
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Type Specialization for
Effective Bidirectionalization

Kazutaka MATSUDA, Zhenjiang HU,
and Masato TAKEICHI

METR 2008–29 July 2008

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.i.u-tokyo.ac.jp/edu/course/mi/index e.shtml

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

Type Specialization for Effective Bidirectionalization

Kazutaka Matsuda
The University of Tokyo/JSPS

Research Fellow

kztk@ipl.t.u-tokyo.ac.jp

Zhenjiang Hu
National Institute of Informatics

hu@nii.ac.jp

Masato Takeichi
The University of Tokyo

takeichi@mist.i.u-tokyo.ac.jp

Abstract

A bidirectional transformation is a pair of transformations, a forward transformation and a backward
transformation, where a forward transformation maps one data structure called source to another called
view, and a corresponding backward transformation reflects changes on the view to the source. Its
practical applications include replicated data synchronization, presentation-oriented editor development,
tracing software development, and document format conversion.

It is, however, difficult to develop bidirectional transformations, because the forward and backward
mappings must satisfy the bidirectional properties for consistency. It is even more difficult if we want
to obtain “better” bidirectional transformations with, for example, clearer consistent semantics between
sources and views and more updates on views. To resolve this problem, a program transformation named
bidirectionalization is proposed, in which a useful backward transformation can be derived automatically
from a given forward transformation based on derivation of a complementary function. However, the
language there for describing forward transformations is still too restrictive to write many practical
transformations.

In this paper, we relax the restrictions on the previous language by supporting forest concatenation
and look-ahead mechanism specified by regular expression types, which allows us to write practical
transformations. In the language, a program transformation named type specialization not only enables
us to obtain “better” backward transformations but also provides exact type checking of transformations.
Our new approach has been implemented, and the experimental results show our approach is promising.

1 Introduction

There are many situations in which one data structure, called source, is transformed to another, called
view , in such a way that changes on the view can be reflected to the source. This is called bidirectional
transformation (Foster et al. 2005), and practical examples include synchronization of replicated data in
different formats (Foster et al. 2005; Bohannon et al. 2008), presentation-oriented structured document
development (Hu et al. 2004), interactive user interface design (Meertens 1998), coupled software transfor-
mation (Lämmel 2004), and the well-known view updating mechanism which has been intensively studied
in the database community (Bancilhon and Spyratos 1981; Gottlob et al. 1988; Lechtenbörger and Vossen
2003).

As a simple example, consider that we have a member list consisting of students and professors.

<mems>
<std>Metsuda</std>
<prf>Hu</prf>
<prf>Takeichi</prf>

</mems>

On one hand, we want to extract all the students out. This transformation can be realized by the following

1

forward transformation students1:

students(<mems>(x)) =̂ <mems>(f(x))
f(ε) =̂ ε
f(<std>(x) ¦ r) =̂ <std>(x) ¦ f(r)
f(<prf>(x) ¦ r) =̂ f(r)

where function f keeps students and ignores professors. Applying the forward transformation student yields
the following view.

<mems><std>Metsuda</std></mems>

On the other hand, we want to change the view and wish to reflect the change to the source. For example,
we find that the student name Metsuda is wrong and want to change the name to Matsuda on the view and
propagate this correction to the source. This can be realized by the following backward transformation of
students:

studentB(<mems>(s), <mems>(v)) =̂ <mems>(fB(s, v))
fB(ε, ε) =̂ ε
fB(<std>(x) ¦ r, <std>(x′) ¦ r′) =̂ <std>(x′) ¦ fB(r, r′)
fB(<prf>(x) ¦ r, r′) =̂ <prf>(x) ¦ fB(r, r′)

where fB accepts the old source and the revised view as input, carefully compares them, and produces a new
source as the result.

It is, however, hard in practice to manually write both forward and backward transformations while
guaranteeing that the two transformations really form a bidirectional transformation and satisfy consistency
properties (Bancilhon and Spyratos 1981). This has led to a large amount of work on bidirectionalization,
automatic derivation of backward transformations from forward transformations. There are basically two
approaches to bidirectionalization. The first approach is to design a set of general combinators (Foster et al.
2005; Bohannon et al. 2008; Hu et al. 2004; Meertens 1998) for constructing bigger bidirectional transfor-
mations by composing smaller ones. A set of primitive bidirectional transformations, each being defined
by a pair of forward and backward transformation, is prepared, and a new bidirectional transformation is
defined by assembling the primitive transformations with a fixed set of general combinators. This approach
has proved to be practically useful for domain-specific applications, because primitive bidirectional trans-
formations for a specific application are easily determined, designed, and implemented. However, for an
involved application or in a more general setting, many primitive bidirectional transformations may need
to be prepared, and it is still hard to verify whether a pair consisting of a view function and a backward
transformation forms a (primitive) bidirectional transformation.

The second approach, aiming to solve the above problem, is to design a language so that for any for-
ward transformation specified in this language a backward transformation can be automatically derived.
One such language has been proposed by Matsuda et al. (2007), where backward transformations can be
fully automatically derived from forward transformation description based on complement function deriva-
tion (Bancilhon and Spyratos 1981). The derived backward transformations are “good” in the sense that
they not only satisfy the nice bidirectional properties (Section 3), but also reflect many view changes by the
proposed optimizations of the derived backward transformations and provide information about what kind
of changes on the view are allowed.

Though being ideal and attractive, the second approach has two major limitations. The first limitation
is that it can only work well with a first-order functional language with two syntactic restrictions: affine (no
variable is used more than once) and treeless (arguments of a function call cannot be a function call again).
This restriction of “treeless” would prevent it from being used to describe many practical transformations
as seen below.

1Here, “˝” represents forest concatenation, ε denotes the empty forest, and <tag>(x) is a shorthand for <tag>x</tag>.

2

Example 1 (Chapters to XHTML). Consider the transformation2 from a sequence of chapters:

<chp><t>chapterTitle1</t>
<p>para1</p><p>para2</p>
<sec><t>sectionT itle2</t>

<p>para3</p></sec></chp>
<chp><t>chapterTitle3</t><p>para4</p></chp>

of the type
data Cs =̂ (<chp>(<t>(String) ¦ P ∗ ¦ S∗))∗

data P =̂ <p>(String)
data S =̂ <sec>(<t>(String) ¦ P ∗)

to the following XHTML fragment.

<h1>chapterTitle1</h1>
<p>para1</p><p>para2</p>
<h2>sectionT itle2</h2>

<p>para3</p>
<h1>chapterTitle3</h1><p>para4</p>

The main difficulty in writing this transformation in the proposed language is that we have to concatenate
(glue) pieces of transformed data to form the final result, which is not allowed due to the treeless restriction,
because the function concatenation is not permitted to be applied to the results produced by other trans-
formations. This concatenation, a simple gluing of the transformed results, has known to be very important
and carefully treated in XML uni-transformation (Hosoya and Pierce 2003).

The second limitation is the assumption that only one backward transformation is derived for a for-
ward transformation, no matter how many times and wherever the forward transformation is called in a
transformation program. This means that derivation of backward transformations does not consider the use
context of the forward transformation. In fact, a suitable context description and a mechanism of context
propagation would lead to a better backward transformation so that more view changes can be reflected in
the source, which is clear from the following example.

Example 2 (Table of Contents). Consider obtaining a table-of-contents from the sequence of chapters in
Example 1 with all paragraphs being removed.

<h1>chapterTitle1</h1>
<h2>sectionT itle2</h2>

<h1>chapterTitle3</h1>

This transformation is not injective in general; a modification on the view may correspond to many ways of
modification on the source. So, not arbitrary modification on the view is allowed because of the “constant”
property of complement function in the derivation of backward transformation (Section 3). However, if we
know that this transformation is used in the place where the source will contain no paragraph, then the
transformation there becomes injective and arbitrary modification on the view produced is allowed.

This paper is about two important extensions of the work (Matsuda et al. 2007), which are aimed to relax
the above two limitations. We extend the language with the forest concatenation operation, and introduce
regular types for “look-ahead” in transformation and for context propagation. These extensions, as will be
seen later, allow users to specify more useful forward transformations with more precise information for later

2A simplified version of a transformation in Appendix D of XSLT specification: http://www.w3.org/TR/xslt.html#

section-Examples

3

bidirectionalization. For instance, the (forward) transformations for Examples 1 and 2, which cannot be
specified before, can be specified respectively by

c2x (ε) =̂ ε
c2x (<chp>(<t>(t) ¦ x :: P ∗ ¦ y :: S∗) ¦ r :: Cs)

=̂ <h1>(t) ¦ x ¦ s2x (y) ¦ c2x (r)
s2x (ε) =̂ ε
s2x (<sec>(<t>(t) ¦ x :: P ∗) ¦ r :: S∗) =̂ <h2>(t) ¦ x ¦ s2x (r)

and
toc(ε) =̂ ε
toc(<chp>(<t>(t) ¦ x :: P∗ ¦ y :: S∗) ¦ r :: Cs)

=̂ <h1>(t) ¦ sc(y) ¦ toc(r)
sc(ε) =̂ ε
sc(<sec>(<t>(t) ¦ x :: P ∗) ¦ r :: S∗) =̂ <h2>(t) ¦ sc(r)

where x :: P ∗ denotes a variable x with a regular type P ∗ for “look-ahead” and context propagation, and
“¦” represents forest concatenation.

It should be noted that although forest concatenation and look-ahead by regular expression types are
common and not surprising for a uni-directional transformation language (Hosoya and Pierce 2003; Benzaken
et al. 2003), they offer a challenge and introduce many new problems for automatic bidirectionalization based
on derivation of complement functions (Matsuda et al. 2007).

The first problem is the difficulty in estimating ranges (range inference). The estimation of the range is
significant in bidirectionalization because it plays an important role in the detection of injective functions and
construction of effective complement functions. The range of function call expressions may differ depending
on their called contexts. For example, the ranges of the following two calls of id differ, where id(x) =̂ x.

f(x :: <a>, y :: <a>∗) =̂ id(x) ¦ id(y).

Besides, as seen in the above transformation examples, we allow non-tail variables in patterns and can bind
a variable to a forest instead of a tree, which makes the exact range inference difficult (Hosoya 2003). The
second problem is the bidirectionalization steps become more complicated. For example, it is not clear how
to derive a backward transformation for the following program.

f(x, y) =̂ h(x) ¦ y; h(x) =̂ . . .

What is a small complement function of f so that it can be combined with f to form an injective trans-
formation? One solution is to store the length of h(x) or y and give a constant complement function as
follows.

f c(x, y) =̂ . . . len(h(x)) . . . ; h(x) =̂ . . .

However, this introduces function composition in complement functions, which makes the inverse calculation
step difficult. The third problem, which is important in practice, is how to represent and derive a useful view
update checker in the context where the regular types are used, so that users can understand what kind of
change on the view can be reflected in the source.

In this paper, we show that all these new problems can be successfully resolved by extending the previous
work (Matsuda et al. 2007) with more involved range analysis. In particular, we show that program trans-
formation called type specialization plays an important role in obtaining more effective bidirectionalization
of a wide class of forward transformations. Our main contributions can be summarized as follows.

• More expressive forward transformations can be bidirectionalized. Thanks to forest concatenation and
look-ahead with regular expression type, our new language can be used to describe various kinds of
useful transformations, including useful apply-to-all (map) and filter-like functions, the core part of
XSugar (Brabrand et al. 2008) transformations, and many transformations written in biXid (Kawanaka
and Hosoya 2006) except transformations having horizontally unzipping operations. It will be shown
that all the transformations in this language can be fully automatically bidirectionalized and the derived
backward transformations are always deterministic.

4

• Type specialization realizes exact rang inference. We recognize that exact types of function calls, i.e.,
ranges of functions, can be obtained by taking into account of the context where the function calls
are, which are described by regular expression types (from look-ahead). We propose an exact range
inference based on a program transformation named type specialization, and indicate that the type
specialization terminates, and leads to effective bidirectionalization.

• View update checker is automatically generated. We show that an exact view update checker can be
automatically derived with type specialization, so that users can know whether or not a view change
is reflectable without actual execution of the backward transformation. This is practically useful,
because a backward transformation usually cannot reflect all the view changes to the source because of
the consistency between sources and views. Moreover, we demonstrate that the set of all the reflectable
view changes can be described by regular expression types with a little reasonable syntactic restriction.

All the algorithms have been implemented, and a bidirectionalization system is available at the following
URL.

http://www.ipl.t.u-tokyo.ac.jp/∼kztk/b18nf/

Most of the proofs of the theorems in this paper are shown in Appendix.
The rest of this paper is organized as follows. In Section 2, we show some examples of our bidirectional-

ization to give some flavor of what our system can do. In Section 3, we review our previous work and explain
the problem of the previous work. In Section 4, we define the target language, an extended language for
specifying forward transformations. In Section 5, we discuss type specialization, range inference and type
checking, which play an important role in our bidirectionalization system discussed in Section 6. We discuss
the related work in Section 7, and conclude the paper in Section 8.

2 Examples of Bidirectionalization

Before explaining our language extension with the forest concatenation and the regular expression types
for look-ahead, and the details of bidirectionalization for derivation of backward transformations, we give a
short demonstration of what our system can do for the two examples in Introduction. More examples are
available at the system web site (given in Introduction).

2.1 Example: Chapters to XHTML

Recall Example 1 in Introduction, which is to transform a sequence of chapters to an XHTML fragment.
From the forward transformation specified by c2x , our system can automatically determine that this forward
transformation is injective, and return the following backward transformation c2xB that accepts an old source
s and a revised view v and returns a new source.

data Q =̂ <h1>(String) ¦ P ∗ ¦ (<h2>(String) ¦ P ∗)∗

c2xB(s, v) =̂ c2x−1(v)
c2x−1(ε) =̂ ε
c2x−1(<h1>(t) ¦ x :: P∗ ¦ y :: (<h2>(String) ¦ P ∗)∗ ¦ r :: Q∗)

=̂ <chp>(<t>(t) ¦ x ¦ s2x−1(y)) ¦ c2x−1(r)
s2x−1(ε) =̂ ε
s2x−1(<h2>(t) ¦ x :: P∗ ¦ r :: S∗)

=̂ <sec>(<t>(t) ¦ x) ¦ s2x−1(r)

The inverse of a forward transformation c2x is the best backward transformation because this backward
transformation can reflect any view change to the source, the reflection is independent of the reflection
history, and any reflected source changes can be canceled by some view change. In addition to the above
backward transformation, our system also returns a view update checker showing what kind of change on
the views can be reflected to the source.

5

Now, consider a simple variation of the forward transformation, where we transformation each section
title to an <h1> element instead of an <h2> element. The forward transformation becomes

c2y(ε) =̂ ε
c2y(<chp>(<t>(t) ¦ x :: P ∗ ¦ y :: S∗) ¦ r :: Cs)

=̂ <h1>(t) ¦ x ¦ s2x (y) ¦ c2y(r)
s2y(ε) =̂ ε
s2y(<sec>(<t>(t) ¦ x :: P ∗) ¦ r :: S∗)

=̂ <h1>(t) ¦ x ¦ s2y(r)

where only underlined part is changed. By injectivity checking, our system knows that this transformation is
not injective, and derives a complement function for c2yc so that tupling of c2y and c2yc forms an injective
transformation3.

c2yc(ε) =̂ R1

c2yc(<chp>(<t>(t) ¦ x :: P ∗ ¦ y :: S∗) ¦ r :: Cs)
=̂ R2⟨len(s2y(y)), c2yc(r)⟩

Here, R1 and R2 are two new data constructors, R2 has two arguments inside ⟨⟩, and len is to compute the
length of a forest. The function c2yc is basically to remember the length of all transformed sections in each
chapter. Finally, our system automatically derives the following backward transformation c2yB.

data H =̂ <h1>(String) ¦ P ∗

c2yB(s, v) =̂ ⟨c2y , c2yc⟩−1(v, c2yc(s))
⟨c2y , c2yc⟩−1(ε,R1) =̂ ε

⟨c2y , c2yc⟩−1(v1,R2⟨l1, w4⟩) =̂ <chp>(<t>(t) ¦ x ¦ y) ¦ r
where

(<h1>(t) ¦ x :: P∗ ¦ w3 :: H∗, w2) =̂ spl(l1, v1)
r :: Cs =̂ ⟨c2y , c2yc⟩−1(w2, w4)
y :: S∗ =̂ s2y−1(w3)

s2y−1(ε) =̂ ε
s2y−1(<h1>(t) ¦ x :: P∗ ¦ r :: H∗)

=̂ <sec>(<t>(t) ¦ x) ¦ s2y−1(r)

Here, the function spl(f, l) splits a forest f to (f1, f2) such that f = f1 ¦ f2 where the length of f1 is l. Note
that this backward transformation may be a bit difficult to read because of complicated function names and
many subscripts and superscripts. We prefer this because it can show the correspondence of functions among
derivation steps. If we rename ⟨c2y , c2yc⟩−1 to y2c, then the above program is as follows.

c2yB(s, v) =̂ y2c(v, c2yc(s))
y2c(ε,R1) =̂ ε
y2c(v1, R2⟨l1, w4⟩) =̂ <chp>(<t>(t) ¦ x ¦ y :: S∗) ¦ r

where
(<h1>(t) ¦ x :: P∗ ¦ w2 :: H∗, w3) =̂ spl(l1, v1)
r :: Cs =̂ y2c(w3, w4)
y :: S∗ =̂ s2y−1(w2)

Note that by this backward transformation any change on the view is allowed unless it does not change the
length of a resulting forest between an <h1> corresponding to one chapter and another <h1> corresponding
to another chapter.

3Note that s2y is injective, so we need not compute its complement function.

6

2.2 Example: Table of Contents

This example is to show the use of type specialization. Recall Example 2 that computes a table of contents.
Since toc is not injective by our injectivity checking, our system generates the following complement functions.

tocc(ε) =̂ R1

tocc(<chp>(<t>(t) ¦ x :: P∗ ¦ y :: S∗) ¦ r :: Cs)
=̂ R2⟨tocc(r), scc(y), x⟩

scc(ε) =̂ R3

scc(<sec>(<t>(t) ¦ x :: P∗) ¦ r :: S∗) =̂ R4⟨scc(r), x⟩

Then, the system generates the following backward transformation.

data T =̂ <h1>(String) ¦ U∗

data U =̂ <h2>(String)
tocB(s, v) =̂ ⟨toc, tocc⟩−1(v, tocc(s))
⟨toc, tocc⟩−1(ε, R1) =̂ ε

⟨toc, tocc⟩−1(<h1>(t) ¦ w1 :: U∗ ¦ w2 :: T ∗,R2⟨w3, w4, x⟩)
=̂ <chp>(<t>(t) ¦ x ¦ y) ¦ r

where y :: S∗ =̂ ⟨sc, scc⟩−1(w1, w3)
r :: Cs =̂ ⟨toc, tocc⟩−1(w2, w4)

⟨sc, scc⟩−1(ε, R3) =̂ ε

⟨sc, scc⟩−1(<h2>(t) ¦ w5, R4⟨w6, x⟩) =̂ <sec>(<t>(t) ¦ x) ¦ r

where r =̂ ⟨sc, scc⟩−1(w5, w6)

This toc may be used in a different context, and our system can utilize the context information for better
backward transformations allowing more view changes. Consider the following use of toc.

data V =̂ <chp>(<t>(String) ¦ W ∗)
data W =̂ <sec>(<t>(String))
ctxt(x :: V ∗) =̂ toc(x)

In this case, our system will produce the type-specialized versions of toc and sc as follows.

ctxt(x :: V ∗) =̂ tocV ∗(x)
tocV ∗(ε) =̂ ε
tocV ∗(<chp>(<t>(t) ¦ y :: W ∗) ¦ r)

=̂ <h1>(t) ¦ sW∗(y) ¦ tocV ∗(r)
scW∗(ε) =̂ ε
scW∗(<sec>(<t>(t)) ¦ r) =̂ <h2>(t) ¦ scW∗(r)

Now ctxt and tocT∗ are injective and can be automatically bidirectionalized. The derived backward trans-
formation is much better than that with direct use of tocB.

3 Preliminaries: Bidirectionalization based on Derivation of Com-
plement Functions

In this section, we briefly review the notations and basic concepts of the constant complement approach to
bidirectionalization (Bancilhon and Spyratos 1981), and the previous work on automatic bidirectionalization
based on automatic derivation of complement functions (Matsuda et al. 2007).

7

3.1 Notations

Our notations, if not explained, follow Haskell4, a functional programming language. For a partial function
f , we write f(x)↓ if f(x) is defined, and write f(x) = ⊥ otherwise. For a function f : X → Y and a function
g : X → Z, we define a tupled function ⟨f, g⟩ : X → (Y ×Z) by ⟨f, g⟩(x) = (f(x), g(x)). For a partial function
f : X → Y and a partial function g : X → Y , we write f ⊑ g to denote ∀x ∈ X, f(x)↓ ⇒ f(x) = g(x).
Intuitively, f ⊑ g means that g is more widely defined than f .

3.2 Bidirectional Transformation

A bidirectional transformation is a pair of two transformations: a forward transformation that maps one
data structure source to another called view, and a corresponding backward transformation that reflects
changes on the view to the source.

Definition 1 (Bidirectional Transformation). A forward transformation f : S → V is a function. A backward
transformation ρ of a forward transformation f is a function satisfying

∀s ∈ S, ∀v ∈ V. ρ(s, v)↓ ⇒ f(ρ(s, v)) = v.

A backward transformation ρ of f translates an update f(s) ½ v to an update s ½ ρ(s, v), and the
view of updated-reflected source, f(ρ(s, v)), is equal to the updated view, v. In other words, for a source
s ∈ S and its view f(s) ∈ V , let u be an update f(s) ½ v and u′ a translated update s ½ ρ(s, v), then the
following diagram commutes.

-

6

-

6

S

V

S

V

f f

u′

u

3.3 Constant Complement Bidirectionalization

The constant complement bidirectionalization (Bancilhon and Spyratos 1981) derives a backward transfor-
mation by generating a complementary function. The basic idea of their bidirectionalization is to produce an
injective function because a backward transformation of an injective function can be defined its inverse. A
complement function is introduced by Bancilhon and Spyratos (1981) to make injective functions. Formally,
a complement function g of f is a function that makes ⟨f, g⟩ injective.

By a complement function g of f , a backward transformation is obtained by

fB(s, v) = ⟨f, g⟩−1(v, g(s)).

For example, for a function add defined by add(x, y) = x + y and a complement function fst(x, y) = x of
add , the obtained backward transformation is as follows.

addB((x,), v) = (x, v − x)

Since, as the above example, the return value of a complement function remains constant through a backward
transformation step, the bidirectionalization is called constant complement. It is known that the obtained
backward transformations satisfy the following good bidirectional properties.

Acceptability:
ρ(s, f(s)) = s,

Undoability:
ρ(s, v)↓ ⇒ ρ(ρ(s, v), f(s)) = s,

Composability:
ρ(s, v)↓ ∧ ρ(ρ(s, v), v′)↓ ⇒ ρ(ρ(s, v), v′) = ρ(s, v′).

4Haskell 98 Report: http://www.haskell.org/onlinereport/

8

Acceptability means that if there is no change on views there should be no change on sources. Undoability
means that all reflected updates can be canceled by updates on views. Composability means that reflected
updates do not depend on the reflection history. What is also interesting is the backward transformation
satisfies the above bidirectional properties has some complement function that yields the same backward
transformation (Bancilhon and Spyratos 1981).

Generally, there are many complement functions for a function. For example, functions fst , sub(x, y) =
x− y and idp(x, y) = (x, y) are all complement functions of add , and they yield different backward transfor-
mations.

add fst
B ((s1,), v) = (s1, v − s1)

add sub
B ((s1, s2), v) =

(
v+(s1−s2)

2 , v−(s1−s2)
2

)
add idp

B ((s1, s2), v) = (s1, s2) if v = add(s1, s2)

Clearly, the above backward transformations have different semantics. While the backward transformations
add fst

B and add sub
B are pairwise incomparable with respect to the order ⊑, the third backward transformation

add idp
B is the worst of the three with respect to ⊑. Bancilhon and Spyratos (1981) introduced the following

preorder, under which smaller complement functions give more updatability.

Definition 2 (Collapsing Order). Let f : X → Y and g : X → Z be functions. The collapsing order, -, is
a preorder defined by

f - g ⇔ ∀x1, x2 ∈ X. g(x) = g(y) ⇒ f(x) = f(y)

Theorem 1 (Bancilhon and Spyratos (1981)). Let f : S → V be a forward transformation, and g1 : S → V ′

and g2 : S → V ′′ be complement functions of f . If and only if g1 - g2, then fg2
B ⊑ fg1

B holds.

Order f - g means that, with respect to the results of mappings, f collapses input more than g. Hence,
all elements in the input collapse into one in the result by the minimal functions, i.e., constant functions,
and nothing collapses by the maximal functions, i.e., the injective functions. For the above examples, idp

is greater than the others because it keeps the values of the input. The functions fst and sub are pairwise
incomparable.

3.4 Automatic Bidirectionalization

Our previous bidirectionalization (Matsuda et al. 2007) targets first-order functional language with two
syntactic restrictions: affine and treeless (Wadler 1990). Affine means no variable is used more than once
and treeless means arguments of function calls must be variables. For example, the function add defined by

add(Z, y) =̂ y; add(S(x), y) =̂ S(add(x, y))

is affine and treeless but the following functions are not.

copy(x) =̂ (x, x) twice(x) =̂ g(g(x))

The bidirectionalization process (Matsuda et al. 2007) mainly consists of the following three steps.

1. Derivation of a complement function f c for a given forward transformation f .

2. Calculation of ⟨f, f c⟩−1.

3. Generation of a backward transformation by fB(s, v) = ⟨f, f c⟩−1(v, f c(s)).

Since these steps will be addressed and generalized in Section 6, we omit the details here.

4 The Target Language

In this section, we describe the language to describe forward transformations from forests to forests. It is an
extension of the language in Matsuda et al. (2007) with the concatenation and regular expression types for
look-ahead.

9

4.1 Forest Values

A forest, or a hedge, is a finite concatenation of unranked-trees like XML fragments such as

<std>Matsuda</std><prf>Hu</prf>.

In our language, this forest is internally represented by

<std>(M ¦ a ¦ t ¦ s ¦ u ¦ d ¦ a) ¦ <prf>(H ¦ u).

Formally, a set TΣ,X of trees generated by a set of labels Σ and a set of variables X is defined inductively
as follows: X ⊆ TΣ,X , and if t1, . . . , tn ∈ TΣ,X then σ(t1 ¦ . . . ¦ tn) ∈ TΣ,X for any σ ∈ Σ. A set TΣ,X

∗ of forests
is defined by {t1 ¦ . . . ¦ tn | n ∈ N, ti ∈ TΣ,X}. We assume that all the tree-labels and characters are encoded
to the labels Σ. The empty forest is written by ε; we have ε ¦ f = f ¦ ε = f for any forest f . We sometimes
write a tree σ(ε) by σ() or by σ. Note that the forest concatenation ¦ is associative; t1 ¦ (t2 ¦ t3) = (t1 ¦ t2) ¦ t3
holds. For convenience, we sometimes omit ¦ and write t1t2 instead of t1 ¦ t2 if no confusion would arise. The
set TΣ,∅ is written as TΣ. A context C is a forest containing special hole variables ¤1, . . . ,¤n; we write by
C[f1, . . . , fn] a forest that is obtained from C by replacing each variable ¤i with fi.

4.2 Types

In this language, we consider set-theoretic types (Frisch et al. 2002), defined by forest grammars. Two
types of forest grammars are used in this paper: the regular forest grammar is used as “look-ahead” and
for describing input and output types externally, and the context-free forest grammar is used for describing
expression types internally.

As an example of regular forest grammars, a set of forest described by the regular expression A =
<a>∗ | is represented by the regular forest grammar A → A′, A → , A′ → ε,A′ → <a>A′. As in
Section 2, they are used as look-ahead, and is called regular expression types in Hosoya and Pierce (2003).
The context-free forest grammar is more expressive and can represent, for instance, a set {<a>nn | n ∈ Z}
by T → ε, T → <a>T, which can be used to define the range of the following function f .

f(ε) =̂ ε; f(<c>(x)) =̂ <a> ¦ f(x) ¦

Definition 3 (Context-Free Forest Grammar). A context-free forest grammar (CFFG, for short) is a 3-tuple
(Σ, N,R) where Σ is a set of labels, N is a set of non-terminals, and R is a set of production rules of the
form T → f where T ∈ N and f ∈ TΣ,N .

Definition 4 (Regular Forest Grammar). A regular forest grammar (RFG, for short) is a CFFG (Σ, N,R)
where R only contains the rules of the form T → σ(T1)T2 or T → ε.

The definition of RFGs is the same as that of regular tree grammars (Comon et al. 1997) on binary
tree encoding of forests (Hosoya and Pierce 2003), and the definition of CFFGs is the same as that of
context-free sequence-tree automata (Ohsaki et al. 2003) but less expressive than that of context-free tree
grammars (Comon et al. 1997) in its binary tree encoding. Note that the above definitions do not include
the start non-terminals.

For a CFFG G = (Σ, N, R), we may simply write T → f ∈ G or T ∈ G instead of T → f ∈ R or T ∈ N ,
respectively. Moreover, we sometimes do not distinguish G = (Σ, N, R) from R because Σ and N are usually
clear from the context of R.

We write A
∗→ f if A generates a forest f . Semantics, or language, of a non-terminal A in G is defined

by [[A]]G = {t | A
∗→ t, t ∈ TΣ}. Languages of an RFG are called regular forest language.

Generally, deciding whether a language of CFFG is regular is known to be undecidable. However, there
is a class of CFFG of which languages are regular (Mohri and Nederhof 2001).

Definition 5 (Mutually Defined Non-terminals). For a CFFG G = (Σ, N, R), non-terminals T and S are
called mutually defined if T

∗→ C[S] and S
∗→ C′[T] for some contexts C and C′.

10

Syntax:

prog ::= trule1 . . . trulen frule1 . . . frulem

trule ::= data T =̂ t
t ::= ε | t1 ˝ t2 | σ(t) | T
frule ::= f(p1, . . . , pn) =̂ e
e ::= ε | e1 ˝ e2 | σ(e) | x | f(x1, . . . , xn)
p ::= ε | p1 ˝ p2 | σ(p) | x :: T

(x is a variable, T is a type name, f is a function name, and σ is a label)

Semantics:

ε ⇓ ε
Eps

e ⇓ v

σ(e) ⇓ σ(v)
Con

e1 ⇓ v1 e2 ⇓ v2

e1 ˝ e2 ⇓ v1 ˝ v2
Cat

∃θ, ∃f(p) =̂ e. pθ = v, ∀x ∈ vars(p). θ(x) ∈ Γp(x) eθ ⇓ u

f(v) ⇓ u
Fun

Figure 1: The language describing forward transformations

Definition 6 (Strongly Regular Grammar). A CFFG G is called strongly regular if the following condition
holds. For each production rule T → f ∈ R, if f = C[S] with S such that T and S are mutually defined,
then S appears at the rightmost position of forest concatenation.

For example, T → ε, T → <a>T is not strongly regular because T does not occur at rightmost position
of concatenations. On the other hand, T → <a>, F → TF is strongly regular because T does not generate
F , i.e., F and T are not mutually defined.

Theorem 2 (Mohri and Nederhof (2001)). A strongly-regular CFFG G = (Σ, N,R) can be converted to an
RFG G′ = (Σ, N ′, R′) such that for all A ⊆ N , there exists A′ ⊆ N ′ such that [[A]]G = [[A′]]G′ .

By this fact, we do not distinguish between a strongly-regular CFFG and the RFG corresponding to the
CFFG in this paper.

We define the following relation for later discussions.

Definition 7 (Horizontal Overlap). Let R and S be sets of forests. We define R ∥ S if and only if there
exist no forests f1, f2, f3 such that f2 ̸= ε, f1f2 ∈ R ∧ f3 ∈ S and f1 ∈ R ∧ f2f3 ∈ S.

We call “R and S are horizontally overlapped” if R ∦ S. The notion R ∥ S is called “unambiguously
concatenable” in Bohannon et al. (2008) and “horizontally unambiguous” in Brabrand et al. (2007). The
following is a well-known fact on forest grammars.

Fact. The following statements hold for forest grammars.

• For RFGs G1, G2, [[A]]G1
∩ [[B]]G2

= ∅ is decidable.

• For RFGs G1, G2, [[A]]G1
∦ [[B]]G2

is decidable.

4.3 Syntax and Semantics

The syntax of the language is summarized in Figure 1. Formally, a program P is a pair (G,R): a strongly
regular CFFG G defining types for look-ahead and a set of R defining rules of transformation functions.

A type declaration
data T =̂ t

describes a production rule T → t in the CFFG G, where we sometimes call T a non-terminal of G.
For convenience, we sometimes use regular expressions when we show examples of programs written in the

11

language. Since G must be strongly regular, every mutually defined non-terminal must occur at the rightmost
position of concatenation.

A rule for transformations has the form of

f(p1, . . . , pn) =̂ e

where each pi is a pattern and e is a treeless expression (Wadler 1990). In treeless expressions, all the
arguments of a function call must be variables, i.e., there is no nested function application. Note that we
treat a forest concatenation “¦” as a freezed data constructor rather than a function. In addition, we require
that variable occurrences should be affine: every variable must not be used more than once, i.e., there is no
duplication.

Some example programs in this language have been given in Introduction and Section 2. In this paper,
for simplicity, we assume that transformation programs are deterministic in the sense that pattern matching
is unique. Formally, for any concatenation pattern p1 ¦ p2 , [[p1]]P ∥ [[p2]]P holds, and for any two rules
f(p1, . . . , pn) = e and f(p′1, . . . , p

′
n) =̂ e′, [[pi]]P ∩ [[p′i]]P = ∅ holds for some i. In addition, we require

that every variable pattern x :: T satisfies |[[T]]| > 1, and assume that the length of the domain of every
transformation function is more than one.

To describe the semantics, we use vars(t1, . . . , tn) to return the set of all the variables occurring in
a sequence of patterns/expressions t1, . . . , tn, and f to denote a sequence f1, . . . , fn, and |f | to denote the
length of the sequence f . A substitution θ : X → TΣ,X

∗ is a function that maps a variable to a forest, of which
{x | θ(x) ̸= x} is finite. We denote by tθ a pattern/expression obtained from t by replacing each variable x in
t with a forest θ(x). We write by Γp a type environment obtained by gathering variable pattern in patterns p.
For example, for p = (x :: T, <t>(y :: T ′)), we have Γp = {x 7→ T, y 7→ T ′}. The set of all the forests matching
with a pattern p in a program P, [[p]]P , is defined by [[p]]P = {f | ∃θ. f = pθ, ∀x ∈ vars(p). θ(x) ∈ Γp(x)}.

The semantics of the language is defined by the call-by-value semantics shown in Figure 1. We define
the semantics of an expression e in a program P by [[e]]P = v if e ⇓ v, [[e]]P = ⊥ otherwise. For simplicity,
unless confusion arises, [[e]]P is sometimes written by [[e]] or even e. For a type T in a program P = (G,R),
we sometimes write [[T]]P instead of [[T]]G. We may even use the simple notations like T and [[T]]. The type
of an expression e under a type environment Γ is defined by the set of all its possible evaluation results, i.e.,
the range of e under Γ, ranΓ(e), which is defined by {[[eθ]] | dom(θ) = vars(e), θ(x) ∈ Γ(x)}.

For the convenience of analyses and transformations in later sections, we assume that every expression e
has a unique ID throughout a program, which is denoted by #e. We use e1 ¦(k) e2 to denote a concatenation
expression e1 ¦ e2 with ID k,

5 Type Specialization and Range Inference

A type specialization is a program transformation that specializes a forward transformation according to
the “look-ahead” type information to that for which exact range inference can be done. The idea of type
specialization is not special; a similar approach is adopted in tree transducers (Maneth et al. 2007). We
adopt it for our bidirectionalization.

5.1 Type Specialization

We start by considering the following program.

data A =̂ <a>∗

f(x :: A) =̂ g(x)
g(ε) =̂ ε; g(<a> ¦ x) =̂ <a> ¦ g(x); g(¦ x) =̂ ¦ g(x)

Notice that the range of the expression g(x) in the definition body of f differs from the range of the function
g (i.e., (<a> |)∗), because of the specific type of x passed from f to g. We want to calculate the exact

12

ipG/N,A(ε) =̂ {∅} if A ∈ N

ipG/N,A(x :: (G, T)) =̂ {x :: (G × G/N, T × A)} if [[T × A]]G×G/N ̸= ∅
ipG/N,A(σ(p)) =̂ {Γ | Γ ∈ ipG,B(p), A → σ(B)C ∈ G, C ∈ N}
ipG/N,A(p1 ˝ p2) =̂ {Γ1 ∪ Γ2 | Γ1 ∈ ipG/{B},A(p2), Γ2 ∈ ipG/N,B(p2), B ∈ G}
ipG/N,A() =̂ ∅

Figure 2: The definition of type inference procedure ip

range of g(x) for later effective bidirectionalization and precise type checking. To do so, we make use the
type information passed from f to generate a type-specialized version of g as follows.

f(x :: A) =̂ gA(x)
gA(ε) =̂ ε; gA(<a> ¦ x) =̂ <a> ¦ gA(x)

Unlike g, gA is an injective function, of which the inverse (a very effective backward transformation) can be
automatically generated by our system, which will be addressed in Section 6.

A specialized transformation function may have more rules. For example, specializing the following
program

data T =̂ (<a> ¦) | (¦ <a>);data S =̂ <a> |
f(x :: T) =̂ g(x)
g(x :: S ¦ y :: S) =̂ x ¦ y

will yield the following gT with two rules while the original g has only one rule.

f(x :: T) =̂ gT (x)
gT (<a> ¦) =̂ <a> ¦ ; gT (¦ <a>) =̂ ¦ <a>

We turn to formal definition of type specialization. We shall use Γ(p) to represent the patterns obtained
from the patterns p by replacing each x :: T in p with x :: Γ(x). To ease our explanation in this section, we
represent the type A in (x :: A) by (G,A) where G is a regular grammar used to define A.

Our type-specialization algorithm uses the type-inference procedure ipG,A(p) to calculate a set of type
environments mapping from variables (in the pattern p) to their types by specializing p under the type (G,A).
For the above example, ipG,T (x :: (G,S) ¦ y :: (G,S)) returns {{x 7→ <a>, y 7→ }, {x 7→ , y 7→ <a>}},
which consists of two type environments corresponding to two rules for the specialized gT . To define ipG,A(p),
we introduce the following notion.

Definition 8 (Chopped RFG). A chopped regular forest grammar G/N is a pair of an RFG G and non-
terminals N of which language [[A]]G/N is defined by {t | A

∗→ tB, B ∈ N}.

Note that every RFG G can be converted to a chopped RFG G/N where N = {A | A → ε ∈ G}. It is not
difficult to show that every chopped RFG G/N can be converted to a RFG G′ that has the same languages.
Now the definition of ipG/N,A(p) is given in Figure 2.

Theorem 3. The function ip exactly infers the types of variables in pattern p that appears the context
specified by (G, A), i.e.,

ipG/N,A(p) = G ⇒ [[A]]G/N ∩ [[p]] =
∪

{[[Γ(p)]] | Γ ∈ G}.

Now our type specialization algorithm is defined as follows.

Algorithm (Type Specialization).
Input: A program.
Output: A typed specialized program.
Procedure:

13

Γ, ε
g
 ε

Eps
Γ, x

g
 Γ(x)

Var
Γ, e

g
 t

Γ, σ(e)
g
 σ(t)

Con

Γ, e1
g
 t1 Γ, e2

g
 t2

Γ, e1 ˝ e2
g
 t1 ˝ t2

Cat
Γ, f(x)

g
 Tf

Fun

Γp, e
g
 t

f(p) =̂ e
g
99K Tf → t

R

Figure 3: The derivation rules for type inference of functions where r
g99K r′ reads a production rule r′ is

defined from r

1. For each function call f(x) in h(q) =̂ C[f(x)] with Γq(xi) = (Gi, Ai) for i ∈ {1, . . . , |x|}, repeat the
steps 2–5.

2. For each rule f(p) =̂ e, repeat the steps 3–5.

3. G := {Γ1 ∪ · · · ∪ Γ|x| | Γi ∈ Gi} where Gi = ipGi,Ai
(pi) for each i ∈ {1, . . . , |x|}.

4. For each Γ ∈ G, generate rules f
(G,N)

(Γ(p)) =̂ e′ where e′ is obtained by replacing function calls g(y)
by g

Γ(y)
(y).

5. Recursively apply this algorithm to all the function calls occurring in the newly-produced rules until
no new rules are generated in the step 4.

Theorem 4. Type specialization terminates.

Proof Sketch. The number of every regular forest language that appears in the execution of type specialization
is finite because production of a finite set of automata becomes closed after finite steps. Concretely, for a
program P = (G, R), the regular forest language is an element of a set of regular forest languages {[[B1×· · ·×
Bm]]G/A1×···G/Al×G/N×···×G/N | Ai, Bj ∈ G, l ≤ m} where m = n(n + 1), n is the number of non-terminals
in G, and N is the set of non-terminals defined by N = {A | A → ε ∈ G}. Note that the equivalence of the
two regular forest language is known to be decidable (Comon et al. 1997).

To guarantee that an obtained program after type specialization is deterministic, we must be sure that G
is unambiguous in the sense that there are no A,B such that [[A]]G∩ [[B]]G ̸= ∅. Converting a program to that
satisfying this condition is not difficult, by means of standard conversion from NFTA to DFTA (Comon et al.
1997). Note that this conversion may increase the program size exponentially in the worst case, although
this rarely happens in practice. The above proof also implies the upper bound of space complexity is O(2n2

),
where n is the number of non-terminals in G of a program P = (G,R). The conversion from NFTA to DFTA
implies n = 2m in the worst case where m is the number of non-terminals of the original G of a program
P = (G,R).

Theorem 5 (Type Specialized Program). After type specialization, for every f(p) =̂ C[g(x)], if g(t)↓, then
ti ∈ Γp(xi) (i ∈ {1, . . . , |x|}) holds.

Theorem 5 says that, after type specialization, the range of a function call expression is never shrunk by
the context where the expression occurs. In other words, the later range inference can ignore the contexts
where the functions are called.

14

A Forward Transformation

Complement Derivation Engine
Complement Derivation

Inversion of Tupled Function

A Backward Transformation A View Update Checker

Injectivity Analysis

Range-Overlap Analysis

Type-Based Analyses

Type-Directed Optimizations
Type Specilization

Complement Enhancement (omitted)

Figure 4: An overview of bidirectionalization system

5.2 Range Inference

Range inference is to infer ranges of functions, i.e., the types of function call expressions. It plays an
important role in effective bidirectionalization (Section 6) and type checking. The basic idea for inferring
ranges of functions is to forget arguments of functions. For example, for a type-specialized program

data C =̂ <c>∗

f(x :: <a>∗, y :: C) =̂ y ¦ g(x)
g(ε) =̂ ε; g(<a> ¦ x :: <a>∗) =̂ ¦ g(x)

forgetting arguments of functions yields the following CFFG.

Tf → CTg Tg → ε Tg → Tg C → ε C → <c>C

A formal range inference algorithm based on this idea is defined by the derivation rules in Figure 3. We
will denote the obtained CFFG for a program P by GP .

Theorem 6 (Soundness). For each expression g(x) in f(p) =̂ C[g(x)], ranΓp(g(x)) ⊆ [[Tg]] holds.

Theorem 7 (Exactness). After type specialization, for each expression g(x) in f(p) =̂ C[g(x)], ranΓp
(g(x)) =

[[Tg]] holds.

5.3 Type Checking

As seen before, the range of a function in our language is captured by a language of a CFFG if its inputs are
specified by regular forests languages. Consider to check whether or not the type of a forward transformation
h subsumes a type A → B. For a function h and its input types A, we can derive a type-specialized version
hA of which range ran(hA) is described by a CFFG. Then, it is sufficient and necessary to check whether
ran(hA) ∩ Bc is empty. If the set is empty then there exist forests f ∈ [[A]] such that h(f) ̸∈ [[B]], otherwise
there are no such forests. It is known that the emptiness of intersection of a language of a CFFG and a
language of an RFG is decidable (Guessarian 1983), and the complement of a regular forest language is a
regular forest language (Comon et al. 1997).

Moreover, we can easily guarantee that the result of hAB
, the derived backward transformation of hA by

the bidirectionalization discussed later, always falls in [[A]].

6 Bidirectionalization

An overview of the present bidirectionalization is shown is Figure 4. The core part of the bidirectional-
ization is the same as that in (Matsuda et al. 2007), which consists of three major steps: (1) Derivation
of a complement function f c from a given forward transformation f (Section 6.3), (2) Calculation of the
definition of ⟨f, f c⟩−1 (Section 6.4), (3) Generation of the backward transformation corresponding to the
derived complement function by fB(s, v) = ⟨f, f c⟩−1(v, f c(s)). Besides, our new bidirectionalization system

15

uses type-directed optimizations to derive much smaller complement functions than before. We adopt two
optimizations here: one is the type specialization in Section 5, and the other is the complement enhancement
technique discussed in the previous work (Matsuda et al. 2007). In addition, by the injectivity checking based
on range inference of expressions, for a detected injective function, our bidirectionalization system returns
the inverse, which is the “best” backward transformation, as a backward transformation of the function.
Together with a backward transformation, our bidirectionalization system provides a view update checker
(Section 6.6) that tells users what kinds of update on views can be reflected to the source.

Types play important roles in our bidirectionalization. All the optimizations for effective backward
transformations are based on inference of ranges of expressions or types of expressions. The importance of
types has been seen in type specialization discussed in Section 5, which enables us to infer more precise types
of expressions. As will be seen later, thanks to the type specialization, our bidirectionalization system can
derive exact view update checkers.

In this section, we focus on the new parts of our bidirectionalization compared with the previous
work (Matsuda et al. 2007). Since the present language contains forest concatenation and look-ahead,
the present bidirectionalization must treat the forest concatenation and the look-ahead well.

6.1 Type Approximation

Consider the following two functions:

data A =̂ <a>∗;data B =̂ ∗

f(x :: A, y :: B) =̂ x ¦ y; g(x :: A, y :: A) =̂ x ¦ y

where f is injective whereas g is not; the non-injectivity of g comes from non-injectivity of forest concatena-
tion. The injectivity of forest concatenation depends on the types of two operands; in the above example,
we have A ∦ A but A ∥ B.

Although types of expressions are easily calculated by an extension of the range inference, types expressed
by CFFGs are not suitable for injectivity checking because, in the injectivity checking, the following must
be computable for types A and B.

• A ∩ B = ∅?

• A ∦ B?

It is known that the first is undecidable for types described by general CFFGs, while both are decidable for
types described by RFGs (Brabrand et al. 2007).

Our idea is to approximate types described by CFFGs by types described by RFGs using the regular
approximation of context-free grammars by Mohri and Nederhof (2001)5. For instance, for the following
context-free word grammar that cannot be converted to a regular word grammar because the grammar is
not strongly regular,

A → aAb A → ε

the algorithm splits the problematic non-terminal A to two non-terminals as follows: A to produce the
“left” part of the original A and A′ to produce the “right” part of the original A, to obtain the following
approximated regular word grammar.

A → aA A → A′ A′ → ε A′ → bA′

As another example, for the following CFFG

A → <a>(A<c>) ¦ <d> A → ε

5A forest-version of their algorithm is shown in Appendix B.

16

Γ, ε
ga
 {T#ε → ε}

Eps
Γ, x

ga
 {T#x → Γ(x)}

Var

Γ, e
ga
 ∆

Γ, σ(e)
ga
 {T#σ(e) → σ(T#e)} ∪ ∆

Con

Γ, e1
ga
 ∆ Γ, e2

ga
 ∆′

Γ, e1 ˝ e2
ga
 {T#e1˝e2 → T#e1 ˝ T#e2} ∪ ∆ ∪ ∆′ Cat

Γ, f(x)
ga
 {T#f(x) → Tf}

Fun

Figure 5: The derivation rules for a CFFG for type inference where e
gaÃ ∆ reads production rules ∆ are

obtained from e

our forest version of the approximation algorithm splits the problematic non-terminal A to two non-terminals
as follows: A for the “top-left” part of the original A and A′ for the “right” part of the original A, and
produces the following RFG.

A → <a>(A) ¦ <d> ¦ A′ A → A′ A′ → ε A′ → <c>

It should be noted that naive application of the approximation algorithm in Mohri and Nederhof (2001)
would reduce the precision of the type inference. For example, for a CFFG,

A → BA A → ε B → <a>(A)

the approximation returns the following CFFG.

A → B A → A′ A′ → ε B → <a>(A)B′ B′ → A B′ → ε

The language of A in the obtained grammar is wider than A while the language of the original A is regular.
To solve this problem, we notice that such general context-free grammars only come from recursion structures
of functions in their range inference, therefore we approximate the grammar for types of functions rather
than arbitrary expressions.

Figure 5 summarizes our derivation rules for calculating an approximated type T#e for an expression
e. Gathering all the derived production rules with the regular approximated version of GP , we get the
grammar G̃P that describes approximated types of expressions. The obtained grammar G̃P may not be
strongly regular, but all the languages of non-terminals are regular.

Definition 9. For a expression e in f(p) =̂ C[e], we define approximated type r̃anΓp(e) of e by

r̃anΓp(e) = [[T#e]]
gGP

.

The following condition guarantees that ranΓp(e) = r̃anΓp(e) for any e in f(p) =̂ C[e].

Condition 1. For any function call of g(x) in a rule f(p) = C[g(x)] where f and g are mutually defined, g
occurs at the rightmost positions.

By “f and g are mutually defined”, we mean that g is called in the evaluation of f and f is called in the
evaluation of g.

6.2 Injectivity Checking

It is important to check whether a transformation function is injective, because an injective function will
lead to the “best” backward transformation denoted by its inverse so that any view modifications can be

17

∃f(p) =̂ e ∈ R. (vars(p) \ vars(e) ̸= ∅
f ∈ NINJ

R1

∃f(p) =̂ e, f(p′) =̂ e′ ∈ R. p ̸= p′, franΓp(e) ∩ franΓp′ (e
′) ̸= ∅

f ∈ NINJ
R2

∃f(p) =̂ C[g(x)] ∈ R. g ∈ NINJ

f ∈ NINJ
R3

∃f(p) =̂ C[e1 ˝ e2] ∈ R. franΓp(e) , franΓp(e)

f ∈ NINJ
R4

Figure 6: Logical implication rules to calculate NINJ

reflected to the source. Notice that there are only four places where the injectivity of a function is lost
in our language (unused variables, right-hand-side-overlapped rules, calls of non-injective functions, and
horizontally-overlapped concatenation), so the injectivity checking can be done by checking the existence of
the four places. A set of injective functions INJ is defined by the complement of a set of possibly-non-injective
functions NINJ defined by the least fixed point of the logical implication rules shown in Figure 6.

Theorem 8 (Soundness). Any function f in INJ is injective.

Theorem 9 (Completeness). After type specialization, if Condition 1 holds, INJ contains all the injective
functions in a program.

6.3 Derivation of Complement Functions

We have seen some examples of complement functions in Section 3. As another example related to the forest
concatenation, recall the following program.

data A =̂ <a>∗;data B =̂ ∗

f(x :: A, y :: B) =̂ x ¦ y; g(x :: A, y :: A) =̂ x ¦(1) y

By the injective checking discussed before, our bidirectionalization detects the injectivity of f and the non-
injectivity of g caused by the non-injective forest concatenation. In the case, our system generates the
following complement function to split the result of the non-injective forest concatenation of g.

gc(x :: A, y :: A) =̂ len1(x)

The function lenk, which calculates the length of a forest, is introduced to split the result of a non-injective
forest concatenation expression with ID k. This ID information is used in later inverse calculation process.

Formally, our complement derivation is defined by the complement derivation rules in Figure 7. A
complement derivation relation r

c99K rc reads that a rule of complement function rc is derived from r.
Gathering all rc for all rules r for all functions, we get a program for complement functions.

Theorem 10 (Correctness of Complement Derivation). Let P = (G,R) and Pc = (G, {rc | r ∈ R, r
c99K rc})

programs. For any function f in P, f c in Pc is a complement function of f .

Note that this complement derivation can return different results for (e1 ¦ e2) ¦ e3 and e1 ¦ (e2 ¦ e3). For
example, for the functions f and g defined by

data A =̂ <a>∗;data B =̂ ∗

f(x :: A, y :: B, z :: B) =̂ (x ¦ y) ¦(1) z
g(x :: A, y :: B, z :: B) =̂ x ¦ (y ¦(2) z)

18

Γ, ε
c ϵ

Eps
Γ, x

c ϵ
Var

Γ, e
c ec

Γ, σ(e)
c ec

Con

f ∈ INJ

Γ, f(x)
c ϵ

IFun
f ̸∈ INJ

Γ, f(x)
c fc(x)

Fun

franΓ(e1) , franΓ(e2) Γ, e1
c e1

c Γ, e2
c e2

c

Γ, e1 ˝(i) e2
c leni(e), e1

c, e2
c

ICat

franΓ(e1) ∥ franΓ(e2) Γ, e1
c e1

c Γ, e2
c e2

c

Γ, e1 ˝ e2
c e1

c, e2
c

Cat

Γp, e
c ec V = vars(p) \ vars(e)

f(p) =̂ e
c
99K fc(p) =̂ Rf(p)=̂e⟨ec, V ⟩

R

Figure 7: The complement derivation rules where r
c99K rc reads that a rule rc of complement function is

derived from a rule r, and ϵ represents the empty sequence

the complement derivation returns the following functions.

f c(x :: A, y :: B, z :: B) =̂ R1⟨len1(x ¦ y)⟩
gc(x :: A, y :: B, z :: B) =̂ R2⟨len2(x)⟩

In this paper, we treat the forest concatenation as a right-associative operator, i.e., e1 ¦ e2 ¦ e3 = e1 ¦ (e2 ¦ e3)
but e1 ¦ e2 ¦ e3 ̸= (e1 ¦ e2) ¦ e3.

6.4 Inverse Calculation

After a complement function f c of an original forward transformation f is derived, our bidirectionaliza-
tion calculates the inverse of the tupled function of f and f c, i.e., ⟨f, f c⟩−1. In contrast to our previous
work (Matsuda et al. 2007), the inverse calculation by simply swapping left-hand sides with right-hand sides
does not work for the present target language because of forest concatenations. There are two reasons.
First, this simply swapping would produce invalid patterns because the horizontally-overlapped patterns are
prohibited in our target language. Second, since the complement derivation algorithm introduces the len
functions, the complement function could include nested functions calls.

To solve this problem, we introduce the function spl to cancel the effect of len in inversion calculation.
So for the following transformation program

data A =̂ <a>∗

f(x :: A, y :: A, z :: A) =̂ g(x) ¦(1) g(y) ¦(2) z
g(x :: A) =̂ x

we first drive its complement
f c(x, y, z) =̂ R1⟨len1(g(x)), len2(g(y))⟩

and then obtain the following program for ⟨f, f c⟩−1.

⟨f, f c⟩−1(v1, R1⟨l1, l2⟩) =̂ (x, y, z)
where (w#g(x), v2) =̂ spl(l1, v1)

(w#g(y), z :: A) =̂ spl(l2, v2)
x :: A =̂ g−1(w#g(x))
y :: A =̂ g−1(w#g(y))

Here, a variable vk is for a forest concatenation expression with ID k, a variable lk is for the length of the left
operand of a forest concatenation expression with ID k, and a variable wi is for a function call expression

19

Γ, ε, L
w ∅

Eps
Γ, x, L

w ∅
Var

Γ, e, L
w W

Γ, σ(e), L
w W

Con

f ∈ INJ

Γ, f(x), L
w (x :: Γ(x)) =̂ fi

−1(wfi)
IFun

f ̸∈ INJ

Γ, f(x), L
w (x :: Γ(x)) =̂ ⟨f, fc⟩−1(w#f(x), w#fc(x))

Fun

franΓ(e1) , franΓ(e2) lk ∈ L
Γ, e1, L

w W Γ, e2, L
w W ′ Γ, e1

p
 p1 Γ, e2

p
 p2

Γ, e1 ˝(k) e2, L
w W ∪ W ′ ∪ (p1, p2) =̂ spl(lk, vk)

ICat

franΓ(e1) ∥ franΓ(e2) Γ, e1, L
w W1 Γ, e2, L

w W2

Γ, e1 ˝ e2, L
w W1 ∪ W2

Cat

Γ, ε
p
 ε

Eps
Γ, x

p
 x :: Γ(x)

Var

Γ, ei
p
 pi (i ∈ {1, . . . , |e|})
Γ, Rk⟨e⟩

p
 Rk⟨p⟩

FCon
Γ, e

p
 p

Γ, σ(e)
p
 σ(p)

Con

Γ, f(x)
p
 w#f(x) :: T#f(x)

Fun
Γ, lenk(x)

p
 lk

Len

franΓ(e1) ∥ franΓ(e2) Γ, e1
p
 p1 Γ, e2

p
 p2

Γ, e1 ˝ e2
p
 p1 ˝ p2

ICat

franΓ(e1) , franΓ(e2)

Γ, e1 ˝(k) e2
p
 vk :: Tk

Cat

Figure 8: Pattern- and where-clause-generation rules

with ID i. The function spl(l, v) is a function that has similar behavior to the splitAt function in Haskell
except that spl(l, v) is undefined if the length of v is smaller than l. Note that spl satisfies the law

spl(len(f1), f1 ¦ f2) = (f1, f2)

for any forests f1 and f2.
In the following, we will show how to construct an algorithm to derive the above ⟨f, f c⟩−1 for f . As shown

above, where-clauses are introduced to represent the inverse of the tupled functions. Note that patterns are
allowed in left-hand sides of rules in where.

6.4.1 Generating where

As seen above, inverses that we want to calculate contain where-clauses and patterns in the left-hand sides
of where. We describe an algorithm in Figure 8 for generating where-clauses and patterns by (1) the
where-clause-generation relation Γ, e, L

wÃ W reading that under a type environment Γ where-clauses W
for the inverse function is derived from an expression e and a set of L for the results of len, and (2) the
pattern-generation relation Γ, e

pÃ p reading that a pattern p is derived from e to decompose its result.

6.4.2 Inverse Calculation Algorithm

We derive a function definition rule r′ for the inverse of the tupled function by the following derivation rule,

where r
i99K r′ reads that r′ for the inverse of tupled function is derived from a rule r of the original forward

20

transformation.

f ∈ INJ Γp, e
pÃ q Γp, e, ∅

wÃ W

f(p) =̂ e
i99K f−1(q) =̂ p where W

IR

f ̸∈ INJ f(p) =̂ e
cÃ fc(p) =̂ ec

Γp, e
pÃ q Γp, e

c pÃ q′ Γp, e, vars(q′)
wÃ W

f(p) =̂ e
i99K ⟨f, f c⟩−1(q, q′) =̂ p where W

R

Let P = (G,R) be a program, and P ′ = (G̃P , {r′ | r
i99K r′, r ∈ R}) be a program for the inverses of the

tupled functions. We have the following theorems.

Theorem 11 (Deterministic Inverses). P ′ is deterministic.

Theorem 12 (Correctness of Inverse Calculation). For any f ∈ INJ in P, f−1 in P ′ is the inverse of f , and
for any f ̸∈ INJ in P, ⟨f, f c⟩−1 in P ′ is the inverse of ⟨f, f c⟩.

Note that even after complement enhancement (removing tags, unifying tags) in Matsuda et al. (2007),
functions in P ′ are deterministic because of look-ahead.

6.5 Generation of Backward Transformation

Backward transformations are obtained by simple functional composition. Concretely, our system derives a
backward transformation fB of f by fB(, v) =̂ f−1(v) for f ∈ INJ , and fB(s, v) =̂ ⟨f, f c⟩−1(v, f c(s)) for
f ̸∈ INJ . All the derived backward transformations satisfy the bidirectional properties shown in Section 3.

6.6 View Update Checker

Since a backward transformation derived from a non-injective forward transformation usually disallows some
updates on views, it is convenient for users to know whether a view update is reflectable before the reflection
of the view update is performed; it would be irritating if a view updated is rejected after long-time execution
of a backward transformation. We shall provide a exact view update checker thanks to the type specialization.

For a function f in INJ , the range inference is enough because the derived backward transformation can
reflect all the views in the range of f . However, for a function not in INJ , we need more discussion. Since
the backward transformations are obtained under constant complement bidirectionalization, we have

{v | fB(s, v)↓} = {v′ | fB(fB(s, v), v′), fB(s, v)↓}.

This means that reflectable view updates are constant once an initial source is given. Since we have fB(s, v) =
⟨f, f c⟩−1(v, f c(s)) for f ̸∈ INJ , we realize a view update checker by inference of the domain of ⟨f, f c⟩−1

when the second argument, the return value of the complement function, is fixed. We use alternating CFFGs
for view update checkers, in which ∧ is allowed in the right-hand sides.

For example, for a function f

data A =̂ <a>∗

f(x :: A, y :: A, z :: A) =̂ g(x) ¦(1) g(y) ¦(2) z
g(x :: A) =̂ x

and ⟨f, f c⟩−1 in Section 6.4 defined by

⟨f, f c⟩−1(v1, R1⟨l1, l2⟩) =̂ (x, y, z)
where (w#g(x), v2) =̂ spl(l1, v1)

(w#g(y), z :: A) =̂ spl(l2, v2)
x :: A =̂ g−1(w#g(x))
y :: A =̂ g−1(w#g(y))

21

f ∈ INJ

θ, (x :: T) =̂ f−1(w)
uc r,t (Xw

r,t → Sε
f)

IFW

f ̸∈ INJ t′ = w′θ

θ, (x :: T) =̂ ⟨f, f c⟩−1(w, w′)
uc r,t (Xw

r,t → St′
f)

FW

θ, (p1, p2) =̂ spl(l, w)
uc r,t (Xw

r,t → (Tr,t[[p1]] ∧ Ll) ˝ Tr,t[[p2]])
SW

∃θ. t = p′θ G = {δ | θ, w
uc r,t δ, w ∈ W} ∪ Gp,e,W

r,t

r = ⟨f, f c⟩−1(p, p′) =̂ (e, t) where W
uc
99Kt G ∪ {St

f → Tr,t[[p]]}
R

G = {δ | θ, w
uc r,ε δ, w ∈ W} ∪ Gp,e,W

r,t

r = f−1(p) =̂ e where W
uc
99Kt G ∪ {Sε

f → Tr,ε[[p]]}
IR

Gp,e,W
r,t = {Xv

r,t → Γp,W (v), v ∈ vars(e) ∩ vars(p)}
where Γp,W : the type environment obtained from p and LHSs of W

Tr,t[[σ(q)]] = σ(Tr,t[[q]])
Tr,t[[ε]] = ε
Tr,t[[w]] = Xw

r,t

Tr,t[[p1 ˝ p2]] = Tr,t[[p1]] ˝ Tr,t[[p2]]

L0 → ε Lk → σ()Lk1 (for any label σ)

Figure 9: The derivation rules for a view update checker

and an initial source s = (<a>, <a><a>, <a>) with the return value of the derived complement function
t = R1⟨1, 2⟩ = f c(s), the following view update checker is derived using partial evaluation of the second
argument.

St
f → Xv1

1,t

Xv1
1,t → (Xw#g(x)

1,t ∧ L1)Xv2
1,t

Xv2
1,t → (Xw#g(y)

1,t ∧ L2)Xz
1,t

Xz
1,t → A

X
w#g(x)
1,t → Sε

g

X
w#g(y)
1,t → Sε

g

Sε
g → Xx

1,ε

Xx
1,ε → A

A → ε
A → <a>A

Here, St
f generates all the forests s such that ⟨f, f c⟩−1(s, t)↓, Xw

r,t generates all the possible forests u that
are bound to variable w in the rule r of ⟨f, f c⟩−1 invoked with ⟨f, f c⟩−1(s, t) for some input s = C[u] and
⟨f, f c⟩−1(s, t)↓, and Lk generates all the forests of the length k. Hence, the inferred set of reflectable views
in this case is {<a>n | n ≥ 3}.

Formally, for a program of inverses of tupled functions P = (G,R) and a return value of a complement
function t, a view update checker Gt

U =
∪
{G | r, t

uc99Kt G, r ∈ R} is derived using the derivation relation
uc99Kt

defined as Figure 9. Note that this view update checker generation also ignores type information of some
variables in left-hand sides of where, which correspond to the types for look-ahead in the corresponding
forward transformations. The type specialization guarantees that the type information is safely ignored.

An obtained grammar can be converted to an RFG if Condition 1 holds, otherwise it can be converted to
a CFFG because, for each ∧, one side of ∧ is always Ll for some l. The concrete description for conversion
algorithm is shown in Appendix C.

Theorem 13 (Completeness). For a view update checker Gt
U, ⟨f, f c⟩−1(s, t)↓ for f ̸∈ INJ implies St

f
∗→ s,

and f−1(s, t)↓ fro f ∈ INJ implies Sε
f

∗→ s.

Theorem 14 (Soundness). Let P be a program for the inverse of tupled functions derived from a type-
specialized program. For the view update checker Gt

U obtained from P, St
f

∗→ s implies ⟨f, f c⟩−1(s, t)↓ for
f ̸∈ INJ , and Sε

f
∗→ s implies Gt

U for f ∈ INJ .

22

7 Related Work

We discuss some other related work, in addition to what has been discussed in Introduction.
The idea of type specialization is not new. The type specialization and type checking/inference in this

paper is similar to Maneth et al. (2007), in which type specialization is considered to avoid treating input
types. They provide the exact type check in polynomial time for transformation written by linear stay
macro tree transducers using context-free tree grammar on binary encoding of forests. The context-free tree
grammars on binary encoding of forests are more expressive than CFFGs. The main difference between
our type inference and their type inference is that we allow regular look-ahead and non-tail variables in
patterns while they do not. XDuce (Hosoya and Pierce 2003) provides the type inference on the language
with non-tail variables with look-ahead in patterns. One main difference is that, in XDuce, patterns instead
of regular type expressions are used as look-ahead. Another big difference is the range of ip: a set of type
environment in this paper but one type environment in their algorithm. The other difference is that we do
not assume that types of functions are given beforehand because we want to estimate as precise types of
expressions as possible and the restriction of our language simplifies the problem.

The injectivity check in this paper follows Brabrand et al. (2008). The difference is that we treat
forest-to-forest transformations while they treat tree-to-string transformations. They adopt a more precise
approximation method because the ranges of tree-to-string transformations usually fall in context-free word
languages.

8 Conclusion

In this paper, we have shown how to relax the treeless restriction of the language in the previous work (Mat-
suda et al. 2007) by introducing forest concatenation and look-ahead specified by regular expression types,
and proposed a new bidirectionalization system, with which a wide class of practical forward transformations
can be automatically and effectively bidirectionalized. The key factor of our new system is the novel use of
the type specialization in bidirectionalization: the type specialization enables us to infer ranges precisely,
derive effective backward transformations, and generate exact view update checkers.

Although the treeless restriction in the previous work has been relaxed in this paper, the affine restriction
still remains as an interesting future work. The relaxation of the affine restriction is also important in practice;
for example with non-affine transformations, users can obtain two different views of the same data at the
same time by pairing two different forward transformations. It would be possible to derive a more effective
backward transformation if we could take into account the fact that the information of both transformations
is obtained simultaneously.

23

Acknowledgements

We are gratefull to Keisuke Nakano, who introduced us the related work by Maneth et al. (2007). We also
thank Kiminori Matsuzaki for his comments on an earlier version of this paper.

References

F. Bancilhon and N. Spyratos. Update semantics of relational views. ACM Trans. Database Syst., 6(4):
557–575, 1981.

V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-centric general-purpose language. In ICFP
’03: Proceedings of the 2003 ACM SIGPLAN international conference on Functional programming, pages
51–63, 2003.

A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz, and A. Schmitt. Boomerang: resourceful lenses
for string data. In POPL ’08: Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 407–419, 2008.

C. Brabrand, R. Giegerich, and A. Møller. Analyzing ambiguity of context-free grammars. In Proceedings of
12th International Conference on Implementation and Application of Automata, CIAA 07, volume 4783
of LNCS, July 2007.

C. Brabrand, A. Møller, and M. I. Schwartzbach. Dual syntax for XML languages. Info. Syst., 33(4), June
2008.

H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi. Tree automata
techniques and applications. Available on: http://www.grappa.univ-lille3.fr/tata, 1997.

J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt. Combinators for bi-directional
tree transformations: a linguistic approach to the view update problem. In POPL ’05: Proceedings of
the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 233–246,
2005.

A. Frisch, G. Castagna, and V. Benzaken. Semantic subtyping. In LICS ’02: Proceedings of the 17th Annual
IEEE Symposium on Logic in Computer Science, pages 137–146, 2002.

G. Gottlob, P. Paolini, and R. Zicari. Properties and update semantics of consistent views. ACM Trans.
Database Syst., 13(4):486–524, 1988.

I. Guessarian. Pushdown tree automata. Math. Syst. Theor., 16(4):237–263, 1983.

H. Hosoya. Regular expression pattern matching — a simpler design. Technical Report 1397, RIMS, Kyoto
University, 2003.

H. Hosoya and B. C. Pierce. XDuce: A statically typed XML processing language. ACM Trans. Internet
Tech., 3(2):117–148, 2003.

Z. Hu, S.-C. Mu, and M. Takeichi. A programmable editor for developing structured documents based on
bidirectional transformations. In PEPM ’04: Proceedings of the 2004 ACM SIGPLAN Symposium on
Partial Evaluation and Semantics-based Program Manipulation, pages 178–189, 2004.

S. Kawanaka and H. Hosoya. biXid: a bidirectional transformation language for XML. In ICFP ’06:
Proceedings of the eleventh ACM SIGPLAN international conference on Functional programming, pages
201–214, 2006.

R. Lämmel. Coupled software transformations (extended abstract). In First International Workshop on
Software Evolution Transformations, pages 31–35, 2004.

24

J. Lechtenbörger and G. Vossen. On the computation of relational view complements. ACM Trans. Database
Syst., 28(2):175–208, 2003.

S. Maneth, T. Perst, and H. Seidl. Exact XML type checking in polynomial time. In Database Theory —
ICDT 2007, volume 4353 of LNCS, pages 254–268, 2007.

K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi. Bidirectionalization transformation based on
automatic derivation of view complement functions. In ICFP ’07: Proceedings of the 2007 ACM SIGPLAN
international conference on Functional programming, pages 47–58, 2007.

L. Meertens. Designing constraint maintainers for user interaction. http://www.cwi.nl/∼lambert, 1998.

M. Mohri and M.-J. Nederhof. Regular approximation of context-free grammars through transformation. In
Jean-Claude Junqua and Gertjan van Noord, editors, Robusteness in Language and Speech Technology.
Kluwer Academic Publishers, The Netherlands, 2001.

H. Ohsaki, H. Seki, and T. Takai. Recognizing boolean closed A-tree languages with membership conditional
rewriting mechanism. In Rewriting Techniques and Applications, volume 2706 of LNCS, pages 483–498,
2003.

P. Wadler. Deforestation: Transforming programs to eliminate trees. Theor. Comput. Sci., 73(2):231–248,
1990.

25

A Proofs

A.1 Proof of Theorem 3

We prove by induction on the definition of ip.
For the epsilon case and the variable case, the statement trivially holds.

Inductive Step: Constructor

(⇒) Let t be a tree such that t ∈ [[σ(p)]]∩ [[A]]G/N . It is easy to conclude that t = σ(s) for some s and G/N

has a production rule A → σ(B)C where s ∈ [[p]] ∩ [[B]]G and C ∈ N . From the induction hypothesis, there
is some Γ ∈ ipG,B(p) such that s ∈ [[Γ(p)]]. By the definition of ip, we have Γ ∈ ipG/N,B(p) and t ∈ [[Γ(σ(p))]].

(⇐) Let t be a tree such that t ∈ [[Γ(σ(p))]] for some Γ ∈ ipG,B(σ(p)), which implies t = σ(s) for some s.
By the definition of ip, we have Γ ∈ ipG,B(p) and σ(B)C → A with C ∈ N . From the induction hypothesis,
we have s ∈ [[p]] ∩ [[B]]G, which implies t ∈ [[σ(p)]] ∩ [[A]]G/N .

Inductive Step: Concatenation

(⇒) Let f be a forest such that f ∈ [[p1 ¦ p2]] ∩ [[A]]G/N . By the definition of patterns, we have the unique

forests f1, f2 such that f1 ¦ f2 = f , f1 ∈ [[p1]] and f2 ∈ [[p2]], and a non-terminal B such that A
∗→ f1B and

B
∗→ f2C where C ∈ N , which implies f1 ∈ [[p1]] ∩ [[A]]G/{B} and f2 ∈ [[p2]] ∩ [[B]]G/N . From the induction

hypothesis, there exist Γ1 ∈ ipG/[[B]],A(p1) and Γ2 ∈ ipG/N,B(p2) such that f1 ∈ [[Γ1(p1)]] and f2 ∈ [[Γ2(p2)]].
By the definition of ip, since p1 and p2 share no variable, we have some Γ ∈ ipG/N,A(p1 ¦ p2) such that
Γ = Γ1 ∪ Γ2 and f1 ¦ f2 ∈ [[Γ(p1 ¦ p2)]].

(⇐) Let f be a forest such that f ∈ [[Γ(p1 ¦ p2)]] for some Γ ∈ ipG/N (p1 ¦ p2), which implies there exists
f = f1 ¦ f2, f1 ∈ [[Γ1(p1)]],∈ f2[[Γ2(p2)]] for Γ1 ∈ ipG/[[B]](p1), Γ2 ∈ ipG/N (p2) and B. By the induction
hypothesis, we have f1 ∈ [[p1]]∩ [[A]]G/{B} and f2 ∈ [[p2]]∩ [[B]]G/N , which implies f1 ¦ f2 ∈ [[p1 ¦ p2]]∩ [[A]]G/N .

A.2 Proof of Theorem 4

Let P = (G,R) be a program. We prove the statement by showing that the number of all the regular forest
languages occurring in the type-specialization algorithm is finite.

First, we discuss the property of ip, the type-inference sub-procedure for patterns. Let G′, B be a pair of
an RFG and its non-terminal, an input of ip. Then, ip only does the following things.

• Change of the chopping states (N of G′/N) to

– M such that M = {A | A → ε ∈ G′}
– {A} with A ∈ G′

• Change of the start non-terminal to B′ ∈ G′

• Calculation of a product with (G, A) with A ∈ G at last

The above implies the following property.

Property 1. After (m − 1)-times of application of ip, the possible pairs of RFG and start non-terminal in
the type-specialization algorithm is an element of the set

{[[B1 × · · · × Bm]]G/A1×···G/Al×G/N×···×G/N | Ai, Bj ∈ G, l ≤ m}

where N = {A | A → ε ∈ G}.

26

Proof. Straightforward from the above. Note that G/A × G/B = (G × G)/(A × B).

Let n be the number of the non-terminals in G. After (n(n + 1) − 1)-times of application of ip, the set
of the possible pairs of RFG and start non-terminal in the type-specialization algorithm becomes

{[[B1 × · · · × Bm]]G/A1×···G/Al×G/N×···×G/N | Ai, Bj ∈ G, l ≤ m}

where m = n(n + 1). In the set, any combination of Ai and Bj already appears. In other words, we have

{[[B1 × · · · × Bm]]G/A1×···G/Al×G/N×···×G/N | Ai, Bj ∈ G, l ≤ m}

= {[[B1 × · · · × Bm+1]]G/A1×···G/Al×G/N×···×G/N | Ai, Bj ∈ G, l ≤ m + 1}.

From the above discussion, we conclude that the number of regular forest languages occurring in the execution
of the type specialization algorithm is finite, which implies that the type-specialization algorithm terminates.
Note that checking whether two regular forest languages are equivalent is decidable (Comon et al. 1997).

A.3 Proof of Theorem 5

Since any call g(x) in f(p) =̂ C[g(x)] is replaced by g
Γp(x)

(x) in type specialization, by the definition of ip,

any rule g
Γp(x)

(p) =̂ e of g
Γp(x)

satisfies [[p]] ⊆ [[Γp(x)]], which implies Theorem 5.
From now on, we use the following property of a type-specialized program.

Property 2. For every f(p) =̂ C[g(x)], if g(t)↓, then ti ∈ Γp(xi) (i ∈ {1, . . . , |x|}) holds.

A.4 Proof of Theorem 6

We prove the following statement by induction on the evaluation of g(x) in f(p) =̂ C[g(x)].

For each expression e, if eθ ⇓ v for some θ : vars(e) → TΣ
∗ such that θ(x) ∈ Γ(x) for any

x ∈ vars(e), then t
∗→ v where Γ, e

gÃ t.

Clearly the statement implies Theorem 6.

Base Case: Empty Forest

Since we have Γ, ε
gÃ ε and εθ ⇓ ε for any θ, the statement trivially holds.

Base Case: Variable

Consider the case when xθ ⇓ v with θ(x) ∈ Γ(x). Since θ(x) does not contain variable, we have v = θ(x).
Since we have Γ, x

gÃ Γ(x) and θ(x) ∈ Γ(x), we also have Γ(x) ∗→ v, which implies the statement.

Inductive Step: Constructor

Consider the case when σ(eθ) ⇓ σ(v) with θ(x) ∈ Γ(x) for any x ∈ vars(e). We have Γ, σ(e)
gaÃ σ(t) where

Γ, e
gaÃ t. From the induction hypothesis, we have t

∗→ v. Hence, we have σ(t) ∗→ σ(v), which implies the
statement.

Inductive Step: Concatenation

Consider the case when (e1 ¦ e2)θ ⇓ v with θ(x) ∈ Γ(x) for any x ∈ vars(e1, e2). We have Γ, (e1 ¦ e2)
gaÃ t1 ¦ t2

where Γ, e1
gaÃ t1 and Γ, e2

gaÃ t2. Let v1, v2 be forests such that v = v1 ¦ v2 and e1θ ⇓ v1 and e2θ ⇓ v2. From
the induction hypothesis, we have t1

∗→ v1 and t2
∗→ v2. Then, we have t1 ¦ t2

∗→ v1 ¦ v2, which implies the
statement.

27

Inductive Step: Functional Call

Consider the case when f(xθ) ⇓ v with θ(x) ∈ Γ(x) for any x ∈ vars(x). By the definition of ⇓, we have
f(p) =̂ e such that pη = xθ for some η with η(x) ∈ Γp(x) for any x, and eη ⇓ v. From the induction
hypothesis, we have t

∗→ v where Γp, e
gaÃ t. Since we have a production rule Tf → t by the definition of

g99K
and Γ, f(x)

gaÃ Tf , we have Tf
∗→ v, which implies the statement.

A.5 Proof of Theorem 7

We prove the following statement by induction on the production t
∗→ v.

For each expression e in f(p) =̂ C[e], if t
∗→ v with t such that Γ, e

gaÃ t, then there exists θ such
that eθ ⇓ v and θ(x) ∈ Γ(x) for any x ∈ vars(e).

Base Case: Empty Forest

In this case, we have Γ, ε
gaÃ ε and ε

∗→ ε. Then, taking θ = {}, we have εθ ⇓ ε, which implies the statement.

Base Case: Variable

In this case, we have Γ, x
gaÃ Γ(x), and Γ(x) ∗→ v for a forest v, i.e., v ∈ Γ(x). Then, taking θ = {x 7→ v}, we

have xθ ⇓ v and xθ ∈ Γ(x), which implies the statement.

Inductive Step: Constructor

In this case, we have Γ, σ(e)
gaÃ σ(t) where Γ, e

gaÃ t, and have σ(t) ∗→ σ(v) for a forest v. From the induction
hypothesis, there exists θ such that eθ ⇓ v and θ(x) ∈ Γ(x) for any x ∈ vars(e). Hence, we have σ(eθ) ⇓ σ(v),
which implies the statement.

Inductive Step: Concatenation

In this case, we have Γ, e1 ¦ e2
gaÃ t1 ¦ t2 where Γ, e1

gaÃ t1 and Γ, e2
gaÃ t2, and have t1 ¦ t2 ∗→ v1 ¦ v2 for forests

v1 and v2 such that t1
∗→ v1 and t2

∗→ v2. From the induction hypothesis, there exist θ1 and θ2 such that
e1θ1 ⇓ v1 and θ1(x) ∈ Γ(x) for any x ∈ vars(e1), and e2θ2 ⇓ v2 and θ2(x) ∈ Γ(x) for any x ∈ vars(e2). Then,
taking θ = θ1 ∪ θ2, we have (e1 ¦ e2)θ ⇓ v1 ¦ v2 and θ(x) ∈ Γ(x) for any x ∈ vars(e1 ¦ e2), which implies the
statement.

Inductive Step: Function Call

In this case, we have Γ, f(x)
gaÃ Tf and Tf

∗→ v, which implies t
∗→ v where Γp, e

gaÃ t for some rule
f(p) =̂ e. From the induction hypothesis, there exists a substitution η such that eη ⇓ v and η(x) ∈ Γp for
any x ∈ vars(e). Then, taking θ by xθ = pη, we have f(x)θ ⇓ v and have θ(x) ∈ Γ(x) for any x ∈ vars(x) by
the Property 2, which implies the statement.

A.6 Proof of Theorem 8

We prove the following statement, which implies the contraposition of Theorem 8.

For any function f , if there exist different sequences of forests v and u such that [[f(u)]] = [[f(v)]],
then f is in NINJ .

There are two cases.

• ∃f(p) =̂ e. u = pθ ∧ v = pθ′.

28

• Otherwise.

The second case is trivial because in the case we have two rules of which the right-hand expressions have a
range-overlap. To prove the statement in the first case, we prove the following statement by induction on
the evaluation.

For any expression e in f(p) =̂ C[e], if [[eθ]] = [[eθ′]] holds for two different substitutions θ :
vars(e) → TΣ

∗ and θ′ : vars(e) → TΣ
∗ such that θ(x) ∈ Γ[[p]](x), θ′(x) ∈ Γ[[p]](x) for all x ∈ vars(p),

then f is in NINJ .

Base Case: Empty Forest

Since there are no two different substitutions θ and θ′ such that εθ = εθ′, the statement trivially holds.

Base Case: Variable

Since there are no two different substitutions θ and θ′ such that xθ = xθ′, the statement trivially holds.

Inductive Step: Constructor

Clear from the induction hypothesis.

Inductive Step: Concatenation

There are three cases for e1 ¦ e2.

• e1θ = e1θ
′, e2θ ̸= e2θ.

• e1θ ̸= e2θ
′, e2θ = e2θ

′.

• Otherwise.

The third case implies there exists a horizontal overlap of the ranges of e1 and e2, then algorithm reports
f ∈ NINJ . For the first case, it is enough to apply the induction hypothesis for e1. For the second case, it
is enough to apply the induction hypothesis for e2.

Inductive Step: Function Call

For a function call g(x), There are two cases.

• ∃g(q) =̂ e. xθ = qη, xθ′ = qη′.

• Otherwise.

We define ζ and ζ ′ by ζ = {x 7→ η(x) | x ∈ vars(e)} and ζ ′ = {x 7→ η′ | x ∈ vars(e)} respectively. Note
that, generally η = ζ ∧ η′ = ζ ′ does not hold because there exists some unused variable in the rule g(q) =̂ e.
Consider the first case. If there exists a variable x such that ζ(x) ̸= ζ ′(x), from the induction hypothesis, we
have g ∈ INJ , which implies f ∈ INJ because f calls g. If there exists no variable x such that ζ(x) ̸= ζ ′(x),
i.e., ζ = ζ ′, since there exists a variable x in η(x) ̸= η′(x) because θ and θ′ differs, g has unused variables,
which implies g ∈ INJ and f ∈ INJ .

The second case implies the there exists the range overlap of two rules of g, which implies g ∈ NINJ , f ∈
NINJ .

29

A.7 Proof of Theorem 9

We prove the following statement by the definition of NINJ , which implies the contraposition of Theorem 9.

If f ∈ NINJ , there exist different v and u such that [[f(u)]] = [[f(v)]].

Note that in the proof we use the following assumption on our target language.

• For any variable pattern x :: T , |[[T]]| > 1.

• For any function f , |dom(f)| > 1.

Base Case: R1

In this case, there exists a rule f(p) =̂ e such that vars(p) \ vars(e). Let u be a sequence of forests such that
pθ = u, θ(x) ∈ Γp(x) for any x in vars(p), and f(u)↓. Let z be a variable in (vars(p) \ vars(e)). Since Γp(z)
contains more than one element by the assumption on our target language, there exists a forest t such that
t ̸= θ(z) and t ∈ Γp(z). Taking θ′ as

θ′(x) =
{

θ(x) x ̸= z
t x = z,

we have [[f(u)]] = [[f(pθ′)]] while u ̸= pθ′.

Base Case: R2

In this case, we have two different rules

f(p) =̂ e f(p′) =̂ e′

satisfying r̃anΓp(e) ∩ r̃anΓp′ (e′) ̸= ∅. Condition 1 and Property 2 say that range approximation is exact, i.e,
r̃anΓp(e) = ranΓp(e) and r̃anΓp′ (e′) = ranΓp′ (e′). This implies that there exist two substitutions θ and θ′ such
that [[f(pθ)]] = [[f(p′θ′)]], θ(x) ∈ Γp(x) for any x in vars(p), and θ′(x) ∈ Γp′(x) for any x in vars(p′).

Inductive Step: R3

Consider a rule f(p) =̂ C[g(x)] with g ∈ NINJ . In this case, since g ∈ NINJ , from the induction hypothesis,
there are two different sequences of forests u and v such that [[g(u)]] = [[g(v)]]. Let θ and θ′ be substitutions
such that xθ = u, xθ′ = v and f(pθ)↓ and f(pθ′)↓. Note that such θ and θ′ always exist because of
the assumption on our target language and because the language is affine. Property 2 guarantees that
θ(x) ∈ Γp(x) and θ′(x) ∈ Γp(x) for any x in vars(P).

Base Case: R4

Consider a rule f(p) =̂ C[e1 ¦ e2] satisfying r̃anΓp(e) ∦ r̃anΓp′ (e′). Condition 1 and Property 2 say that range
approximation is exact, i.e, r̃anΓp(e) = ranΓp(e) and r̃anΓp′ (e′) = ranΓp′ (e′). This implies that there exist two
different substitutions η and η′ such that [[(e1 ¦ e2)η]] = [[(e2 ¦ e2)η′]]. Since our target language is affine, by
the assumption on our target language, there exist two substitutions θ and θ′ such that f(pθ)↓ and f(pθ′)↓
and θ(x) = η(x) ∧ θ′(x) = η′(x) for any x in vars(e1 ¦ e2). Note that pθ ̸= pθ′ because η and η′ differs.

A.8 Proof of Theorem 10

We prove the following statement.

[[f(u)]] = [[f(v)]] ∧ [[f c(u)]] = [[f c(v)]] ⇒ u = v

To prove the above, we prove the following lemma.

30

lemma 1. Let e be an expressions and ec a sequence of expressions such that Γ, e
cÃ ec. Then

∀θ, θ′.
∀x ∈ vars(e). θ(x) ∈ Γ(x) ∧ θ′(x) ∈ Γ(x) ∧ ([[eθ]] = [[eθ′]]) ∧ ([[ecθ]] = [[ecθ′]])

⇒ ∀x ∈ vars(e). θ(x) = θ′(x)

holds.

Proof. We prove the lemma by induction on the evaluation of eθ and eθ′ and the structure of e.

Base Case: Empty Forest

Since there no variable in an expression ε, the statement trivially holds.

Base Case: Variable

Since there is only one variable in an expression x, the statement trivially holds.

Inductive Step: Constructor

In this case, we have
Γ, σ(e) cÃ ec where Γ, e

cÃ ec

and
[[σ(e)θ]] = [[σ(e)θ′]] [[ecθ]] = [[ecθ′]].

Since we have eθ = eθ′, from the induction hypothesis, we have

∀x ∈ vars(e). θ(x) = θ′(x),

which implies the statement.

Inductive Step: Non-Horizontally-Overlapped Concatenation

In this case, we have
Γ, e1 ¦ e2

cÃ e1
c, e2

c where Γ, e1
cÃ e1

c Γ, e2
cÃ e2

c.

and
[[(e1 ¦ e2)θ]] = [[(e1 ¦ e2)θ′]] [[(e1

c, e2
c)θ]] = [[(e1

c, e2
c)θ′]].

Since we have [[e1θ]] = [[e1θ]] ∧ [[e1
cθ]] = [[e1

cθ′]], from the induction hypothesis, we obtain

∀x ∈ vars(e1). θ(x) = θ′(x).

Similarly, since we have [[e2θ]] = [[e2θ]] ∧ [[e2
cθ]] = [[e2

cθ′]], from the induction hypothesis, we obtain

∀x ∈ vars(e2). θ(x) = θ′(x).

Hence, we have θ(x) = θ′(x) for any x in vars(e1 ¦ e2).

Inductive Step: Horizontally-Overlapped Concatenation

In this case, we have

Γ, e1 ¦ e2
cÃ len(e1), e1

c, e2
c where Γ, e1

cÃ e1
c Γ, e2

cÃ e2
c.

and
[[(e1 ¦ e2)θ]] = [[(e1 ¦ e2)θ′]] [[(len(e1), e1

c, e2
c)θ]] = [[(len(e1), e1

c, e2
c)θ′]].

Unlike the above case, we may have the case when e1θ ̸= e1θ
′ and e1θ

′ ̸= e2θ
′ but (e1 ¦ e2)θ = (e1 ¦

e2)θ′. However, such a case never occurs because in such a case len(e1θ) ̸= len(e1θ
′) holds, which implies

[[(len(e1), e1
c, e2

c)θ]] ̸= [[(len(e1), e1
c, e2

c)θ′]]. The rest of the proof for this case is the same as the above
case.

31

Inductive Step: Injective Function Call

Clear from the Theorem 8. Note that all the functions in INJ are injective.

Inductive Step: Function Call

In this case, we have
Γ, f(x) cÃ f c(x)

and
[[f(xθ)]] = [[f(xθ′)]] ∧ [[f c(xθ)]] = [[f c(xθ′)]].

Here, we safely assume that there exists only one rule of the form f(p) =̂ e such that pη = xθ, pη′ = xθ′,
η(x), η′(x) ∈ Γp for any x in vars(p) because the complement derivation rules introduce different tags to
different tags; if there are two rules f(p) =̂ e and f(p′) =̂ e′ satisfying the properties, then no substitutions
η and η′ satisfy [[f c(pη)]] = [[f c(p′η′)]] because the two rules of complement functions have the forms f c(p) =̂
Rk⟨. . .⟩ and f c(p′) =̂ Rl⟨. . .⟩ with l ̸= k. The rule f(p) =̂ e has the corresponding rule of the complement
function f c

f c(p) =̂ Rk⟨ec, vars(p) \ vars(e)⟩

where ec is obtained by Γp, e
cÃ ec. Since we have [[eη]] = [[eη′]] and [[ecη]] = [[ecη]], from the induction

hypothesis, we have
∀x ∈ vars(e). η(x) = η′(x).

Since we also have (vars(p) \ vars(e))η = (vars(p) \ vars(e))η′ because [[f c(xθ)]] = [[f c(xθ′)]], we have

∀x ∈ (vars(p) \ vars(e)). η(x) = η′(x).

Hence, we have
∀x ∈ vars(p). η(x) = η′(x).

Since xθ = pη and xθ′ = pη′ hold, we have

∀x ∈ vars(f(x)). θ(x) = θ′(x).

It is worth noting that the proof for this case also shows that the lemma implies the statement

[[f(u)]] = [[f(v)]] ∧ [[f c(u)]] = [[f c(v)]] ⇒ u = v

which establishes Theorem 10.

Proof of Theorem 11

For a function that is not in INJ , the proof is trivial because the complement derivation algorithm introduces
the different tags for different rules. For a function in INJ , for any rule f(p) =̂ e and f−1(p) =̂ p where W ,
we have [[p]] = r̃anΓp(e), which guarantees that an obtained program is deterministic.

What is more interesting is that the above proof says that our derived inverse functions are deterministic
after the optimizations proposed in the our previous work because we have [[p]] = r̃anΓp(e) for any rule
f(p) =̂ e and the corresponding inverse of the tupled function have the form ⟨f, f c⟩−1(p, p′) =̂ p where W .

32

Proof of Theorem 12

We first define the semantics of program containing where.

ε ⇓ ε
Eps

e ⇓ v

σ(e) ⇓ σ(v)
Con

e1 ⇓ v1 e2 ⇓ v2

e1 ¦ e2 ⇓ v1 ¦ v2
Cat

∃f(u) =̂ e where W, pθ = v. θ(x) ∈ Γp(x) W, θ, eθ ¸ v

f(u) ⇓ v
Fun

vars(x) ⊆ dom(θ), f(xθ) ⇓ u, pσ = u W, θ ∪ σ, eσ ¸ v

(p =̂ f(x)) ∪ W, θ, e ¸ v
W1

e ⇓ v

∅, θ, e ¸ v
W2

We prove Theorem 12 by proving the following four lemmas.

lemma 2. For any expression e in f(p) =̂ C[e] in f ∈ INJ ,

Γ, e
pÃ p ∧ Γ, e, ∅ wÃ W

⇒ (eθ ⇓ t, ∀x ∈ vars(e). θ(x) ∈ Γ(x) ⇒ ∃η. ηp = t ∧ ∀x ∈ vars(e). W, η, xη ¸ θ(x))

holds

lemma 3. For any expression e

Γ, e
cÃ ec ∧ Γ, e

pÃ p ∧ Γ, ec pÃ p′ ∧ Γ, e, L
wÃ W, (L ⊆ vars(p′))

⇒
(

eθ ⇓ t, ecθ ⇓ t′,∀x ∈ vars(e). θ(x) ∈ Γ(x)
⇒ ∃η. ηp = t, ηp′ = t′ ∧ ∀x ∈ vars(e). W, η, xη ¸ θ(x)

)
holds

lemma 4. For any expression e in f(p) =̂ C[e] in f ∈ INJ ,

Γ, e
pÃ p ∧ Γ, e, ∅ wÃ W

⇒

eθ ⇓ t, ∀x ∈ vars(e). θ(x) ∈ Γ(x)
⇐ ηp = t ∧ ∀x ∈ dom(p). η(x) ∈ Γp

∧ θ = {x 7→ v | W,η, xη ¸ v | x ∈ vars(e)} ∧ dom(θ) = vars(e)

holds

lemma 5. For any expression e

Γ, e
cÃ ec ∧ Γ, e

pÃ p ∧ Γ, ec pÃ p′ ∧ Γ, e, L
wÃ W, (L ⊆ vars(p′))

⇒

eθ ⇓ t, ecθ ⇓ t′,∀x ∈ vars(e). θ(x) ∈ Γ(x)
⇐ ηp = t, ηp′ = t′,∀x ∈ vars(p). θ(x) ∈ Γp(x)

∧ θ = {x 7→ v | W,η, xη ¸ v, x ∈ vars(e)} ∧ dom(θ) = vars(e)

holds

The above lemmas correspond to

• [[f(u)]] = t ⇒ [[f−1(t)]] = u (f ∈ INJ)

• [[f(u)]] = t, [[f c(u)]] = t′ ⇒ [[⟨t, tc⟩−1(t, t′)]] = u (f ̸∈ INJ)

• [[f(u)]] = t ⇐ [[f−1(t)]] = u (f ∈ INJ)

• [[f(u)]] = t, [[f c(u)]] = t′ ⇐ [[⟨t, tc⟩−1(t, t′)]] = u (f ̸∈ INJ)

respectively.

Proof of Lemma 2. We prove Lemma 2 by induction on the structure and the evaluation of e.

33

Base Case: Empty Forest

In this case, we have
Γ, ε

pÃ ε Γ, ε, ∅ wÃ ∅ εθ ⇓ ε

for any θ. Then, the statement of the lemma trivially holds.

Base Case: Variable

In this case, we have
Γ, x

pÃ x Γ, x, ∅ wÃ x xθ ⇓ t

for a substitution θ such that θ(x) ∈ Γ(x) for any x ∈ vars(e) and a forest t = θ(x). Then, the statement of
the lemma trivially holds.

Inductive Step: Constructor

In this case, we have
Γ, σ(e)

pÃ σ(p) Γ, e
pÃ p

Γ, σ(e), ∅ wÃ W Γ, e, ∅ wÃ W
σ(e)θ ⇓ σ(t) e ⇓ t

for a substitution θ and a forest t such that θ(x) ∈ Γ(x) for any x ∈ vars(e). From the induction hypothesis,
there exists η such that pη = t and

∀x ∈ vars(e). W, η, xη ¸ θ(x).

Then, we have σ(p)η = σ(t), which implies the statement of the lemma.

Inductive Step: Non-Horizontally-Overlapped Concatenation

In this case, we have

Γ, e1 ¦ e2
pÃ p1 ¦ p2 Γ, e1, ∅

pÃ p1 Γ, e2
pÃ p2

Γ, e1 ¦ e2, ∅
wÃ W1 ∪ W2 Γ, e1, ∅

wÃ W1 Γ, e2∅
wÃ W2

e1 ¦ e2θ ⇓ t1 ¦ t2 e1θ ⇓ t1 e2θ ⇓ t2

for a substitution θ and forests t1 and t2 such that θ(x) ∈ Γ(x) for any x ∈ vars(e1 ¦ e2). From the induction
hypothesis, there exist substitutions η1 and η2 such that p1η1 = t1 and p2η2 = t2

∀x ∈ vars(e1). W1, η1, xη1 ¸ θ(x),
∀x ∈ vars(e2). W2, η2, xη2 ¸ θ(x).

Then, since we have vars(e1)∩vars(e2) = ∅ and vars(W1)∩vars(W2) = ∅, taking η = η1 ¦η2, we have pη = t1 ¦t2
and

∀x ∈ vars(p). W, η, xη ¸ θ(x),

which implies the statement of the lemma.

Inductive Step: Injective Function

Let k be the ID of an expression f(x). In this case, we have

Γ, f(x)
pÃ wk :: Tk Γ, f(x), ∅ pÃ (x :: Γ(x)) =̂ f−1(wk) f(xθ) ⇓ t

34

for a forest t and a substitution θ such that θ(x) ∈ Γ(x) for any x ∈ vars(x). Since f(xθ) ⇓ t holds, there
exists a rule f(p) =̂ e such that pζ = xθ and eζ ⇓ t for some substitution ζ, which also implies that there
exist a rule f−1(p) =̂ p where W where Γp, e

pÃ p and Γp, e, ∅
wÃ W . From the induction hypothesis, there

exists a substitution ξ such that pξ = t and

∀x ∈ vars(p). W, ξ, xξ ¸ ζ(x).

Then, taking η(wk) = pξ, we have wkη = t and

∀x ∈ vars(e). W, η, xη ¸ θ(x),

which implies the statement of the lemma.
Note that the proof of this case also shows that Lemma 2 implies the following statement.

[[f(u)]] = t ⇒ [[f−1(t)]] = u (f ∈ INJ)

This statement is what we want to prove by Lemma 2.

Proof Lemma 3. Some part of the proof is omitted because the proof is similar to the proof of Lemma 2
except for two induction steps: horizontally-overlapped concatenation case and function call case.

Inductive Step: Horizontally-Overlapped Concatenation

Let k be the ID of an expression e1 ¦ e2. We have

Γ, e1 ¦ e1
cÃ len(e1), e1

c, e2
c Γ, e1

cÃ e1
c Γ, e2

cÃ e2
c

Γ, len(e1), e1
c, e2

c pÃ lk, p1
′, p2

′ Γ, e1
c pÃ p1

′ Γ, e2
c pÃ p2

Γ, e1 ¦ e2, vars(lk, p1
′, p2

′) wÃ W ∪ W1 ∪ W2 Γ, e1
pÃ p1 Γ, e2

pÃ p2

W = {(p1, p2) =̂ spl(lk, vk)} Γ, e1, vars(lk, p1
′, p2

′) wÃ W1 Γ, e2, vars(lk, p1
′, p2

′) wÃ W2

(e1 ¦ e2)θ ⇓ (t1 ¦ t2) e1θ ⇓ t1 e2θ ⇓ t2
(len(e1), e1

c, e2
c)θ ⇓ (l, t′1, t

′
2) e1

cθ ⇓ t′1 e2
cθ ⇓ t′2

and
Γ, e1 ¦ e2

pÃ vk

for a substitution θ and forests t1 and t2 such that θ(x) ∈ Γ(x) for any x ∈ vars(e). From the induction
hypothesis, there exist substitutions η1 and η2 such that p1η1 = t1 ∧ p′1η1 = t′1, p2η2 = t2 ∧ p′2η2 = t′2, and
satisfying

∀x ∈ vars(e1). W1, η1, xη1 ¸ θ(x),
∀x ∈ vars(e2). W2, η1, xη2 ¸ θ(x).

Then, taking η = {vk 7→ t1 ¦ t2, lk 7→ l} ∪ η1 ∪ η2, we have

∀x ∈ vars(e1 ¦ e2). W ∪ W1 ∪ W2, η, xη ¸ θ(x),

which implies the statement of the lemma.

Inductive Step: Function Call

Let k be the ID of an expression f(x), and k′ the ID of the corresponding expression f c(x) where Γ, f(x) cÃ
f c(x). In this case, we have

Γ, f(x)
pÃ wk Γ, f c(x)

pÃ wk′ Γ, f(x) wÃ {(x :: Γ(x)) =̂ ⟨f, f c⟩−1(wk, wk′)}
f(xθ) ⇓ t f c(xθ) ⇓ t′

35

for a substitution θ and forests t, t′ such that θ(x) ∈ Γ(x) for any x ∈ vars(x). Since f(xθ) ⇓ t and f c(xθ) ⇓ t′

hold, there exist a rule
f(p) =̂ e

and
f c(p) =̂ Ri⟨ec, V ⟩

where Γp, e
cÃ ec and V = p \ vars(e), which also implies there exists a rule

⟨f, f c⟩−1(p, p′) =̂ p where W

where Γp, e
pÃ p, Γp, Ri⟨ec, V ⟩ pÃ p′ and Γp, e, vars(p′)

wÃ W . For these rules, there exists a substitution ζ
such that pζ = xθ, eζ ⇓ t and Ri⟨ec, V ⟩ζ ⇓ t′. From the induction hypothesis, there exist substitution ξ such
that

∀x ∈ vars(e). W, ξ, xξ ¸ ζ(x).

Then, taking η = {wk 7→ t, wk′ 7→ t′}, we have

∀x ∈ vars(x). W, η, xη ¸ θ(x),

which implies the statement of the lemma.
Note that the proof of this case also shows that Lemma 3 implies the following statement.

[[f(u)]] = t, [[f c(u)]] = t′ ⇒ [[⟨t, tc⟩−1(t, t′)]] = u (f ̸∈ INJ)

This statement is what we want to prove by Lemma 3.

Proof of Lemma 4. We prove the Lemma 4 by induction on the evaluation of where-clauses and the structure
of the expression that generates the where-clauses.

Base Case: Empty Forest

In this case, we have
Γ, ε

pÃ ε Γ, ε, ∅ wÃ ∅.
Here, the statement of the lemma trivially holds.

Base Case: Variable

In this case, we have
Γ, x

pÃ x :: Γ(x) Γ, x, ∅ wÃ ∅.
Let t be a forest and η a substitution such that xη = t and t ∈ Γ(x). Then, θ is defined as follows.

θ = {x 7→ v | ∅, η, xη ¸ v} = {x 7→ t}.

Therefore, xθ ⇓ t and θ(x) ∈ Γ(x) hold, which implies the statement of the lemma.

Inductive Step: Constructor

In this case, we have
Γ, σ(e)

pÃ σ(p) Γ, e
pÃ p

Γ, σ(e), ∅ wÃ W Γ, e, ∅ wÃ W.

Let σ(t) be a forest and η a substitution such that σ(p)η = σ(t) and η(x) ∈ Γ(x) for any x in vars(p), and θ
be a substitution satisfying

θ = {x 7→ v | W,η, xη ¸ v, x ∈ vars(σ(e))}
and dom(θ) = vars(e). Since we have vars(σ(e)) = vars(e), from the induction hypothesis, we have eθ ⇓ t and
θ(x) ∈ Γ(x) for any x ∈ vars(e). Therefore, σ(e)θ ⇓ t and θ(x) ∈ Γ(x) for any x ∈ vars(e) hold, which implies
the statement of the lemma.

36

Inductive Step: Non-Horizontally-Overlapped Concatenation

In this case, we have

Γ, e1 ¦ e2
pÃ p1 ¦ p2 where Γ, e1

pÃ p1 Γ, e2
pÃ p2

Γ, e1 ¦ e2, ∅
pÃ W1 ∪ W2 where Γ, e1, ∅

wÃ W1 Γ, e2, ∅
wÃ W2.

Let t1, t2 be forests and η a substitution such that (p1 ¦ p2)η = t1 ¦ t2 and η(x) ∈ Γ(x) for any x in vars(p),
and θ a substitution satisfying

θ = {x 7→ v | W1 ∪ W2, η, xη ¸ v, x ∈ vars(e1 ¦ e2)}

and dom(θ) = vars(e1 ¦ e2). Since our target language is affine, we have vars(W1) ∩ vars(W2) = ∅, vars(e1) ∩
vars(e2) = ∅ and vars(p1) ∩ vars(p2) = ∅, which implies that θ1 and θ2 defined by

θ1 = {x 7→ θ(x) | x ∈ vars(e1)}, θ2 = {x 7→ θ(x) | x ∈ vars(e2)}

satisfies

θ1 = {x 7→ v | W1, η, xη ¸ v, x ∈ vars(e1)}, θ2 = {x 7→ v | W2, η, xη ¸ v, x ∈ vars(e2)}

and dom(θ1) = vars(e1) and dom(θ2) = vars(e2). Hence, from the induction hypothesis, we have

e1θ1 ⇓ t1, e2θ2 ⇓ t2,

θ1(x) ∈ Γ(x) for any x ∈ vars(e1) and θ2(x) ∈ Γ(x) for any x ∈ vars(e2). Since we have θ = θ1 ∪ θ2, we have
(e1 ¦ e2)θ ⇓ t1 ¦ t2 and θ(x) ∈ Γ(x) for any x ∈ vars(e1 ¦ e2), which implies the statement of the lemma.

Inductive Step: Injective Function

Let k be the ID of an expression f(x). In this case, we have

Γ, f(x)
pÃ wk :: Tf Γ, f(x), ∅ wÃ {(x :: Γ(x)) =̂ f−1(wk)}.

Let t be a forest and η a substitution such that wkη = t, and θ be a substitution satisfying

θ = {x 7→ v | {(x :: Γ(x)) =̂ f−1(wk)}, η, xη ¸ v, x ∈ vars(x)}

and dom(θ) = vars(e) = vars(x). Since dom(θ) = vars(x), there exists a rule of f−1 of the form

f−1(q) =̂ p where W

such that there exists a rule of f of the form
f(p) =̂ e

satisfying
Γp, e

pÃ p Γp, e, ∅
wÃ W,

qζ = t, xθ = [[f−1(qζ)]] and ζ(x) ∈ Γp for any x ∈ vars(p). Since f−1(t)↓ holds, η satisfies

p{x 7→ v | W, ζ, xζ ¸ v, x ∈ vars(e)} = [[f−1(t)]]

which implies dom({x 7→ v | W, ζ, xζ ¸ v, x ∈ vars(e)}) = vars(e). So, taking ξ as {x 7→ v | W, ζ, xζ ¸ v, x ∈
vars(e)}, from the induction hypothesis, we have eξ ⇓ t. Since xθ = pξ, eξ ⇓ t and η(wk) = qζ hold, we have
eθ ⇓ t and θ(x) ∈ Γ(x) for any x ∈ vars(f(x)), which implies the statement of the lemma.

It is worth noting that the proof also shows that Lemma 4 implies the following statement.

[[f(u)]] = t ⇐ [[f−1(t)]] = u (f ∈ INJ)

This statement is what we want to prove by Lemma 4.

Lemma 5. Some part of the proof is omitted because the proof is similar to the proof of Lemma 4 except
for two induction steps: horizontally-overlapped concatenation case and function call case.

We prove Lemma 5 by induction on the evaluation of W and the expression e that generates W .

37

Inductive Step: Horizontally-Overlapped Concatenation

Let k be the ID of an expression e1 ¦ e2. In this case, we have

Γ, e1 ¦ e2
cÃ len(e1), e1

c, e2
c Γ, e1

cÃ e1
c Γ, e2

cÃ e2
c

Γ, len(e1), e1
c, e2

c pÃ lk, p′1, p
′
2 Γ, e1

c pÃ p′1 Γ, e2
c pÃ p′2

Γ, e1 ¦ e2, vars(lk, p′1, p
′
2)

wÃ W ′ ∪ W1 ∪ W2 Γ, e1, vars(p′1)
wÃ W1 Γ, e2, vars(p′2)

wÃ W2

W ′
1 = {(p1, p2) =̂ spl(lk, vk)} Γ, e1

pÃ p1 Γ, e2
pÃ p2

and
Γ, e1 ¦ e2

pÃ vk.

Let t and t′ be forests, η a substitution such that vkη = t and (lk, p′1, p
′
2)η = t′, and θ a substitution satisfying

θ = {x 7→ v | W ′ ∪ W1 ∪ W2, η, xη ¸ v}

and dom(θ) = vars(e). Since a substitution θ is defined for all x ∈ vars(e), we safely assume that there exists
a ζ such that (p1, p2)ζ = (t1, t2) where t = t1 ¦ t2 and len(t1) = lkη. Since our target language is affine, we
have vars(W1) ∩ vars(W2) = ∅, vars(e1) ∩ vars(e2) = ∅ and vars(p1) ∩ vars(p2) = ∅, which implies that θ1 and
θ2 defined by

θ1 = {x 7→ θ(x) | x ∈ vars(e1)}, θ2 = {x 7→ θ(x) | x ∈ vars(e2)}

satisfies

θ1 = {x 7→ v | W1, η, xη ¸ v, x ∈ vars(e1)}, θ2 = {x 7→ v | W2, η, xη ¸ v, x ∈ vars(e2)}

and dom(θ1) = vars(e1) and dom(θ2) = vars(e2). Hence, from the induction hypothesis, we have

e1θ1 ⇓ t1, e2θ2 ⇓ t2, e1
cθ1 ⇓ p′1η, e2

cθ2 ⇓ p′2,

θ1(x) ∈ Γ(x) for any x ∈ vars(e1) and θ2(x) ∈ Γ(x) for any x ∈ vars(e2). Since we have θ = θ1∪θ2∪{lk 7→ lkη},
we have (e1 ¦ e2)θ ⇓ t and (lk, e1

c, e2
c)θ = t′, which implies the statement of the lemma.

Inductive Step: Function Call

Let k be the ID of an expression f(x), and k′ the ID of the expression f c(x) that is obtained by Γ, f(x) cÃ
f c(x). In this case, we have

Γ, f(x) cÃ f c(x) Γ, f(x)
pÃ wk Γ, f c(x)

pÃ wk′

Γ, f(x), L wÃ {(x :: Γ(x)) =̂ ⟨f, f c⟩−1(wk, wk′)}.

Let t and t′ be forests, η a substitution such that wkη = t, wk′η = t′, and θ a substitution such that

θ = {x 7→ v | {(x :: Γ(x)) =̂ ⟨f, f c⟩−1(wk, wk′)}, η, xη ¸ v | x ∈ vars(e)}

and dom(θ) = vars(e). Since dom(θ) = vars(e), by the definition of ¸ and the ⟨f, f c⟩−1, there exists a rule

⟨f, f c⟩−1(q, q′) =̂ p where W,

a rule for forward transformations
f(p) =̂ e,

and a rule for complement functions
f c(p) =̂ Rl⟨ec, p \ vars(e)⟩

38

satisfying the following.

Γp, e
cÃ ec

Γp, e
pÃ p Γp, Rl⟨ec, p \ vars(e)⟩ pÃ p′

Γp, e, vars(p′)
wÃ W

∃ζ. pζ = wkη = t, p′ζ = wk′η = t′.

From the induction hypothesis, there is a substitution ξ such that

ξ = {x 7→ v | W, ζ, xζ ¸ v, x ∈ vars(e)}

satisfying eξ ⇓ t and ecξ ⇓ s. Since we have

xθ = pζ,

[[f(x)θ]] = [[eξ]] = t,

[[f c(x)θ]] = Rl⟨[[ecξ]], (vars(p) \ vars(e))η⟩ = t′,

we have f(x)θ ⇓ t, f c(x)θ ⇓ t′ and θ(x) ∈ Γ(x) for any x ∈ vars(e), which implies the statement of this
lemma.

Note that the proof of this case also shows that Lemma 5 implies the following statement.

f(u) = t, f c(u) = t′ ⇐ ⟨f, f c⟩−1(t, t′) = u

This statement is what we want to prove by Lemma 5.

A.9 Proof of Theorem 13

We prove the following lemma.

lemma 6. Let s′ be a initial return value of a complement function. For a expression e in a rule r,

Γ, e
pÃ p ∧ Γ, e

cÃ ec ∧ Γ, ec pÃ p′ ∧ Γ, e, vars(p′) wÃ W

⇒
(

pη = t, t′ = C[p′]η, C′[t′] = s′,∀w ∈ vars(p). η(x) ∈ Γp(x),∀x ∈ vars(e),∃v. W, η, xη ¸ v

⇒ ∀w ∈ vars(p). Xw
r,t′

∗→ η(w)

)
holds.

Proof. We prove the lemma by induction on the evaluation of W and the structure of e that generates W .

Base Case: Empty Forest

In this case, since Γ, ε
pÃ ε and the expression ε contains no variable, the statement trivially holds.

Base Case: Variable

In this case, we have
Γ, x

pÃ x :: Γ(x) Γ, x
cÃ ϵ Γ, ϵ

pÃ ϵ Γ, x, ∅ wÃ ∅.

Since we have a production rule Xx
r,t′ → Γ(x) in Gt′

U, the statement of the lemma holds.

39

Inductive Step: Constructor

In this case, we have

Γ, σ(e)
pÃ σ(p) where Γ, e

pÃ e

Γ, σ(e) cÃ ec where Γ, e
cÃ ec

Γ, ec pÃ p′

Γ, σ(e), vars(p′) wÃ W where Γ, e, vars(p′) wÃ W.

Let t and t′ be forests, η a substitution such that t = pη, t′ = C[p′]η, η(x) ∈ Γp(x) for any x in p and

∀x ∈ vars(σ(e)). ∃v. W, η, xη ¸ v.

From the induction hypothesis, we have

∀w ∈ vars(p). Xw
r,t′

∗→ η(w),

which also implies the statement of the lemma.

Inductive Step: Non-Horizontally-Overlapped Concatenation

In this case, we have

Γ, e1 ¦ e2
pÃ p1 ¦ p2 where Γ, e1

pÃ p1 Γ, e2
pÃ p2

Γ, e1 ¦ e2
cÃ e1

c, e2
c where Γ, e1

cÃ e1
c Γ, e2

cÃ e2
c

Γ, (e1
c, e2

c)
pÃ p′1, p

′
2 where Γ, e1

c pÃ p′1 Γ, e2
c pÃ p′2

Γ, e1 ¦ e2, vars(p′1, p
′
2)

wÃ W1 ∪ W2 where Γ, e1, vars(p′1)
wÃ W1 Γ, e2, vars(p′2)

wÃ W2

Let t and t′ be forests, and η a substitution such that t = (p1 ¦ p2)η, t′ = C[(p′1, p
′
2)]η, η(x) ∈ Γp(x) for any

x ∈ vars(p)
∀x ∈ vars(e1 ¦ e2). ∃v. W1 ∪ W2, η, xη ¸ v.

Since vars(e1)∩ vars(e2) = ∅ and vars(W1)∩ vars(W2) = ∅ hold because our target language is affine, we have

∀x ∈ vars(e1). ∃v. W1, η, xη ¸ v, ∀x ∈ vars(e2). ∃v. W2, η, xη ¸ v.

From the induction hypothesis, we have

∀w ∈ vars(p1). Xw
r,t′

∗→ η(w), ∀w ∈ vars(p2). Xw
r,t′

∗→ η(w).

Therefore, we have
∀w ∈ vars(p1, p2). Xw

r,t′
∗→ η(w),

which implies the statement of the lemma.

Inductive Step: Horizontally-Overlapped Concatenation

The proof is almost the same as the above because the proof does not require the length information.

40

Inductive Step: Injective Function Call

Let k be the ID of an expression f(x). In this case, we have

Γ, f(x)
pÃ wk Γ, f(x) cÃ ϵ

Γ, f(x), ∅ wÃ W

where W = {(x :: Γ(x)) =̂ f−1(wk)}. Let t be a forest and η be a substitution such that wkη = t and

∀x ∈ vars(f(x)). ∃v. W, η, xη ¸ v.

In this case, since ∀x ∈ vars(x),∃v. W, η, xη ¸ v holds, we safely assume that there exists a substitution ζ
and a rule

r′ = f−1(q) =̂ p where W ′

such that qζ = wkη and
Γp, e

pÃ q Γp, e
wÃ W ′

where e is a right-hand side of the corresponding rule of the form

f(p) = e.

Since we have ∀x ∈ vars(p),∃v. W ′, ζ, xζ ¸ v because f−1(qζ)↓ holds, from the induction hypothesis, we
have

∀w ∈ vars(q). Xw
r,ε

∗→ ζ(w)

which implies
Sε

f → Tr′,ε[[q]]
∗→ qζ

because the production of CFFGs is closed for substitution. Since there is a production rule Xwk
r,t → Sε

f in
Gs′

U by definition, we have
Xwk

r,t′
∗→ η(wk),

which implies the statement of the lemma.
Note that the proof for this case also shows that this lemma implies

Sε
f

∗→ t ⇒ f−1(t)↓

for a function f ∈ INJ .

Inductive Step: Function Call

Let k be the ID of an expression f(x), k′ be the ID of the expression f c(x) that is obtained by Γ, f(x) cÃ
f c(x)). In this case, we have

Γ, f(x) cÃ f c(x) Γ, f(x)
pÃ wk Γ, f c(x)

pÃ wk′

Γ, f(x), L wÃ W

where W = {(x :: Γ(x)) =̂ ⟨f, f c⟩−1(wk, wk′)}. Let t and t′ be forests, and η a substitution such that
t = wkη, t′ = C[wk′]η and

∀x ∈ vars(f(x)),∃v. W, η, xη ¸ η(x).

Here, we safely assume that there exist a substitution ζ and a rule

r′ = ⟨f, f c⟩−1(q, q′) =̂ p where W ′

41

such that qζ = wkη, q′ζ = wk′η and

Γp, e
pÃ q Γp, e

wÃ W ′ Γp,Rl⟨ec, p \ vars(e)⟩ pÃ q′

where e is a right-hand side of the corresponding rule

f(p) = e.

Since we have ∀x ∈ vars(p),∃v. W ′, ζ, xζ ¸ v because ⟨f, f c⟩−1(qζ, q′ζ)↓ holds, from the induction hypothesis,
we have

∀w ∈ vars(q, q′) Xw
r,η(wk′)

∗→ ζ(w)

which implies
S

η(wk′)
f → Tr′,η(wk′)[[q]]

∗→ qζ

because the production of CFFGs is closed for substitution. Since there is a production rule Xwk
r,t → S

η(wk′)
f ,

we have
Xwk

r,t′
∗→ η(wk).

which implies the statement of the lemma.
Note that the proof for this case also shows that the lemma implies

St′

f
∗→ t ⇒ ⟨f, f c⟩−1(t, t′)↓

for a function f ̸∈ INJ .

A.10 Proof of Theorem 14

We prove the following lemma.

lemma 7. Let s′ be a initial complement. For a expression e in a rule r,

Γ, e
pÃ p ∧ Γ, e

cÃ ec ∧ Γ, ec pÃ p′ ∧ Γ, e, vars(p′) wÃ W

⇒

pη = t, C[p′]η = t′,∀w ∈ vars(p). Xw
r,t′

∗→ η(w)
⇒ ∀w ∈ vars(p). η(x) ∈ Γ(x)

∧ ∀x ∈ vars(e),∃v. W, η, xη ¸ v

holds.

Proof. We prove the above lemma by induction on the structure of e and the derivation relation of ∗→.

Base Case: Empty Forest

The statement of the lemma trivially holds because vars(e) = ∅.

Base Case: Variable

In this case, we have Γ, e
pÃ x :: Γ(x). Let t be a forest such that Xx

r,t′ → η(x), η be a substitution such
that t = xη and t ∈ Γ(x), which implies η(x) = t. Since there exists a production rule Xx

r,t′ → Γ(x), we have
η(x) ∈ Γ(x). Since we have ∅, η, t ¸ t, the statement of the lemma holds.

42

Inductive Step: Constructor

In this case, we have

Γ, σ(e)
pÃ σ(p) where Γ, e

pÃ e

Γ, σ(e) cÃ ec where Γ, e
cÃ ec

Γ, ec pÃ p′

Γ, σ(e), vars(p′) wÃ W where Γ, e, vars(p′) wÃ W.

Let t and t′ be forests, and η a substitution such that σ(p)η = t, C[p′]η = t′ and ∀w ∈ σ(p). η(w) ∈
Γ(w) ∧ Xw

r,t′
∗→ η(w). Then, from the induction hypothesis, we have

∀x ∈ vars(e),∃v. W, η, xη ¸ v

which implies
∀x ∈ vars(σ(e)),∃v. W, η, xη ¸ v

i.e., the statement of the lemma.

Inductive Step: Non-Horizontally-Overlapped Concatenation

In this case, we have

Γ, e1 ¦ e2
pÃ p1 ¦ p2 where Γ, e1

pÃ p1 Γ, e2
pÃ p2

Γ, e1 ¦ e2
cÃ e1

c, e2
c where Γ, e1

cÃ e1
c Γ, e2

cÃ e2
c

Γ, (e1
c, e2

c)
pÃ p′1, p

′
2 where Γ, e1

c pÃ p′1 Γ, e2
c pÃ p′2

Γ, e1 ¦ e2, vars(p′1, p
′
2)

wÃ W1 ∪ W2 where Γ, e1, vars(p′1)
wÃ W1 Γ, e2, vars(p′2)

wÃ W2

Let t and t′ be forests, and η a substitution such that p1¦p2η = t, C[(p′1, p
′
2)]η = t′ and ∀w ∈ vars(σ(p)). Xw

r,t′
∗→

η(w). Then, from the induction hypothesis, we have

∀w ∈ vars(p1). η(w) ∈ Γ(w) ∧ ∀x ∈ vars(e1),∃v. W1, η, xη ¸ v

∀w ∈ vars(p2). η(w) ∈ Γ(w) ∧ ∀x ∈ vars(e2),∃v. W2, η, xη ¸ v

which implies

∀w ∈ vars(p1 ¦ p2). η(w) ∈ Γ(x) ∧ ∀x ∈ vars(e1, e2),∃v. W1 ∪ W2, η, xη ¸ v

because vars(W1) ∪ vars(W2) = ∅ and vars(e1) ∩ vars(e2) = ∅. Hence, the statement of the lemma holds.

Inductive Step: Horizontally-Overlapped Concatenation

Let k be the ID of an expression e1 ¦ e2. In this case, we have

Γ, e1 ¦ e2
cÃ len(e1), e1

c, e2
c Γ, e1

cÃ e1
c Γ, e2

cÃ e2
c

Γ, len(e1), e1
c, e2

c pÃ lk, p′1, p
′
2 Γ, e1

c pÃ p′1 Γ, e2
c pÃ p′2

Γ, e1 ¦ e2
pÃ vk Γ, e1

pÃ p1 Γ, e2
pÃ p2

Γ, e1 ¦ e2, vars(lk, p′1, p
′
2),

wÃ W ′ ∪ W1 ∪ W2 Γ, e1, vars(lk, p′1, p
′
2)

wÃ W1 Γ, e2, vars(lk, p′1, p
′
2)

wÃ W2

where W ′ = {(p1, p2) =̂ spl(lk, vk)}. Let t and t′ be forests, and η a substitution such that vkη = t,
C[lk, p′1, p

′
2]η = t′ and Xvk

r,t′
∗→ η(vk). By the definition of →, the only production rule of Xvk

r,t′ is

Xvk

r,t′ → (Tr,t′ [[p1]] ∧ Lη(lk))Tr,t′ [[p2]]

43

which implies that t = t1 ¦ t2 such that len(t1) = lkη and there exists a substitution ζ satisfying

∀w ∈ vars(p1). Xw
r,t′

∗→ ζ(w)

∀w ∈ vars(p2). Xw
r,t′

∗→ ζ(w).

Then, from the induction hypothesis, we obtain

∀w ∈ vars(p1). η(w) ∈ Γ(w) ∧ ∀x ∈ vars(e1),∃v. W1, η, xη ¸ v

∀w ∈ vars(p2). η(w) ∈ Γ(w) ∧ ∀x ∈ vars(e2),∃v. W2, η, xη ¸ v

which implies
∀w ∈ vars(vk). η(w) ∈ Γ(w)
∧ ∀x ∈ vars(e1, e2),∃v. W ′ ∪ W1 ∪ W2, η, xη ¸ v

because vars(W1) ∪ vars(W2) = ∅ and vars(e1) ∩ vars(e2) = ∅.

Inductive Step: Injective Function Call

Let k be the ID of an expression f(x). In this case, we have

Γ, f(x)
pÃ wk Γ, f(x), ∅ wÃ W

where W = {(x :: Γ(x)) =̂ f−1(wk)}. Let t be a forest, η a substitution such that wkη = t and Xwk

r,t′
∗→ η(wk).

Since there exists the unique production rule Xwk

r,t′ → Sε
f starting from Xwk

r,t′ , we have Sε
f

∗→ η(wk). We safely
assume that Sε

f → Tr′,ε[[q]]
∗→ η(wk) where

r′ = f−1(q) =̂ p where W ′

derived from
f(p) =̂ e

by Γp, e
pÃ q and Γp, ∅

wÃ W . In this case, we have ∀w ∈ vars(q). Xw
r′,ε

∗→ ζ(w) where qζ = η(wk). Then,
from the induction hypothesis, we obtain

∀w ∈ vars(q). ζ(w) ∈ Γ(w) ∧ ∀x ∈ vars(p),∃v. W ′, ζ, xζ ¸ v

which implies f−1(qζ)↓. Property 2 implies f−1(qζ) = v ⇒ vi ∈ Γ(xi). Hence, we obtain

∀x ∈ vars(f(x)),∃v. W, η, xη ¸ v.

Note that the existence of v above is obtained from Property 2.
It is worth noting that this proof also shows that the lemma implies

Sε
f

∗→ t ⇒ f−1(t)↓

for f ∈ INJ .

Inductive Step: Function Call

Let k be the ID of an expression f(x), k′ be the ID of the expression f c(x) that is obtained by Γ, f(x) cÃ f c(x).
In this case, we have

Γ, f(x) cÃ f c(x) Γ, f(x)
pÃ wk Γ, f c(x)

pÃ wk′

Γ, f(x), L wÃ W

44

where W = {(x :: Γ(x)) =̂ ⟨f, f c⟩−1(wk, wk′)}. Let t and t′ be forests, and η a substitution such that
t = wkη, t′ = C[wk′]η. Since there exists the unique production rule Xwk

r,t′ → S
η(wk′)
f starting from Xwk

r,t′ , we

have S
η(wk′)
f

∗→ η(wk). We safely assume that S
η(wk′)
f → Tr′,η(wk′)[[q]]

∗→ η(wk) where

⟨f, f c⟩−1(q, q′) =̂ p where W ′

such that qζ = η(wk), q′ζ = η(wk′) for some ζ and

Γp, e
pÃ q Γp, e

wÃ W ′ Γp,Rl⟨ec, p \ vars(e)⟩ pÃ q′

where e is a right-hand side of the corresponding rule

f(p) = e.

In this case, we have ∀w ∈ vars(q). Xw
r′,η(wk′)

∗→ ζ(w). Then, from the induction hypothesis, we obtain

∀w ∈ vars(q). ζ(w) ∈ Γ(w) ∧ ∀x ∈ vars(p),∃v. W ′, ζ, xζ ¸ v

which implies ⟨f, f c⟩−1(qζ, q′ζ)↓. From Property 2, we have ⟨f, f c⟩−1(qζ, q′ζ) = v ⇒ f(v)↓ ⇒ vi ∈ Γ(xi).
Hence, we obtain

∀x ∈ vars(f(x)),∃v. W, η, xη ¸ v.

Note that the existence of v above is obtained from Property 2.
It is worth noting that this proof also shows that the lemma implies

St′

f
∗→ t ⇒ ⟨f, f c⟩−1(t, t′)↓

for f ̸∈ INJ .

45

B Forest Version of Mohri and Nederhof’s Regular Approxima-
tion Algorithm

Algorithm (Regular Approximation).
Input: A CFFG G.
Output: A strongly-regular CFFG G′.
Procedure:

1. For each non-terminal A in G, repeat the following.

2. If A does not have a rule A → f such that f = C[Bt] for some tree t where A and B are mutually
defined, then, add all the production rules of A to G′.

3. Introduce a fresh non-terminal A′, and add a rule A′ → ε to G′.

4. For each rules of A → f , repeat the following procedures 5–7.

5. If f = C[Bf] ¦ C1g1 ¦ · · · ¦ Cngn with |Bf | ≥ 0, n ≥ 0 where C does not contain any hole that no empty
forest follows, A,B, C1, . . . , Cn are mutually defined, and g1, . . . , gn, f and C does not contain any
non-terminal that is mutually defined with A, then add rules

A → C[B]C1 C ′
1 → g1C2 . . . C ′

n → gnA′

to G′ and proceed to the step 7.

6. If f = C[Bf] with |Bf | ≥ 0 where C does not contain any hole that no empty forest follows, A,B, C
are mutually defined, and g, f and C does not contain any non-terminal that is mutually defined with
A then add a rule

A → C[B]A′

to G′ and proceed to the step 7.

7. For each Bi and fi for each i ∈ {1, . . . , |Bf |} in the step 6 or 7, apply the following sub-procedure.

Sub-Procedure (Input: B, f):

1’. Let C′ be a context such that f = C′[Cg] such that C′ does not contain any hole that no empty forest
follows, B and C are mutually defined, g and C′ does not contain any non-terminal that is mutually
defined with B.

2’. Add a rule B′ → C′[C] to G′.

3’. Recursively apply this sub-procedure to Ci and gi for each i ∈ {1, . . . , |Cg|}.

46

C Conversion a obtained View Update Checker to a CFFG

C.1 Conversion to CFFG

Algorithm (Elimination of ∧).
Input: A view update checker Gs′

U

Output: A CFFG for view update checking
Procedure:

1. Replace each occurrence of A ∧ Lk to Ak

2. Add production rules for Ak defined as

∆ = {Ak → t′ | t′ ∈ T, t Ãk T,A → t ∈ Gs′

U}

where Ãk is defined by following derivation rules.

k = 0
ε Ãk {ε}

Epsk=0
k ̸= 0
ε Ãk ∅

Epsk ̸=0
k = 1

σ(A) Ãk {σ(A)}
Conk=1

k ̸= 1
σ(A) Ãk ∅

Conk ̸=1

k = m

A ∧ Lm Ãk {Ak}
NLk=m

k ̸= m

A ∧ Lm Ãk ∅
NLk ̸=m

A Ãk {Ak}
N

T = {(t1, t2) | t1 ∈ T1, t2 ∈ T2, t1 Ãk1 T1, t2 Ãk2 T2, k1 + k2 = k}
t1 ¦ t2 Ãk {t′1 ¦ t′2 | (t′1, t

′
2) ∈ T}

Cat

3. Recursively remove the non-terminals that never produce a forest.

C.2 Conversion to RFG

Consider the case when Condition 1 holds for an original program for forward transformations. Note that
the algorithm in the previous section does not change the structure of production rules of CFFG. Hence,
recursively substituting non-terminals of the form Xw

r,t with the right-hand side of its production rule, we
obtain a strongly-regular CFFG. Recall that a strongly-regular CFFG can be converted to the RFG of which
languages are the same as the strongly-regular CFFG.

47

