
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

A Parallel Tree Contraction Algorithm

on Non-Binary Trees

Akimasa MORIHATA and Kiminori MATSUZAKI

METR 2008–27 June 2008

DEPARTMENT OF MATHEMATICAL INFORMATICS

GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO

BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html



The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.



A Parallel Tree Contraction Algorithm on Non-Binary Trees

Akimasa MORIHATA and Kiminori MATSUZAKI

Abstract

Parallel tree contraction is an important framework to develop efficient parallel algo-
rithms on trees. Parallel tree contraction gives an appropriate scheduling for parallel com-
putations on trees, and the scheduling brings efficient parallel algorithms to us. While there
are many studies for efficient algorithms of parallel tree contraction and implementation of
various parallel computations based on them, few studies give practical parallel tree contrac-
tion algorithms on non-binary trees. Some studies just mention that any tree can be encoded
as a binary tree; however, binary-tree encoding breaks the original structure, and this makes
it difficult to develop parallel algorithms following parallel tree contraction algorithms.

In this paper, we propose a new parallel tree contraction algorithm. Our algorithm
is a generalization of that proposed by Abrahamson et al., and works well even for non-
binary trees. Our algorithm requires no binary-tree encoding, and thus, it is easy to develop
parallel algorithms based on our parallel tree contraction algorithm. In addition, we show
sufficient conditions when computations can be parallelized based on our algorithm, and the
conditions are generalizations of those known on binary trees.

1 Introduction

The objective of this paper is to give a way to develop efficient parallel algorithms on trees. One
naive way to parallelize computations on trees is to evaluate independent subtrees in parallel.
However, such naive parallelization results in miserable efficiency if the tree forms an ill-balanced
shape such as a monadic one. It is difficult to give parallel algorithms that are efficient even for
ill-balanced trees.

Parallel tree contraction, introduced by Miller and Reif [MR85], is a framework of con-
structing efficient parallel algorithms on trees. The parallel tree contraction problem is to give
a scheduling of contraction operations so that they can collapse a tree efficiently in parallel
with no conflict. Once an efficient parallel tree contraction algorithm is given, we can achieve
many computations on a tree efficiently in parallel by processing computations according to the
scheduling. Firstly Miller and Reif introduced the notion of parallel tree contraction to obtain
an efficient parallel algorithm for evaluating expressions defined with +, −, ×, and /. After
that, parallel tree contraction is recognized as an important framework for constructing various
parallel algorithms on trees. Many studies have been done for efficient parallel tree contraction
algorithms [CV88,GR89,ADKP89,MW97] and for implementation of many computations based
on them [DK92,GCS94,Ski96,MHT06,Mat07].

Although the importance of parallel tree contraction is well recognized, few studies consider
that on non-binary trees. Some studies just mentioned that non-binary trees can be encoded
as binary trees. However, such encoding is often troublesome because it breaks the original
structure. For example, consider that we want to compute the height of a non-binary tree, and
we encode the tree as a binary tree. Then, the height of the binary tree is not that of the
original tree anymore. Moreover, we have several binary-tree encodings for a single tree, and
we need to select an appropriate binary-tree encoding to develop an efficient parallel algorithm
on it. In short, the binary-tree encoding makes problems complicated.

1



In this paper, we give a new parallel tree contraction algorithm that works well even
for non-binary trees. Our algorithm is a generalization of that proposed by Abrahamson et
al. [ADKP89]. One important characteristic of our algorithm is that it requires no binary-tree
encoding. For this characteristic, it is easy to develop parallel algorithms based on our parallel
tree contraction algorithm. Our algorithm runs in O(kn/p + k log p) time on EREW PRAM
machines, where n is the size of the tree, p is the number of processors, and k is the maximum
degree of the tree. In addition, we show sufficient conditions when computations can be paral-
lelized based on our algorithm. Our sufficient conditions are generalizations of those known on
binary trees [GR89,ADKP89].

2 Related Works

First, Miller and Reif [MR85] introduced the notion of parallel tree contraction and showed a
tree contraction algorithm. Although the algorithm also works for non-binary trees, it assumes
CRCW PRAM for the parallel computation model. In [Rei93], a cost-optimal tree contraction
algorithm on EREW PRAM machines is shown, which is an extension of that by Miller and
Reif. Our algorithm is simpler than that algorithm and suitable for the practical use.

While there are several efficient parallel tree contraction algorithms on binary trees [CV88,
GR89,ADKP89,MW97], few studies consider parallel tree contraction algorithms on non-binary
trees without binary-tree encoding. In fact, binary-tree encoding is not troublesome in parallel
tree contraction itself; however, such encoding breaks the structure of the original trees and
makes it hard to develop parallel algorithms based on parallel tree contraction.

As an application on non-binary trees, some studies apply parallel tree contraction to parallel
term matching algorithms, for example [DK92,MW97]. Most studies developed algorithms on
binary-tree encodings even in the case that terms form non-binary trees. It is not clear whether
parallel term matching algorithms can be generalized so that it can deal with other computations
on non-binary trees.

Skillicorn [Ski96] proposed to use parallel tree contraction for implementing parallel tree
skeletons. Parallel tree skeletons are general and expressive patterns in parallel computation,
and many computations on trees can be developed with them [GCS94,MHT06,Mat07]. However,
most studies only deal with binary trees. Matsuzaki et al. [MHKT05,KME07,Mat07] proposed
parallel tree skeletons on non-binary trees, which are implemented based on a binary-tree en-
coding. They showed a sufficient condition, called extended distributivity, as a requirement of
a successful parallel implementation on the binary-tree encoding. Our sufficient conditions are
simpler and more understandable than their condition.

3 SHUNT Contraction Algorithm

We consider the EREW PRAM model. An input tree is given by a set of nodes, and each node
has pointers to its parent and children.

Here we introduce a parallel tree contraction algorithm by Abrahamson et al. [ADKP89],
called the SHUNT1 contraction algorithm. The problem is to collapse a tree in O(log n) steps,
where a step consists of a set of independent SHUNT operations defined below.

Definition 1 (SHUNT). Specified a leaf, a SHUNT operation removes the leaf and its parent
and connects the sibling of the leaf to its grandparent.

1The name “SHUNT” is later given in [Rei93].

2



=⇒

Figure 1: A SHUNT operation

=⇒

Figure 2: A conflict of two SHUNT operations

Figure 1 shows the behavior of a SHUNT operation. We call two SHUNT operations are
independent if no nodes concern them simultaneously. On one hand, we require the SHUNT
operations to be independent on the EREW PRAM; otherwise, the tree structure will be bro-
ken as shown in Figure 2. On the other hand, we should apply many SHUNT operations
simultaneously to accomplish the reduction in O(log n) steps. Therefore, we need to give a
good conflict-free scheduling of SHUNT operations. Abrahamson et al. [ADKP89] showed that
a numbering on leaves resolves this problem. The following procedure gives a scheduling of
independent SHUNT operations and finishes the reduction in O(log n) steps.

Procedure 2 (SHUNT contraction for binary trees).

(1) Number all leaves from left to right.
(2) Do SHUNT for all odd-numbered left leaves.
(3) Do SHUNT for all odd-numbered right leaves.
(4) Halve all numbers of leaves.
(5) Go to (2) until the tree consists of only one node.

Next let us consider computations on binary trees. When the whole computation can be
achieved by a sequence of small-step computations corresponding to SHUNT operations, we
can do the computation efficiently in parallel according to the scheduling given by Procedure 2.
Here we introduce algebraic computations as a general computation pattern on trees. Note that
the following algebraic computations are defined on not only binary trees but also non-binary
trees whose degree is fixed.

Definition 3 (algebraic computations [ADKP89]). A set of values S and a set of functions F
are given, where each element of F takes a fixed-sized tuple of elements of S according to its
arity and results in an element of S. An algebraic computation defined by (S,F ) is to evaluate
expressions whose operators are elements of F and values are elements of S.

Abrahamson et al. gave a sufficient condition for parallelizing algebraic computations where
arities of operators are two.

3



=⇒

Figure 3: An M-SHUNT operation (marked nodes are colored)

Theorem 4. Assume that there are a set of values S and two sets of indexed functions F ⊆

(S × S → S) and G ⊆ (S → S) such that the following conditions hold.

• Any element of F and G can be evaluated in O(1) time.

• For all fi ∈ F and a, b ∈ S, there exist functions gj and gk such that fi(x, b) = gj(x) and
fi(a, x) = gk(x) hold and the indexes j and k can be computed in O(1) time from i, a,
and b.

• For all gi, gj ∈ G, there exists a function gk such that gi(gj(x)) = gk(x) holds and the
index k can be computed in O(1) time from i and j.

Then, an algebraic computation defined by (S,F ) can be computed in O(n/p + log p) time in
parallel, where n is the size of the expression and p is the number of processors.

4 Parallel Tree Contraction Algorithm for Non-Binary Trees

Now let us consider non-binary cases. We assume that a tree has no unary node; otherwise, we
can remove such a node by inserting a dummy leaf.

In the case of binary trees, a leaf has a unique sibling and thus we can define the SHUNT
operation to be applied to a leaf. In the case of non-binary trees, however, a single leaf does
not necessarily specify its sibling nor a SHUNT operation. Here, we introduce marks on leaves
to generalize the SHUNT operation for non-binary trees.

Definition 5 (SHUNT operation with marks). A SHUNT operation with marks (we will call
it M-SHUNT ) is an operation applied to an internal node whose children are one unmarked
node and the other marked leaves. An M-SHUNT operation removes the internal node and all
its marked children and connects the unmarked child to the parent of the internal node.

Figure 3 shows the behavior of an M-SHUNT operation. Note that an M-SHUNT operation
to a binary internal node is isomorphic to the usual SHUNT operation. We assume that an
M-SHUNT operation for a k-ary node takes O(k) time.

The following procedure is our parallel tree contraction algorithm for non-binary trees.

Procedure 6 (SHUNT contraction for non-binary trees).

(1) Number all leaves from left to right.
(2) Mark all odd-numbered leaves that have an unmarked right sibling, and apply M-SHUNT

operations to all the possible nodes.
(3) Mark all odd-numbered unmarked leaves, and apply M-SHUNT operations to all the

possible nodes.
(4) Erase the numbers of the marked leaves, and halve those of the unmarked leaves.
(5) Go to (2) until the tree consists of only one node.

4



It is worth noting that Procedure 6 is equivalent to Procedure 2 when the input is a binary
tree. In this sense, we can state that Procedure 6 is a generalization of Procedure 2. Actually,
Procedure 6 inherits good characteristics from Procedure 2.

Lemma 7. Procedure 6 raises no conflicting applications of M-SHUNT operations.

Proof. Note that unmarked leaves are numbered from left to right throughout the procedure.
Let v1 be the parent of an internal node v2.
First we prove by contradiction that simultaneous M-SHUNT operations to v1 and v2 never

occur in the step (2). Let l1 be the rightmost newly marked leaf of v1 and l2 be the leftmost
newly marked leaf of v2. By the assumption that M-SHUNT operations are applicable to both
v1 and v2, v1 has exactly one unmarked child that is v2, and v2 has the only unmarked child
on the right of l2. Because l1 is newly marked and v2 is the only unmarked child of v1, v2 is
a right sibling of l1, and thus the number of l1 is less than that of l2. Since even-numbered
leaves remain unmarked, an unmarked even-numbered leaf (say l3) should exist between l1 and
l2. Here, l3 is not a child of v1 because v1 has the only unmarked child v2; l3 is not a descendant
of v2 because v2 should have the unmarked child on the right of l2 but not on the left of l2.
Therefore, such a leaf l3 must not exist and a contradiction occurs.

The case for the step (3) is similar. Let l1 be the leftmost newly marked leaf of v1, l2 be the
rightmost newly marked leaf of v2, and l3 be an even-numbered leaf between l1 and l2. Notice
that since v2 is an unmarked child of v1 and l1 is not marked in the previous step, l1 is a right
sibling of v2 and the number of l1 is greater than that of l2. Obviously l3 is not a child of v1. If
l3 is a child of v2, then l3 is an unmarked right sibling of l2 due to the order of l1 and l2, but in
such a case l2 should be marked in the previous step (2), which is a contradiction.

Theorem 8. Procedure 6 runs in O(kn/p + k log p) time on EREW PRAM machines, where n
is the size of the tree, p is the number of processors, and k is the maximum degree of the tree.

Proof. Correctness on the EREW PRAM follows from Lemma 7.
The step (1) can be implemented by the Euler-tour technique with the list ranking procedure

and is done in O(kn/p + k log p) time. Since we assumed the cost of an M-SHUNT operation
to be O(k), the cost of the theorem is achieved if the steps (2)–(5) take O(n/p + log p) steps.
Since the number of unmarked leaves decreases into the half through a sequence of the steps
(2)–(5), the cost is achieved as the case of Procedure 2.

Notice that the complexity is cost optimal when p is O(n/ log n) and k is O(1), that is,
O(p(kn/p + k log p)) = O(n) holds.

One important fact is that Procedure 6 requires no binary-tree encoding; thus, it is easy to
develop parallel algorithms based on the algorithm. The following theorem shows a sufficient
condition to achieve parallel computations following the Procedure 6, which is a generalization
of Theorem 4.

Theorem 9. Assume that there are a set of values S and two sets of indexed functions F and
G such that the following conditions hold.

• Any element of F and G can be evaluated in O(1) time.

• For all fi ∈ F and a1, a2, . . . , al−1, al+1, . . . , ak ∈ S, where k is the arity of fi, there exists
a function gj such that fi(a1, . . . , al−1, x, al+1, . . . , ak) = gj(x) holds and the index j can
be computed in O(k) time from a1, . . . , al−1, al+1, . . . , ak, l, and i.

• For all gi, gj ∈ G, there exists a function gk such that gi(gj(x)) = gk(x) holds and the
index k can be computed in O(1) time from i and j.

5



Then, an algebraic computation defined by (S,F ) can be computed in O(n/p + log p) time in
parallel, where n is the size of the expression and p is the number of processors.

Proof. We can assume that G contains the identity function without loss of generality. As a
preprocess, associate the index of the identity function to each internal node. After that, run
the Procedure 6, and when M-SHUNT operation is applied to a node, do computation described
bellow. Let fj ∈ F and p respectively be the operator and the index stored at the node. If all
children of the node are leaves whose values are a1, . . . , ak, store gp(fj(a1, . . . , ak)) to the leaf
left after the M-SHUNT operation. If l-th child of the node is an internal node that stores an
index q and values of other children are a1, . . . , al−1, al+1, . . . ak, update the index q by r such
that gr(x) = gp(fj(a1, . . . , al−1, gq(x), al+1, . . . , ak)) holds.

It is not difficult to see that the procedure above yields the result of the algebraic computa-
tion; besides, because arity of each function in F is at most constant, it runs in O(n/p + log p)
time.

A direct consequence of Theorem 9 is a parallel evaluation algorithm for algebraic compu-
tations whose carrier is finite.

Corollary 10. If the size of the set S is O(1) and each element of F can be evaluated in O(1)
time, any algebraic computation defined by (S,F ) can be computed in O(n/p + log p) time in
parallel, where n is the size of the expression and p is the number of processors.

Proof. Let each functions in G required in Theorem 9 be a transition table from S to S. Since
the size of S is O(1), the size of a table is O(1) and a composition of two tables can be evaluated
in O(1) time.

Corollary 10 is a generalization of the known result where operators are binary [GR89].
Corollary 10 gives, for example, an efficient parallel evaluation algorithm for arithmetic expres-
sions consisting of +, −, ×, /, and conditional operators, on a Galois field.

5 Conclusion

In this paper, we described a generalization of the known results about the parallel tree contrac-
tion and its condition for applications on binary trees [GR89,ADKP89] so that it can efficiently
cope with non-binary trees of bounded degrees. We gave a cost optimal parallel tree contrac-
tion algorithm for non-binary trees, and gave a sufficient condition for parallelizing algebraic
computations that form non-binary trees.

Our algorithm is not efficient when some internal nodes have many children. It is a topic of
further research to give an efficient algorithm that works well for such trees.

References

[ADKP89] Karl R. Abrahamson, N. Dadoun, David G. Kirkpatrick, and Teresa M. Przytycka.
A simple parallel tree contraction algorithm. Journal of Algorithms, 10(2):287–302,
1989.

[CV88] Richard Cole and Uzi Vishkin. The accelerated centroid decomposition technique
for optimal parallel tree evaluation in logarithmic time. Algorithmica, 3:329–346,
1988.

[DK92] Arthur L. Delcher and Simon Kasif. Efficient parallel term matching and anti-
unification. Journal of Automated Reasoning, 9(3):391–406, 1992.

6



[GCS94] Jeremy Gibbons, Wentong Cai, and David B. Skillicorn. Efficient parallel algorithms
for tree accumulations. Sci. Comput. Program., 23(1):1–18, 1994.

[GR89] Alan Gibbons and Wojciech Rytter. Optimal parallel algorithm for dynamic ex-
pression evaluation and context-free recognition. Information and Computation,
81(1):32–45, 1989.

[KME07] Kazuhiko Kakehi, Kiminori Matsuzaki, and Kento Emoto. Efficient parallel tree
reductions on distributed memory environments. In Computational Science - ICCS

2007, 7th International Conference, Beijing, China, May 27 - 30, 2007, Proceed-

ings, Part II, volume 4488 of Lecture Notes in Computer Science, pages 601–608.
Springer, 2007.

[Mat07] Kiminori Matsuzaki. Parallel Programming with Tree Skeletons. PhD thesis, Grad-
uate School of Information Science and Technology, The University of Tokyo, 2007.

[MHKT05] Kiminori Matsuzaki, Zhenjiang Hu, Kazuhiko Kakehi, and Masato Takeichi. Sys-
tematic derivation of tree contraction algorithms. Parallel Processing Letters,
15(3):321–336, 2005.

[MHT06] Kiminori Matsuzaki, Zhenjiang Hu, and Masato Takeichi. Towards automatic paral-
lelization of tree reductions in dynamic programming. In SPAA 2006: Proceedings

of the 18th Annual ACM Symposium on Parallel Algorithms and Architectures,

Cambridge, Massachusetts, USA, July 30 - August 2, 2006, pages 39–48. ACM,
2006.

[MR85] Gary L. Miller and John H. Reif. Parallel tree contraction and its application. In
26th Annual Symposium on Foundations of Computer Science, 21-23 October 1985,

Portland, Oregon, USA, pages 478–489. IEEE, 1985.

[MW97] Ernst W. Mayr and Ralph Werchner. Optimal tree constraction and term matching
on the hypercube and related networks. Algorithmica, 18(3):445–460, 1997.

[Rei93] John H. Reif, editor. Synthesis of Parallel Algorithms. Morgan Kaufmann Publish-
ers, 1993.

[Ski96] David B. Skillicorn. Parallel implementation of tree skeletons. Journal of Parallel

and Distributed Computing, 39(2):115–125, 1996.

7


