72 −0.92 −0.56 0.26 1.35 0.55 1.07 −0.65 0.29
0.42 3.20 1.14 0.04 0.06 −0.39 0.62 −0.27 1.10 2.10 −1.29 −0.61

−0.47 1.50 −2.75 2.48 0.44 1.30 0.50 −1.54 −1.20 0.25 3.26 −0.40
2.05 0.70 −0.21 0.03 −0.09 0.78 0.49 −1.38 −0.85 1.00 1.32 2.61


.

Step 2: By decomposing A into the real Schur form and using the permu-
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tation, we obtain a quasi-upper triangular matrix

Q⊤AQ =



6.53 0 −4.92 0 0.37 0.79 −0.48 −0.44 0.25 −0.27 0.32 1.28
0 6.53 0 4.92 −0.39 0.58 0.81 −0.18 0.57 0.17 1.18 −0.37

4.92 0 6.53 0 0.48 −0.44 0.37 −0.79 −0.32 −1.28 0.25 −0.27
0 −4.92 0 6.53 0.81 0.18 0.39 0.58 1.18 −0.37 −0.57 −0.17
0 0 0 0 1.85 0 1.25 0 −0.46 0.29 −0.36 0.63
0 0 0 0 0 1.85 0 −1.25 0.38 0.51 −0.58 −0.28
0 0 0 0 −1.25 0 1.85 0 0.36 −0.63 −0.46 0.29
0 0 0 0 0 1.25 0 1.85 −0.58 −0.28 −0.38 −0.51
0 0 0 0 0 0 0 0 −0.70 0 −1.01 0
0 0 0 0 0 0 0 0 0 −0.70 0 −1.01
0 0 0 0 0 0 0 0 1.01 0 −0.70 0
0 0 0 0 0 0 0 0 0 1.01 0 −0.70


,

where Q is an orthogonal matrix given as

Q =



0.32 −0.20 −0.59 −0.14 −0.31 −0.13 0.14 −0.15 0.34 0.37 −0.21 0.23
−0.42 0.52 −0.20 −0.06 0.05 0.08 −0.02 −0.28 −0.34 0.46 −0.31 −0.08

0.31 0.23 −0.40 0.32 −0.28 0.27 0.03 0.48 −0.33 −0.16 −0.06 −0.27
0.31 0.01 0.21 −0.67 −0.00 −0.09 −0.29 0.26 −0.07 0.24 −0.12 −0.42

−0.25 −0.14 −0.17 0.36 0.28 0.04 −0.53 0.27 0.46 0.23 −0.10 −0.24
−0.16 −0.44 −0.06 −0.04 −0.02 0.46 0.35 −0.16 −0.05 0.28 0.35 −0.47
−0.10 0.19 −0.44 −0.13 −0.00 −0.44 −0.16 −0.26 0.04 −0.30 0.49 −0.36

0.48 −0.11 0.11 0.32 0.02 0.06 −0.48 −0.47 −0.32 0.22 0.18 0.05
0.19 0.13 0.00 −0.07 0.09 0.39 −0.01 −0.45 0.33 −0.44 −0.44 −0.30
0.09 0.33 −0.16 −0.31 0.20 0.54 −0.17 0.10 0.20 0.03 0.44 0.39

−0.37 −0.43 −0.21 −0.26 −0.29 0.19 −0.44 −0.02 −0.30 −0.31 −0.15 0.20
0.15 −0.25 −0.34 −0.09 0.78 −0.08 0.15 0.06 −0.32 −0.10 −0.16 0.07


.

Step 3: Since

Q⊤A1Q =



8.19 0 −6.29 0 0.81 1.15 −0.67 −1.04 0.29 −0.63 0.50 1.78
0 8.19 0 6.29 −0.98 0.91 1.21 −0.53 0.59 0.30 1.79 −0.49

6.29 0 8.19 0 0.67 −1.04 0.81 −1.15 −0.50 −1.78 0.29 −0.63
0 −6.29 0 8.19 1.21 0.53 0.98 0.91 1.79 −0.49 −0.59 −0.30

−0.14 0.14 −0.22 −0.36 3.43 0 1.99 0 −1.31 1.12 −0.49 1.23
−0.35 −0.25 0.16 −0.06 0 3.43 0 −1.99 0.45 0.96 −1.60 −1.02

0.22 −0.36 −0.14 −0.14 −1.99 0 3.43 0 0.49 −1.23 −1.31 1.12
0.16 0.06 0.35 −0.25 0 1.99 0 3.43 −1.60 −1.02 −0.45 −0.96

−0.13 −0.28 0.19 −0.71 0.69 0.29 0.19 0.80 −2.06 0 −2.06 0
0.21 −0.11 0.73 0.21 −0.84 −0.09 0.18 0.71 0 −2.06 0 −2.06

−0.19 −0.71 −0.13 0.28 −0.19 0.80 0.69 −0.29 2.06 0 −2.06 0
−0.73 0.21 0.21 0.11 −0.18 0.71 −0.84 0.09 0 2.06 0 −2.06


,

Q⊤A2Q =



10.50 0 −7.58 0 −0.28 0.85 −0.63 0.55 0.44 0.28 0.26 1.62
0 10.50 0 7.58 0.59 0.49 0.82 0.48 1.21 0.02 1.11 −0.51

7.58 0 10.50 0 0.63 0.55 −0.28 −0.85 −0.26 −1.62 0.44 0.28
0 −7.58 0 10.50 0.82 −0.48 −0.59 0.49 1.11 −0.51 −1.21 −0.02

0.36 −0.36 0.55 0.90 0.16 0 0.92 0 1.12 −1.45 −0.48 −0.10
0.88 0.64 −0.41 0.15 0 0.16 0 −0.92 0.68 0.01 1.29 1.22

−0.55 0.90 0.36 0.36 −0.92 0 0.16 0 0.48 0.10 1.12 −1.45
−0.41 −0.15 −0.88 0.64 0 0.92 0 0.16 1.29 1.22 −0.68 −0.01

0.33 0.70 −0.49 1.78 −1.75 −0.74 −0.48 −2.03 1.86 0 0.37 0
−0.53 0.28 −1.84 −0.52 2.11 0.23 −0.45 −1.80 0 1.86 0 0.37

0.49 1.78 0.33 −0.70 0.48 −2.03 −1.75 0.74 −0.37 0 1.86 0
1.84 −0.52 −0.53 −0.28 0.45 −1.80 2.11 −0.23 0 −0.37 0 1.86


,

we can take T = {(1, 2; 1), (1, 3; 1)} as a spanning tree of G = (V,E).
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Step 4: With reference to the tree T , we choose P1 = I4,

P2 =

 0.43 0.61 −0.36 −0.55
0.36 −0.55 0.43 −0.61

−0.52 0.48 0.64 −0.28
0.64 0.28 0.52 0.48

 , P3 =

 0.15 −0.32 0.25 0.90
−0.25 −0.90 0.15 −0.32

0.30 0.15 0.91 −0.25
0.91 −0.25 −0.30 −0.15

 .

Step 5: The orthogonal matrix P = Q · diag (P1, P2, P3) gives the decom-
position P⊤T P = C3 ⊗ I2 as follows:

P⊤A1P =



8.19 0 −6.29 0 1.88 0 0 0 1.97 0 0 0
0 8.19 0 6.29 0 1.88 0 0 0 1.97 0 0

6.29 0 8.19 0 0 0 1.88 0 0 0 1.97 0
0 −6.29 0 8.19 0 0 0 1.88 0 0 0 1.97

−0.44 0 −0.14 0 3.43 0 1.99 0 −0.68 0 −2.06 0
0 −0.44 0 0.14 0 3.43 0 −1.99 0 −0.68 0 2.06

0.14 0 −0.44 0 −1.99 0 3.43 0 2.06 0 −0.68 0
0 −0.14 0 −0.44 0 1.99 0 3.43 0 −2.06 0 −0.68

−0.79 0 −0.05 0 0.91 0 −0.66 0 −2.06 0 −2.06 0
0 −0.79 0 0.05 0 0.91 0 0.66 0 −2.06 0 2.06

0.05 0 −0.79 0 0.66 0 0.91 0 2.06 0 −2.06 0
0 −0.05 0 −0.79 0 −0.66 0 0.91 0 −2.06 0 −2.06


,

P⊤A2P =



10.50 0 −7.58 0 0.32 0 −1.18 0 1.50 0 −0.83 0
0 10.50 0 7.58 0 0.32 0 1.18 0 1.50 0 0.83

7.58 0 10.50 0 1.18 0 0.32 0 0.83 0 1.50 0
0 −7.58 0 10.50 0 −1.18 0 0.32 0 −0.83 0 1.50

1.12 0 0.35 0 0.16 0 0.92 0 1.68 0 0.89 0
0 1.12 0 −0.35 0 0.16 0 −0.92 0 1.68 0 −0.89

−0.35 0 1.12 0 −0.92 0 0.16 0 −0.89 0 1.68 0
0 0.35 0 1.12 0 0.92 0 0.16 0 0.89 0 1.68

2.00 0 0.11 0 −2.29 0 1.66 0 1.86 0 0.37 0
0 2.00 0 −0.11 0 −2.29 0 −1.66 0 1.86 0 −0.37

−0.11 0 2.00 0 −1.66 0 −2.29 0 −0.37 0 1.86 0
0 0.11 0 2.00 0 1.66 0 −2.29 0 0.37 0 1.86


.

With a permutation matrix Π, explicit block diagonal forms can be obtained:

Π⊤P⊤A1PΠ =



8.19 −6.29 1.88 0 1.97 0 0 0 0 0 0 0
6.29 8.19 0 1.88 0 1.97 0 0 0 0 0 0

−0.44 −0.14 3.43 1.99 −0.68 −2.06 0 0 0 0 0 0
0.14 −0.44 −1.99 3.43 2.06 −0.68 0 0 0 0 0 0

−0.79 −0.05 0.91 −0.66 −2.06 −2.06 0 0 0 0 0 0
0.05 −0.79 0.66 0.91 2.06 −2.06 0 0 0 0 0 0

0 0 0 0 0 0 8.19 6.29 1.88 0 1.97 0
0 0 0 0 0 0 −6.29 8.19 0 1.88 0 1.97
0 0 0 0 0 0 −0.44 0.14 3.43 −1.99 −0.68 2.06
0 0 0 0 0 0 −0.14 −0.44 1.99 3.43 −2.06 −0.68
0 0 0 0 0 0 −0.79 0.05 0.91 0.66 −2.06 2.06
0 0 0 0 0 0 −0.05 −0.79 −0.66 0.91 −2.06 −2.06


,

Π⊤P⊤A2PΠ =



10.50 −7.58 0.32 −1.18 1.50 −0.83 0 0 0 0 0 0
7.58 10.50 1.18 0.32 0.83 1.50 0 0 0 0 0 0
1.12 0.35 0.16 0.92 1.68 0.89 0 0 0 0 0 0

−0.35 1.12 −0.92 0.16 −0.89 1.68 0 0 0 0 0 0
2.00 0.11 −2.29 1.66 1.86 0.37 0 0 0 0 0 0

−0.11 2.00 −1.66 −2.29 −0.37 1.86 0 0 0 0 0 0
0 0 0 0 0 0 10.50 7.58 0.32 1.18 1.50 0.83
0 0 0 0 0 0 −7.58 10.50 −1.18 0.32 −0.83 1.50
0 0 0 0 0 0 1.12 −0.35 0.16 −0.92 1.68 −0.89
0 0 0 0 0 0 0.35 1.12 0.92 0.16 0.89 1.68
0 0 0 0 0 0 2.00 −0.11 −2.29 −1.66 1.86 −0.37
0 0 0 0 0 0 0.11 2.00 1.66 −2.29 0.37 1.86


.
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5.2 Example for Case H
We consider the ∗-algebra T generated by A1 and A2 below:
A1 =
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

5.87 0.11 6.42 −2.93 −7.48 3.57 3.12 3.22 −1.61 −4.63 0.33 4.24 1.89 3.25 −1.29 −1.86
6.84 0.08 0.53 1.77 1.43 −1.41 4.25 4.75 −2.88 1.13 3.76 −3.95 −1.75 3.71 0.92 1.10

−2.54 −0.21 0.96 −2.57 −2.95 4.04 −1.29 0.90 −5.99 −4.18 1.99 −1.85 1.36 1.80 −0.07 −1.49
5.95 0.84 3.45 0.77 2.57 5.65 −3.46 −0.94 −2.17 0.38 −5.52 −2.05 −3.66 0.47 −4.40 1.66
4.93 −1.00 −1.37 3.31 4.90 3.58 −3.90 −4.18 0.46 −2.67 4.13 3.89 −2.36 −0.29 −0.11 7.93

−2.09 −1.38 1.38 −3.54 2.62 3.81 −0.10 −2.74 −5.57 −2.97 0.51 6.05 −1.15 −2.59 0.62 0.75
−5.91 −1.56 2.83 0.17 3.85 5.07 3.68 2.87 −2.64 1.71 9.31 −1.63 −0.32 −0.01 −0.48 0.53
−1.36 −5.80 −1.84 −0.84 5.47 4.51 −2.57 6.33 0.67 4.13 −4.26 5.31 4.24 5.23 3.19 −1.78

3.87 5.63 −1.32 4.03 1.98 3.86 5.22 −4.42 3.42 2.15 2.86 2.34 0.70 3.26 0.40 −3.77
2.39 −1.45 2.39 3.49 1.62 0.50 −4.02 1.62 −0.12 2.40 −1.78 −1.77 −3.51 2.78 −1.40 −7.7

−2.04 0.92 −0.36 5.09 −4.26 −1.99 −2.58 2.59 −4.38 5.38 4.31 1.19 −5.47 4.02 1.49 2.88
−3.07 −1.05 1.43 −0.91 −4.74 −1.66 −1.84 −8.85 −0.62 2.13 0.19 4.96 −2.20 6.71 −0.89 −0.85

0.53 1.92 −5.09 −2.22 1.01 1.45 5.12 −0.06 4.41 −0.11 2.83 3.76 1.13 1.77 −3.44 −3.23
−1.58 −3.94 −1.20 1.26 −1.92 4.39 0.27 −3.75 −0.34 4.18 −0.22 −1.06 −2.75 −0.08 0.10 −4.96

1.58 −1.59 −1.63 1.64 0.78 −1.64 −0.65 0.24 −1.61 1.39 0.46 4.57 5.46 0.22 −1.99 2.33
4.03 1.31 −0.60 −3.39 −2.79 −4.01 −3.67 2.57 0.08 4.16 2.57 3.55 3.31 2.06 2.52 2.79

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

A2 =
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

9.03 0.06 2.91 −2.26 −5.08 0.96 4.80 2.89 −3.07 0.66 1.22 7.12 2.49 3.64 −3.75 −0.31
3.94 4.39 1.41 3.17 1.38 4.35 5.16 3.03 −4.63 −0.36 3.30 −1.37 −5.11 −1.08 0.47 −3.01

−4.84 −2.67 3.01 −3.33 0.11 −0.75 −0.39 −1.99 −4.30 −2.19 0.44 1.56 −0.55 0.62 −3.10 −2.16
5.73 −0.02 2.24 4.33 −3.03 1.33 0.67 −4.01 −3.95 −0.64 −5.92 −3.23 −2.11 3.41 −1.05 −2.70
4.07 −3.79 −1.95 2.14 8.16 3.62 −6.00 −5.51 −3.72 0.23 1.28 3.49 −1.25 −0.70 2.95 3.92
0.44 −1.99 3.31 −2.00 3.73 5.62 0.72 −4.17 −2.78 −1.93 2.04 2.57 0.31 0.36 −1.11 1.89

−3.08 −0.92 0.18 −4.91 5.84 3.57 5.36 0.58 −0.70 −1.73 6.55 2.80 0.05 0.74 0.29 −2.54
−0.46 −5.48 1.18 0.96 6.34 1.14 1.47 9.45 3.91 1.77 −5.88 3.01 3.42 2.85 3.78 −4.72

0.97 6.99 −1.52 5.21 4.37 0.49 3.15 −5.95 7.17 4.41 1.43 −0.07 0.75 −0.79 −0.60 −3.90
−1.89 0.90 0.50 3.72 1.49 1.35 1.65 0.34 −0.58 4.02 −1.20 1.19 −3.60 4.34 0.09 −4.53
−3.12 −0.59 −1.28 5.66 −1.77 −2.95 −4.27 5.31 −5.11 4.96 9.80 −0.34 −3.62 2.74 1.34 −0.84
−5.23 −2.58 0.58 2.01 −4.69 −1.77 −1.96 −5.35 −0.11 2.01 0.31 7.43 3.19 4.74 −1.87 −4.23
−1.76 3.70 0.07 −2.39 −0.75 −0.90 4.25 −4.04 1.88 3.00 3.36 2.89 3.79 −1.12 −0.32 −0.52
−2.40 0.61 1.91 0.36 0.19 0.91 −3.38 −3.10 −1.84 −1.33 −3.20 −0.73 −0.90 3.17 0.41 −3.6

5.16 −2.74 0.62 3.01 0.65 −0.55 −2.96 −1.92 2.52 3.90 0.22 4.84 0.17 1.12 2.92 0.05
4.19 0.25 −1.07 0.89 −1.35 −4.58 −0.32 1.51 2.59 0.62 3.15 3.76 2.37 −0.84 1.88 6.43

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

.

According to the procedure of Section 4.2 we can recognize this case as Case
H with ň = 2 and m̄ = 2. This means that we have P⊤T P = H2 ⊗ I2 with
a suitable choice of an orthogonal matrix P .
Steps 1–5: We obtain the following matrices by the same procedure as in
Case C.

P̃⊤A1P̃ =
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

8.16 −0.34 13.40 0.65 1.61 0.50 −0.42 0.01 5.68 0 0 0 0 0 0 0
0.34 8.16 −0.65 13.40 0.12 −0.84 −0.49 1.44 0 5.68 0 0 0 0 0 0

−13.40 0.65 8.16 0.34 −0.42 0.01 −1.61 −0.50 0 0 5.68 0 0 0 0 0
−0.65 −13.40 −0.34 8.16 −0.49 1.44 −0.12 0.84 0 0 0 5.68 0 0 0 0
−1.61 −0.12 0.42 0.49 8.16 −0.72 13.40 0.15 0 0 0 0 5.68 0 0 0
−0.50 0.84 −0.01 −1.44 0.72 8.16 −0.15 13.40 0 0 0 0 0 5.68 0 0

0.42 0.49 1.61 0.12 −13.40 0.15 8.16 0.72 0 0 0 0 0 0 5.68 0
−0.01 −1.44 0.50 −0.84 −0.15 −13.40 −0.72 8.16 0 0 0 0 0 0 0 5.68

0.29 −0.26 1.25 −0.76 −0.90 −0.40 1.60 0.39 −2.74 −0.29 2.87 −2.07 −3.06 −1.20 3.64 0.80
0.26 0.29 0.76 1.25 0.29 −0.50 0.47 −1.76 0.29 −2.74 2.07 2.87 0.52 −0.43 1.34 −4.73

−1.25 −0.76 0.29 0.26 1.60 0.39 0.90 0.40 −2.87 −2.07 −2.74 0.29 3.64 0.80 3.06 1.20
0.76 −1.25 −0.26 0.29 0.47 −1.76 −0.29 0.50 2.07 −2.87 −0.29 −2.74 1.34 −4.73 −0.52 0.43
0.90 −0.29 −1.60 −0.47 0.29 0.43 1.25 −0.68 3.06 −0.52 −3.64 −1.34 −2.74 1.43 2.87 −1.53
0.40 0.50 −0.39 1.76 −0.43 0.29 0.68 1.25 1.20 0.43 −0.80 4.73 −1.43 −2.74 1.53 2.87

−1.60 −0.47 −0.90 0.29 −1.25 −0.68 0.29 −0.43 −3.64 −1.34 −3.06 0.52 −2.87 −1.53 −2.74 −1.43
−0.39 1.76 −0.40 −0.50 0.68 −1.25 0.43 0.29 −0.80 4.73 −1.20 −0.43 1.53 −2.87 1.43 −2.74

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

P̃⊤A2P̃ =

30



2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

10.30 0.53 13.20 −1.02 −2.54 −0.79 0.65 −0.02 0.91 −1.07 −3.95 −0.44 0.88 0.05 2.48 0.80
−0.53 10.30 1.02 13.20 −0.19 1.32 0.77 −2.26 1.07 0.91 0.44 −3.95 0.79 −2.38 0.13 −1.12

−13.20 −1.02 10.30 −0.53 0.65 −0.02 2.54 0.79 3.95 −0.44 0.91 1.07 2.48 0.80 −0.88 −0.05
1.02 −13.20 0.53 10.30 0.77 −2.26 0.19 −1.32 0.44 3.95 −1.07 0.91 0.13 −1.12 −0.79 2.38
2.54 0.19 −0.65 −0.77 10.30 1.13 13.20 −0.23 −0.88 −0.79 −2.48 −0.13 0.91 −0.33 −3.95 −1.11
0.79 −1.32 0.02 2.26 −1.13 10.30 0.23 13.20 −0.05 2.38 −0.80 1.12 0.33 0.91 1.11 −3.95

−0.65 −0.77 −2.54 −0.19 −13.20 −0.23 10.30 −1.13 −2.48 −0.13 0.88 0.79 3.95 −1.11 0.91 0.33
0.02 2.26 −0.79 1.32 0.23 −13.20 1.13 10.30 −0.80 1.12 0.05 −2.38 1.11 3.95 −0.33 0.91

−0.45 0.41 −1.96 1.20 1.41 0.62 −2.52 −0.61 1.44 −0.14 1.75 0.89 1.73 0.60 −1.11 −0.18
−0.41 −0.45 −1.20 −1.96 −0.46 0.79 −0.74 2.77 0.14 1.44 −0.89 1.75 −0.05 −0.43 −0.62 2.01

1.96 1.20 −0.45 −0.41 −2.52 −0.61 −1.41 −0.62 −1.75 0.89 1.44 0.14 −1.11 −0.18 −1.73 −0.60
−1.20 1.96 0.41 −0.45 −0.74 2.77 0.46 −0.79 −0.89 −1.75 −0.14 1.44 −0.62 2.01 0.05 0.43
−1.41 0.46 2.52 0.74 −0.45 −0.68 −1.96 1.07 −1.73 0.05 1.11 0.62 1.44 −0.78 1.75 0.45
−0.62 −0.79 0.61 −2.77 0.68 −0.45 −1.07 −1.96 −0.60 0.43 0.18 −2.01 0.78 1.44 −0.45 1.75

2.52 0.74 1.41 −0.46 1.96 1.07 −0.45 0.68 1.11 0.62 1.73 −0.05 −1.75 0.45 1.44 0.78
0.61 −2.77 0.62 0.79 −1.07 1.96 −0.68 −0.45 0.18 −2.01 0.60 −0.43 −0.45 −1.75 −0.78 1.44
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,

where P̃ is an orthogonal matrix given as
P̃ =
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0.06 −0.41 −0.03 −0.41 −0.11 −0.33 −0.57 −0.02 −0.34 −0.15 −0.02 −0.12 −0.12 0.06 0.13 0.16
−0.08 −0.24 −0.28 −0.02 0.10 −0.03 −0.17 0.49 0.28 −0.08 0.29 −0.06 −0.16 −0.11 −0.27 −0.54

0.02 0.29 −0.09 −0.07 0.19 −0.24 −0.22 −0.07 −0.06 −0.21 −0.05 0.49 0.31 −0.59 −0.12 −0.02
−0.31 0.04 0.01 0.01 −0.34 −0.39 −0.04 0.29 0.38 0.04 −0.38 0.25 0.24 0.35 −0.06 0.11

0.46 0.16 −0.26 0.15 −0.56 −0.04 0.20 0.22 −0.14 −0.44 0.01 0.04 −0.12 −0.04 0.20 −0.04
0.24 0.32 −0.35 −0.19 −0.17 −0.18 −0.11 −0.06 0.18 0.60 −0.12 −0.37 −0.04 −0.24 0.01 0.01
0.17 0.22 −0.48 −0.32 0.33 0.24 −0.05 0.12 0.02 −0.01 0.16 0.29 0.04 0.48 0.03 0.25
0.14 −0.29 −0.05 −0.50 0.13 −0.27 0.65 −0.13 0.04 −0.08 −0.21 0.05 −0.09 −0.07 −0.18 −0.07

−0.25 −0.08 −0.00 −0.30 −0.38 0.56 0.02 0.25 −0.24 0.17 −0.14 0.15 −0.05 −0.26 −0.29 0.19
−0.18 0.07 0.24 −0.26 0.03 −0.11 0.20 0.37 0.02 0.19 0.34 0.12 −0.03 −0.19 0.67 0.03

0.39 0.05 0.30 0.06 0.38 0.04 −0.04 0.58 −0.14 0.01 −0.42 −0.22 0.13 −0.02 −0.05 0.08
0.23 0.37 0.52 −0.34 −0.14 0.06 −0.20 −0.12 0.12 0.00 0.01 0.20 −0.30 0.21 −0.14 −0.37

−0.01 −0.09 −0.05 −0.27 −0.02 0.41 −0.12 −0.16 0.41 −0.31 −0.29 −0.22 0.34 −0.09 0.38 −0.20
−0.13 0.27 0.17 −0.19 −0.03 −0.09 0.05 0.07 0.26 −0.39 0.34 −0.44 0.02 −0.09 −0.30 0.46

0.27 −0.16 0.13 −0.10 −0.22 −0.02 0.06 −0.00 −0.15 0.19 0.40 −0.03 0.73 0.15 −0.17 −0.15
0.44 −0.41 0.15 0.14 −0.05 0.10 −0.11 −0.03 0.51 0.14 0.12 0.30 −0.13 −0.17 −0.01 0.38
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Step 6: Put X = (P̃⊤A1P̃ )[1,1], which contains ȷ and k components:

X =



8.16 −0.34 13.40 0.65 1.61 0.50 −0.42 0.01
0.34 8.16 −0.65 13.40 0.12 −0.84 −0.49 1.44

−13.40 0.65 8.16 0.34 −0.42 0.01 −1.61 −0.50
−0.65 −13.40 −0.34 8.16 −0.49 1.44 −0.12 0.84
−1.61 −0.12 0.42 0.49 8.16 −0.72 13.40 0.15
−0.50 0.84 −0.01 −1.44 0.72 8.16 −0.15 13.40

0.42 0.49 1.61 0.12 −13.40 0.15 8.16 0.72
−0.01 −1.44 0.50 −0.84 −0.15 −13.40 −0.72 8.16

 .

We have a = 8.16, b = 13.40, and hence

X(2) = X − aI8 − bJ ′ =



0 −0.34 0 0.65 1.61 0.50 −0.42 0.01
0.34 0 −0.65 0 0.12 −0.84 −0.49 1.44

0 0.65 0 0.34 −0.42 0.01 −1.61 −0.50
−0.65 0 −0.34 0 −0.49 1.44 −0.12 0.84
−1.61 −0.12 0.42 0.49 0 −0.72 0 0.15
−0.50 0.84 −0.01 −1.44 0.72 0 −0.15 0

0.42 0.49 1.61 0.12 0 0.15 0 0.72
−0.01 −1.44 0.50 −0.84 −0.15 0 −0.72 0

 .

By using the permutation and the skew-Hamiltonian Schur decomposition,
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we obtain

Ŝ⊤X(2)Ŝ =



0 −1.89 0 0 0 0 0 0
1.89 0 0 0 0 0 0 0

0 0 0 −1.89 0 0 0 0
0 0 1.89 0 0 0 0 0
0 0 0 0 0 1.89 0 0
0 0 0 0 −1.89 0 0 0
0 0 0 0 0 0 0 1.89
0 0 0 0 0 0 −1.89 0

 ,

where Ŝ is a orthogonal permuted symplectic matrix given by

Ŝ =



0.81 0.41 0.00 0.00 −0.08 0.41 0.00 0.00
−0.47 0.27 0.15 −0.03 −0.34 0.61 −0.29 −0.33

0.00 0.00 0.81 0.41 0.00 0.00 −0.08 0.41
−0.15 0.03 −0.47 0.27 0.29 0.33 −0.34 0.61

0.02 −0.34 0.26 −0.42 0.66 0.43 0.08 −0.09
−0.09 0.07 −0.11 0.68 0.28 0.17 0.52 −0.35
−0.26 0.42 0.02 −0.34 −0.08 0.09 0.66 0.43

0.11 −0.68 −0.09 0.07 −0.52 0.35 0.28 0.17

 .

Step 7: The orthogonal matrix P = P̃ ·diag (Ŝ, Ŝ) gives the decomposition
P⊤T P = H2 ⊗ I2 as follows:

P⊤A1P =
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

8.16 0 13.40 0 1.89 0 0 0 5.68 0 0 0 0 0 0 0
0 8.16 0 13.40 0 1.89 0 0 0 5.68 0 0 0 0 0 0

−13.40 0 8.16 0 0 0 −1.89 0 0 0 5.68 0 0 0 0 0
0 −13.40 0 8.16 0 0 0 −1.89 0 0 0 5.68 0 0 0 0

−1.89 0 0 0 8.16 0 13.40 0 0 0 0 0 5.68 0 0 0
0 −1.89 0 0 0 8.16 0 13.40 0 0 0 0 0 5.68 0 0
0 0 1.89 0 −13.40 0 8.16 0 0 0 0 0 0 0 5.68 0
0 0 0 1.89 0 −13.40 0 8.16 0 0 0 0 0 0 0 5.68

0.29 0 1.25 0 −1.44 0 1.50 0 −2.74 0 2.87 0 −4.39 0 3.12 0
0 0.29 0 1.25 0 −1.44 0 1.50 0 −2.74 0 2.87 0 −4.39 0 3.12

−1.25 0 0.29 0 1.50 0 1.44 0 −2.87 0 −2.74 0 3.12 0 4.39 0
0 −1.25 0 0.29 0 1.50 0 1.44 0 −2.87 0 −2.74 0 3.12 0 4.39

1.44 0 −1.50 0 0.29 0 1.25 0 4.39 0 −3.12 0 −2.74 0 2.87 0
0 1.44 0 −1.50 0 0.29 0 1.25 0 4.39 0 −3.12 0 −2.74 0 2.87

−1.50 0 −1.44 0 −1.25 0 0.29 0 −3.12 0 −4.39 0 −2.87 0 −2.74 0
0 −1.50 0 −1.44 0 −1.25 0 0.29 0 −3.12 0 −4.39 0 −2.87 0 −2.74
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,

P⊤A2P =
2

6

6

6

6

6
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6
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6

6

6

6

6

6
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4

10.30 0 13.20 0 −2.97 0 0 0 0.91 0 −3.95 0 0.26 0 2.97 0
0 10.30 0 13.20 0 −2.97 0 0 0 0.91 0 −3.95 0 0.26 0 2.97

−13.20 0 10.30 0 0 0 2.97 0 3.95 0 0.91 0 2.97 0 −0.26 0
0 −13.20 0 10.30 0 0 0 2.97 0 3.95 0 0.91 0 2.97 0 −0.26

2.97 0 0 0 10.30 0 13.20 0 −0.26 0 −2.97 0 0.91 0 −3.95 0
0 2.97 0 0 0 10.30 0 13.20 0 −0.26 0 −2.97 0 0.91 0 −3.95
0 0 −2.97 0 −13.20 0 10.30 0 −2.97 0 0.26 0 3.95 0 0.91 0
0 0 0 −2.97 0 −13.20 0 10.30 0 −2.97 0 0.26 0 3.95 0 0.91

−0.45 0 −1.96 0 2.26 0 −2.36 0 1.44 0 1.75 0 2.21 0 −0.73 0
0 −0.45 0 −1.96 0 2.26 0 −2.36 0 1.44 0 1.75 0 2.21 0 −0.73

1.96 0 −0.45 0 −2.36 0 −2.26 0 −1.75 0 1.44 0 −0.73 0 −2.21 0
0 1.96 0 −0.45 0 −2.36 0 −2.26 0 −1.75 0 1.44 0 −0.73 0 −2.21

−2.27 0 2.36 0 −0.45 0 −1.96 0 −2.21 0 0.73 0 1.44 0 1.75 0
0 −2.26 0 2.36 0 −0.45 0 −1.96 0 −2.21 0 0.73 0 1.44 0 1.75

2.36 0 2.26 0 1.96 0 −0.45 0 0.73 0 2.21 0 −1.75 0 1.44 0
0 2.36 0 2.26 0 1.96 0 −0.45 0 0.73 0 2.21 0 −1.75 0 1.44
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With a permutation matrix Π, explicit block diagonal forms can be obtained:

Π⊤P⊤A1PΠ =
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8.16 −1.89 13.40 0 5.68 0 0 0 0 0 0 0 0 0 0 0
1.89 8.16 0 13.40 0 5.68 0 0 0 0 0 0 0 0 0 0

−13.40 0 8.16 1.89 0 0 5.68 0 0 0 0 0 0 0 0 0
0 −13.40 −1.89 8.16 0 0 0 5.68 0 0 0 0 0 0 0 0

0.29 1.44 1.25 −1.50 −2.74 4.39 2.87 −3.12 0 0 0 0 0 0 0 0
−1.44 0.29 1.50 1.25 −4.39 −2.74 3.12 2.87 0 0 0 0 0 0 0 0
−1.25 −1.50 0.29 −1.44 −2.87 −3.12 −2.74 −4.39 0 0 0 0 0 0 0 0

1.50 −1.25 1.44 0.29 3.12 −2.87 4.39 −2.74 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 8.16 −1.89 13.40 0 5.68 0 0 0
0 0 0 0 0 0 0 0 1.89 8.16 0 13.40 0 5.68 0 0
0 0 0 0 0 0 0 0 −13.40 0 8.16 1.89 0 0 5.68 0
0 0 0 0 0 0 0 0 0 −13.40 −1.89 8.16 0 0 0 5.68
0 0 0 0 0 0 0 0 0.29 1.44 1.25 −1.50 −2.74 4.39 2.87 −3.12
0 0 0 0 0 0 0 0 −1.44 0.29 1.50 1.25 −4.39 −2.74 3.12 2.87
0 0 0 0 0 0 0 0 −1.25 −1.50 0.29 −1.44 −2.87 −3.12 −2.74 −4.39
0 0 0 0 0 0 0 0 1.50 −1.25 1.44 0.29 3.12 −2.87 4.39 −2.74
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Π⊤P⊤A2PΠ =
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

10.30 13.20 −2.97 0 0.91 −3.95 0.26 2.97 0 0 0 0 0 0 0 0
−13.20 10.30 0 2.97 3.95 0.91 2.97 −0.26 0 0 0 0 0 0 0 0

2.97 0 10.30 13.20 −0.26 −2.97 0.91 −3.95 0 0 0 0 0 0 0 0
0 −2.97 −13.20 10.30 −2.97 0.26 3.95 0.91 0 0 0 0 0 0 0 0

−0.45 −1.96 2.26 −2.36 1.44 1.75 2.21 −0.73 0 0 0 0 0 0 0 0
1.96 −0.45 −2.36 −2.26 −1.75 1.44 −0.73 −2.21 0 0 0 0 0 0 0 0

−2.27 2.36 −0.45 −1.96 −2.21 0.73 1.44 1.75 0 0 0 0 0 0 0 0
2.36 2.26 1.96 −0.45 0.73 2.21 −1.75 1.44 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 10.30 13.20 −2.97 0 0.91 −3.95 0.26 2.97
0 0 0 0 0 0 0 0 −13.20 10.30 0 2.97 3.95 0.91 2.97 −0.26
0 0 0 0 0 0 0 0 2.97 0 10.30 13.20 −0.26 −2.97 0.91 −3.95
0 0 0 0 0 0 0 0 0 −2.97 −13.20 10.30 −2.97 0.26 3.95 0.91
0 0 0 0 0 0 0 0 −0.45 −1.96 2.26 −2.36 1.44 1.75 2.21 −0.73
0 0 0 0 0 0 0 0 1.96 −0.45 −2.36 −2.26 −1.75 1.44 −0.73 −2.21
0 0 0 0 0 0 0 0 −2.26 2.36 −0.45 −1.96 −2.21 0.73 1.44 1.75
0 0 0 0 0 0 0 0 2.36 2.26 1.96 −0.45 0.73 2.21 −1.75 1.44

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

.

6 Conclusion

We have considered the problem of simultaneous block-diagonal decompo-
sition, which is to find an orthogonal matrix P in the structure theorem
for the matrix ∗-algebra generated by a given set of real square matrices
A1, . . . , AN . For this problem, we have proposed an algorithm, which is an
extension of the algorithm given by [12]. While the algorithm of [12] is tar-
geted to a special case (Case R), our algorithm can cope with all possible
cases, Case R, Case C and Case H.

In [12] a variant of the algorithm is suggested for practical efficiency in
relation to the following two technical conditions:

1. T = span{In, A1, . . . , AN},

2. r ∈ R, where R is an open dense set,

which also appear in Proposition 3.3 and Proposition 4.1 of the present
paper to ensure genericity of A(r) = r1A1 + · · · + rNAN and A(r)⊤ + A(r).
The variant suggested in [12] executes the original algorithm without regard
to the first condition, and in case of any inconsistency during the execution,
restarts by adding transposes or products of some of the generators to the
current set {A1, . . . , AN}. A similar variant is conceivable for our algorithm,
which we report elsewhere along with applications to practical problems.
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