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Balanced Ternary-Tree Representation of Binary Trees
and Balancing Algorithms

Kiminori Matsuzaki and Akimasa Morihata

Abstract. In this paper, we propose novel representation of binary trees, named the
balanced ternary-tree representation. We examine flexible division of binary trees in which
we can divide a tree at any node rather than just at the root, and introduce the ternary-tree
representation for the flexible division. Due to the flexibility of division, for any binary tree,
balanced or ill-balanced, there is always a balanced ternary tree representing it.

We also develop three algorithms for generating balanced ternary-tree representation
from binary trees and for rebalancing the ternary-tree representation after a small change
of the shape. We not only show theoretical upper bounds of heights of the ternary-tree
representation, but also report experiment results about the balance property in practical
settings.

Keywords. Balanced trees, AVL trees, Dynamic rebalancing, Parallel tree contraction.

1 Introduction

Dynamic data structures with balance properties are important both in theory and in practice.
Among others, there were so many studies on balanced data structures representing sorted lists.
Binary search trees are dynamic data structures for sorted lists and AVL trees [2] and red-black
trees [4] are two major implementations of binary search trees with rebalancing procedures.
B-trees [4] are more practical ones used in databases.

Trees are important data structures often used in representing structured data. There have
been, however, only a few studies on the balanced representation of trees. Skip quadtrees [5],
extensions of skip lists [9], are data structures that speed up accessing ill-balanced quad trees
representing multidimensional data. There are studies on balanced decomposition trees [3, 6],
whose applications can be found in computational geometry. As far as the authors know, there
were no general studies on balanced data structures representing trees.

In this paper, we propose novel representation of binary trees, named the balanced ternary-
tree representation, based on recursive division of binary trees. We consider flexible division of
binary trees in which we can divide a tree at any node, and formalize the division as the ternary-
tree representation of the binary tree. As the consequence of the flexibility, for any binary tree,
balanced or ill-balanced, there is always a balanced ternary tree representing it. Furthermore,
we develop algorithms for generating balanced ternary-tree representation statically from binary
trees, and for rebalancing the ternary-tree representation after a small change of the shape of the
tree. We not only show theoretical upper bounds of heights of the ternary-tree representation,
but also report experiment results about the balance property in practical settings.

The rest of the paper is organized as follows. In Section 2, we propose the ternary-tree rep-
resentation of binary trees based on flexible division of binary trees, and discuss some properties
held on the ternary-tree representation. In Section 3, we show two algorithms for generating
a balanced ternary-tree representation from binary trees, and one algorithm for rebalancing
the ternary-tree representation. In Section 4, we report experiment results and show that we



Figure 1. Dividing a binary tree at node x yields three segments denoted by dashed
lines.

can keep the ternary-tree representation well balanced in practice. We review related work in
Section 5, and make concluding remarks in Section 6.

2 Ternary-Tree Representation of Binary Trees

In this section, we observe flexible division of binary trees at any node, and introduce a new
concept of the ternary-tree representation of binary trees.

The type of binary trees, each of whose leaves (BLeaf) has a value of type o and each of
whose internal nodes (BNode) has a value of type (3, is defined as follows.

BTree, g = Bleaf(a)
| BNode(BTree, g, 3, BTree, g)

The three values for an internal node indicate the left subtree, the value of the node, and the
right subtree, in this order. Throughout this paper, trees are rooted and ordered.

2.1 Flexible Division of Binary Trees and Ternary-Tree Representation

Let x be a node in a binary tree; then, we can divide the tree at node z into the following three
parts: the left subtree of z, the right subtree of z, and the other nodes including x, as shown
in Figure 1. We first define two keywords terminal node and segment to discuss the division of
binary trees.

Definition 1 (Terminal Node) We call the node at which a binary tree is divided as terminal
node. O

Definition 2 (Segment) A segment is a set of nodes consecutive by edges. O

For example, the division of the binary tree in Figure 1 introduces a terminal node x and three
segments denoted by dashed lines. The term terminal node is from the fact that the node
becomes a leaf in a newly introduced segment. A segment is not necessarily a subtree since
it may not have all the descendants in the original tree. It is worth remarking that all the
segments that appear in dividing a binary tree form binary trees.

We divide a binary tree recursively until each segment consists of only one node. Since a
division of a binary tree yields three segments, we represent the recursive division of a binary
tree as a ternary tree as shown in Figure 2. For each division of a segment, we insert a ternary
internal node and put the left-child segment, the parent segment, and the right-child segment
to the left child, the center child, and the right child of the ternary node, respectively. A leaf in



Figure 2. Recursive division of a binary tree and its ternary-tree representation.

the ternary-tree representation corresponds to a node in the original binary tree, and a subtree
in the ternary-tree representation corresponds to a segment that appears during the recursive
division.

We expect a ternary-tree representation to be defined in such a way that the original binary-
tree structure can be restored. The ternary-tree representation obtained by the procedure above
is not enough in this sense, since we cannot specify terminal nodes on the ternary tree. For
example in Figure 2, we cannot specify which of b or ¢ is the terminal node introduced at the
first division. One naive way to resolve this problem is to embed a pointer to the terminal node
in each internal node, but this formalization with pointers makes it hard to discuss properties
of the ternary-tree representation.

We associate a certain label to each internal node on ternary-tree representations to specify
terminal nodes. In principle we could divide a binary tree at any internal node, but if a segment
had more than one terminal node it would be difficult to represent precisely which one is used at
a division. Therefore, we impose a restriction that a segment should have at most one terminal
node. Note that we can obtain at least one division satisfying this restriction because dividing
a segment at the root always satisfies the restriction. Moreover, the division of binary tree is
still flexible enough, in the sense that we can obtain a balanced ternary tree for any binary tree.
The balance property and balancing algorithms are discussed in Section 3.

Under the restriction, we give the definition of the ternary-tree representation in which a
label is assigned to each node. For leaves of the ternary-tree representation, we assign TLeafL for
a leaf corresponding to a leaf in the original binary tree and TLeafN for a leaf corresponding to an
internal node in the original binary tree. For internal nodes of the ternary-tree representation,
we assign one of the following three labels.

e TNodeN (N in figures): The ternary subtree whose root node is TNodeN represents a
segment with no terminal node.

e TNodeL (L in figures): The ternary subtree whose root node is TNodel represents a
segment with a terminal node, and the terminal node is included in the left child segment
after division.
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Figure 3. An example of the ternary-tree representation.

e TNodeR (R in figures): The ternary subtree whose root node is TNodeR represents a
segment with a terminal node, and the terminal node is included in the right child segment
after division.

Figure 3 shows an example of the ternary-tree representation with these labels. In Figure 3,
the segment of nodes a, b, and ¢ has a terminal node b introduced by the first division, and
the terminal node b is included in the left segment after the second division. Therefore, the
corresponding subtree in the ternary-tree representation is rooted at node TNodelL. By using
labels, we can find the terminal node: for example, in Figure 3 the global binary tree is divided
at node b, which is given by traversing the ternary tree from the center child of the root to the
left child. Because of the restriction that a segment has at most one terminal node and the
fact that the parent segment always has a newly-introduced terminal node, the three labels of
internal nodes cover all the cases of the division.

Now we define the type of the ternary trees that represent binary trees of type BTree, g as
follows. The constructors TLeafL and TLeafN are for the leaves corresponding respectively to a
leaf and an internal node of the original tree; the constructors TNodel, TNodeN, and TNodeR
are for internal nodes.

TTree, 3 = Tleafl (o)
| TLeafN(3)
| TNodel (TTree, g, TTree, g, TTree, )
| TNodeN(TTree, g, TTree, g, T Tree, )
| TNodeR(TTree, g, TTree, g, TTree, )

If a ternary tree is given from recursive division of a binary tree, the labels of the ternary
tree should satisfy the following conditions. Since the original binary tree has no terminal
node before division, the root of a ternary tree should be TNodeN or TLeaflL. Since a new
terminal node is included in the parent segment for each division, and thus the center child of
each internal node should be either TNodelL, TNodeR or TLeafN. For an internal node labeled
TNodeN, its left-child and right-child subtrees represent segments without terminal nodes, and
they should be rooted at either TNodeN or TLeafL. For an internal node labeled TNodel, its
left-child subtree represents a segment with a terminal node and thus the left child should be
either TNodelL, TNodeR or TLeafN, while the right child should be labeled TNodeN or TLeafL.
The condition on TNodeR is symmetric to that on TNodeL.

In contrast, a ternary tree satisfying the conditions above represents a binary tree. For
a given correct ternary tree representing a binary tree, we can restore the original binary tree
using the following function ¢t2bt. The second and the third arguments of the auxiliary function
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Figure 4. Illustrating two ternary trees and the corresponding binary tree.

tt2bt’ indicate the left and the right subtrees of the terminal node, respectively.

tt2bt(TLeafl (a)) — Bleaf(a)
tt2bt(TNodeN(l, ¢, 7)) — 120t (c, tt2bt (1), tt2bt(r))

tt2bt’ (TLeafN(b), z, y) — BNode(z, b, y)
tt2bt' (TNodeL (I, ¢, 7), z,y) — tt2bt'(c, tt2bt' (1, x,y), tt2bt(r))
tt2bt' (TNodeR(l, ¢, 1), z,y) — tt2bt'(c, tt2bt(1), tt2bt' (r, z,y))

2.2 Equivalence of Ternary-Tree Representation

There are many ternary trees representing a binary tree due to the flexibility of the division of
the binary tree. For example, we can find five ternary trees representing the binary tree of seven
nodes in Figure 3. In the following of this section, we discuss the equivalence of the ternary-tree
representation from the viewpoint of local shape and labels.

As an example, consider a ternary tree whose root is TNodeN and its left child is also
TNodeN (Figure 4, left). Let a, b, ¢, d, and e denote ternary subtrees, then we can denote
such a tree as TNodeN(TNodeN(a, b, ¢),d, e). This ternary tree represents a binary tree whose
root segment d has two child segments b on the left and e on the right, and the segment b
has two child segments a on the left and ¢ on the right (Figure 4, center). The ternary tree
TNodeN(TNodeN(a, b, c), d, e) represents the binary tree with the division at the terminal node
in d followed by the division at the terminal node in b. In fact, we can swap the divisions, that is,
we divide the tree at the terminal node in b and then divide the parent segment at the terminal
node in d. This sequence of divisions yields another ternary tree TNodeN(a, TNodeL (b, d, ¢e), c)
(Figure 4, right). Since the two ternary trees represent the same binary tree, the following
equation should hold. Here, we write & =9 y if two ternary trees x and y represent the same
binary tree, that is, (z =y y) < (tt20t(x) = tt2bt(y)).

TNodeN(TNodeN(a, b, ¢}, d, €) =425; TNodeN(a, TNodeL (b, d, €), c) (1)

By examining the possible local structures in the same way, we obtain five more equations.

TNodeN(a, b, TNodeN(c, d, €)) =25; TNodeN(c, TNodeR(a, b, d), €) (2)
TNodeL (TNodelL (a, b, ¢}, d, e) =425+ TNodel (a, TNodelL (b, d, ), c) (3)
TNodeR(a, b, TNodeL (¢, d, e)) =425+ TNodeL (¢, TNodeR(a, b, d), €) (4)
TNodeL (TNodeR(a, b, ¢), d, e) =495: TNodeR({a, TNodeL (b, d, ¢), ¢) (5)
TNodeR(a, b, TNodeR(c, d, €)) =425+ TNodeR(c, TNodeR(a, b, d), €) (6)

We have in total six equations, which are illustrated in Figure 5. We do not have equations
for two forms, TNodel (a,b, TNodeN(c, d, e)) and TNodeR(TNodeN(a, b, c),d, ), due to the re-
striction that a segment has at most one terminal node. These two forms are illustrated in
Figure 6.



The six equations

Figure 5.
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Figure 6. Two local forms that have no equation with another form. A dot in a
segment denotes a terminal node.
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3 Balancing Algorithms for Ternary-Tree Representation

In this section, we propose and discuss two algorithms for generating ternary trees statically
from binary trees and one algorithm for dynamically rebalancing the ternary-tree representation.

On the analysis of the algorithms, we use the Fibonacci numbers F; defined as Fy = 0,
Fr=1F,=F,_1+F;,_5 (i<2)and F_; = 1. A well-known approximation for the Fibonacci
numbers is F; ~ o'/v/5 where a = (1 + 1/5)/2, where the error is less than 1 and decreases
exponentially as ¢ increases.

3.1 Static Balancing Algorithms

In Section 2, we formalized the ternary-tree representation from recursive division of binary
trees. The recursive division generates a ternary tree in a top-down manner since a division of a
segment specifies the root of the corresponding ternary tree. To obtain a well-balanced ternary
tree, we should find a node so that the three segments after division have almost the same size,
but finding such a node with small cost is not so easy. We here develop two algorithms, which
generate a balanced ternary tree representing a given binary tree in a bottom-up manner in the
sense that the ternary tree is constructed from leaves.

Sequential Algorithm The algorithm consists of two main steps. First, we put label TLeafL
for each leaf node and label TLeafN for each internal node in the given binary tree. Then, we
iteratively merge three adjacent nodes into one assigning a ternary internal node. To keep the
global shape to be binary, we merge a node and its two children only if at least one child is
a leaf. If either of the children is an internal node, then the node will be merged again later,
and therefore, this node can be dealt with as a terminal node of the merged segment. Based on
this observation, we assign labels by the following rules when we merge three nodes. Figure 7
illustrates these local merges.

e TNodeN is assigned if both children are leaves.
e TNodel is assigned if the left child is an internal node and the right child is a leaf.

e TNodeR is assigned if the right child is an internal node and the left child is a leaf.
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Figure 7. Three local merge operations and labels assigned.
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We obtain a ternary tree representing the given binary tree by applying these merges repeat-
edly until the global binary tree has only one node. To make the ternary tree balanced, we
apply disjoint merges as many as possible in one step of the iteration. A greedy algorithm for
transforming a binary tree into a balanced ternary tree is given as follows.

Algorithm 1 (Greedy Generation of Balanced Ternary-Tree Representation)
Input: A binary tree.

Output: A ternary tree representing the input binary tree.

Procedure:

1. Put label TLeafL to each leaf and label TLeafN to each internal node.
2. Iterate the following Steps 2.1 and 2.2 until the global tree has only one node.

2.1 Mark internal nodes each of which has at least one leaf as its child as many as possible
in such a way that no two adjacent internal nodes are marked.

2.2 Apply one of the merge operations in Figure 7 to each of the internal nodes marked
in the previous step.

3. The ternary-tree representation is given as the value of the remaining node. O

The ternary-tree representation given by Algorithm 1 is optimal in the sense of the height
as the following lemma states.

Lemma 1 Algorithm 1 returns a ternary tree of the minimum height among those representing
the input binary tree.

Proof. First of all, if in Step 2.1 we can mark a node without any change to other marks,
then obviously marking the node does not yield a taller ternary tree. Therefore, we prove the
lemma by showing that any set of marked nodes at Step 2.1 yields an optimal ternary-tree
representation if the number of marked nodes is maximum. Here two facts are worth noting:
If an internal node, say x, has two internal nodes as its children then the node x must not be
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Figure 8. A normalized segment and merge operations to it.

marked at Step 2.1; swapping left and right subtrees of a binary tree does not affect the height
of the ternary-tree representation given by the algorithm.

From the first fact, we consider a segment that excludes internal nodes that have two internal
nodes as children. From the second fact, we can normalize such a segment into that shown in
Figure 8, where the right child of an internal node is a leaf. The result shape after Step 2.2
for the normalized segment is determined only by the number of merge operations. From the
discussion above, we can conclude that we can choose any set of marked nodes at Step 2.1 and
obtain an optimal balanced ternary-tree representation. O

We then show the upper bound of the height of the balanced ternary-tree representation.
Lemma 2 If the height of a ternary tree given by Algorithm 1 is h, then the original binary
tree has at least 2F} 11 — 1 nodes.

Proof. Let ny be the minimum number of nodes of the binary tree from which a ternary-tree
representation of height h is given, and ay, 2b,, and ¢;, be the numbers of internal nodes, twin
leaves, and the other leaves in nj. By definition, we have nj, = ap, + 2b, + ¢y,.

We observe the following three facts:

(a) If an internal node exists after Step 2.2 then the node itself is unmarked in the previous
Step 2.1. The parent node, if exists, may be marked though.

(b) If twin leaves of a node exist after Step 2.2, then at least one leaf is given by a merge
operation.

(¢) The other leaves should be come from a merge operation.

Based on the observation above, we have the following recurring equations.

ar =0 apr1 = ap+ by +cp
b1 =0 bh1 = by +cn
cp=1 Chy1 = bn

By simple calculations, we have b, = Fj, 1, ¢, = Fj,_9, and aj, = Fj 11 — 1. Substituting these
results, we have np, = Fjo1 — 1+ 2Fp 1 + Fp_o = 2Fp41 — 1. O



Lemma 3 Let the input tree is a binary tree of n nodes. The maximum height of the ternary-
tree representation given by Algorithm 1 is 1.441logn.

Proof. From Lemma 2 and the approximation of Fibonacci numbers F; ~ o'/y/5 where o =
(1++/5)/2, we have

1
np =241 —-1= — a4 e

V5

where c¢ is a small constant. By taking the logarithm of both sides, we have

1
h = (logny —c) + ¢ ~ 1.44logny,
log v

where ¢ is a small constant, and the lemma holds. O

Parallel Algorithm The three merge operations in Figure 7 are applied to internal nodes
that have at least one leaf as its child. In this sense, they are in fact the tree contracting
operations used in the parallel tree contraction algorithm proposed by Abrahamson et al. [1],
which is also called the SHUNT contraction in [10]. By simulating the parallel tree contraction
algorithm, we can obtain a balanced ternary tree efficiently in parallel.

Algorithm 2 (Parallel Generation of Balanced Ternary-Tree Representation)
Input: A binary tree.

Output: A ternary tree representing the input binary tree.

Procedure:

1. Apply TLeafL for each leaf and TLeafN for each internal node.
2. Number all the leaves from left to right starting at 1.
3. Apply 3.1-3.3 for [logn] times.

3.1 For each odd-numbered left leaf, apply a merge operation to its parent.
3.2 For each odd-numbered right leaf, apply a merge operation to its parent.
3.3 Halve all the numbers on leaves. O

We briefly show the computation time and the height of the ternary-tree representation
given by Algorithm 2.

Lemma 4 Let n be the number of nodes of the input binary tree. Algorithm 2 runs in O(n/p+
log p) time on an EREW PRAM with p processors.

Proof. We can compute Step 1 easily in parallel in O(n/p) time. We can implement Steps 2
and 3 by simulating the SHUNT contraction algorithm [1]. We can implement Step 2 by using
the Euler-tour technique [10] and the cost is O(n/p + logp). Since the merge operations can
be applied in constant time, we can computes Step 3 in O(n/p + logp) time. Thus, the overall
computation time is O(n/p + logp). O

Lemma 5 Letn be the number of nodes of the input binary tree. The height of the ternary-tree
representation given by Algorithm 2 is at most 2[logn] + 1.

Proof. After Step 1, each node of the binary tree has a ternary tree of height one. For each
iteration of Step 3, If a node is involved in the merge operations at both Steps 3.1 and 3.2, then
the height of the ternary-tree representation increases by two. Otherwise, the height increases by
one. Since the number of iterations of Step 3 is [logn|, we have the ternary-tree representation
of height at most 2[logn] + 1. O

10



3.2 Dynamic Balancing Algorithm

AVL trees [2] are well-known implementations of binary search trees with a dynamic rebalancing
algorithm. In AVL trees for every internal node the heights of the two child subtrees differ at
most one. Inspired by the AVL trees, we propose a dynamic rebalancing algorithm for the
ternary-tree representation based on the local transformation given in Figure 5.

We first discuss criteria of the balanced ternary-tree representation. Here, we should note
that two differences between the ternary-tree representation and the binary search trees, that
is, the number of children and the existence of local shapes without local transformations.

By examining divisions of binary trees, we can soon find that it is impossible to divide a
binary tree so that the three segments are of almost the same size. For example, given a fully
ill-balanced binary tree in Figure 8, at least one segment after division has only one node.
Therefore, we consider a looser criterion that the heights of the largest two ternary subtrees
differ at most one. This criterion is still not sufficient for our purpose, since the ternary-tree
representation has two local shapes that cannot be transformed as we want (Figure 6). For
such cases, we here simply abandon to rebalance the subtrees. Instead of the usual height of
the ternary trees, we consider the following function height’. This function does not increases
the value if the local shape without transformation is the largest.

height'(TLeafL (a)) = 1
height' (TLeafN (b)) = 1
height'(TNodeN(l, n,r)) = 1 + (height' (1) T height'(n) 1 height'(r))
height'( )

TNodeL (I, n, 7)) = if height'(r) > height' (1) T height'(n)

then height'(r) else 1+ (height'(1) 1 height'(n))
height'(TNodeR(l, n,r)) = if height'(l) > height'(n) 1 height'(r)
then height'(1) else 1 + (height'(n) 1 height' (1))

With this function height’, we define a criterion for the dynamic rebalancing of the ternary-tree
representation as follows.

Definition 3 (Fairly Balanced Ternary-Tree Representation) A ternary tree is said to
be fairly balanced, if the following two hold.

e The values of height’ of the largest two segments differ at most one.
e The above property holds recursively on the largest two subtrees. O

It is worth remarking that the criterion in Definition 3 states nothing for the smallest subtree.

Based on the criterion for the balanced ternary-tree representation, we can develop a dy-
namic rebalancing algorithm as follows. Recall that the nodes of binary trees correspond to
leaves on the ternary-tree representation. Therefore, we have only to consider the case where
addition or deletion of nodes are done on the leaves of the ternary-tree representation. In the
following algorithm, for an internal node a, a.l, a.c, and a.r denote the left, center, and right
subtrees of the node, respectively.

11



Algorithm 3 (Dynamic Rebalancing of the Ternary-Tree Representation)
Input: A fairly balanced ternary tree, and node = to which addition or deletion is done.
Output: A rebalanced ternary tree.

Procedure:

1. Set a pointer a to node x.

2. (single rotation, from center)
If height'(a.c) > 1 + (height'(a.l) 1 height'(a.r))
then apply a center-to-left/right transformation. (Figure 9)

3. Do one of the following.

3.1. (Single rotation, from left)
If height'(a.l) > 1 + (height'(a.c) 1 height’(a.r)),
height'(a.l.c) < height'(a.l.l) 1 height'(a.l.r), and
the label of a is not TNodeR,
then apply a left-to-center transformation. (Figure 10)
3.2. (Double rotation, from left)
If height'(a.l) > 1 + (height'(a.c) T height'(a.r)),
and height’ (a.l.c) > height'(a.l.l) T height'(a.l.r), and
the label of a is not TNodeR,
then apply a center-to-left /right transformation followed by a left-to-center transfor-
mation. (Figure 11)
3.3. (Single rotation, from right)
If height'(a.r) > 1+ (height'(a.c) 1 height'(a.l)),
height' (a.r.c) < height'(a.r.l) T height'(a.r.r), and
the label of a is not TNodelL,
then apply a right-to-center transformation.
3.4. (Double rotation, from right)
If height'(a.r) > 1+ (height'(a.c) T height'(a.l)),
height (a.r.c) > height’(a.r.l) T height'(a.r.r), and
the label of a is not TNodelL,
then apply a center-to-left /right transformation followed by a right-to-center trans-
formation.

3.5 Otherwise, do nothing at node a.

4. If a points to the root then end the procedure, or set a to its parent and continue from
Step 2.

The dynamic rebalancing algorithm (Algorithm 3) keeps the ternary-tree representation
fairly balanced as the following lemma states.

Lemma 6 The output of Algorithm 3 is a fairly balanced ternary tree.

Proof. Addition or deletion of a pair of nodes increases or decreases the value of height’ at most
one. Therefore, if the criterion of balance property is broken then the difference of the value
of height’ will be two. As seen in Figures 9, 10, and 11, if the difference of heights is two we
can rebalance the ternary tree so that the difference is at most one. Figures 9, 10, 11 and their
(partial) symmetries cover all the cases to which we can apply local transformations.

The remaining problem is about the cases without local transformations. We defined the
function height’ so that it works as a buffer. If the difference becomes larger than the buffer,
then we rebalance the ternary tree by applying the transformations to the parent. Here, note

12
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Figure 9. A single rotation from center when the center child of the root is too large.
The labels of internal nodes will be determined properly from the rules of
the local transformation. If the subtree a is the largest among the siblings
then we require another rotation to keep the ternary tree balanced.
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Figure 10. A single rotation from the left to center, when the left subtree of the left
child of the root is the cause of ill-balance. The labels of the internal
nodes will be determined properly from the rules of the local transfor-
mation.
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Figure 11. A double rotation from the left to the center, when the center subtree
of the left child of the root is the cause of ill-balance. The labels of the
internal nodes will be determined properly from the rules of the local
transformations.

h+1
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Table 1. The numbers of occurrences plotted with respect to the height of the
ternary trees rebalanced (horizontal) and the optimal height (vertical).

(a) Insertions to the leaves. (b) Insertions to the deepest nodes.

21 22 23 24 21 22 23 24
21 43 6 21 2 8 6
22 2759 6454 8 22 47 3911 5492
23 728 2 23 159 357
24 24

that for each local shape without transformations, we can always apply the transformations to
the parent node.
Summarizing the discussion so far, we can prove the lemma. a

Lemma 7 If a ternary tree representing a binary tree of n nodes is fairly balanced, then the
height of the ternary-tree representation is at most 2.881ogn.

Proof. Let n; be the minimum number of leaves in a ternary-tree representation whose value
of height' is k. Since the balanced property is given by choosing the largest two subtrees,
we have the recurring equation: nqy = 1, ng = 3, np = ngp_1 + nk_s + 1. By solving this
recurring equation, we have ny = 2F),1 — 1. Note that the actual height h of the ternary-tree
representation is smaller than the twice of the value of height’. With the approximation of the
Fibonacci numbers, we have

2
h < 2k ~ Zlog(ny+c)—c =~ 2.88logn
!
where ¢ and ¢’ are small constants, and the lemma holds. O

From the Lemma 7, we can keep the balanced ternary-tree representation to be not taller
than twice of the optimal height. In fact, we can keep the ternary-tree representation well
balanced in practical settings, as shown in the following section.

4 Experiments

To examine the dynamic rebalancing algorithm really keeps the ternary-tree representation to
be balanced, we have made small experiments. In the experiments, we randomly generated
10,000 binary trees of 220 — 1 nodes. The generation of trees is done by the following two ways:
(a) Select a leaf of the corresponding binary tree, and add two leaves to it; (b) Select one of
the deepest leaves in the ternary-tree representation, and add two nodes. We iterate addition
of nodes followed by a single application of the dynamic rebalancing algorithm (Algorithm 3).

Table 1 shows the numbers of occurrences with respect to the height of the ternary tree
obtained by the dynamic rebalancing algorithm and the optimal height of the balanced ternary
tree for the same binary tree. As we can read from the experiment results, the dynamic rebal-
ancing algorithm generates a quite balanced ternary trees. For the randomly-generated trees,
almost all the ternary trees balanced by the algorithm have height equal to or larger by one
than the optimal. The average numbers of application of transformations (we count two for a
double rotation) are 212,367 for case (a) and 840,764 for case (b). From these experimental
results, we can conclude that the dynamic rebalancing algorithm works well.
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5 Related Work

The basic idea to represent a tree with a balanced tree structure is not a new invention of this
paper. The idea is also used in balanced decomposition trees [3, 6], which is given based on
recursive removal of edges from a tree, and Fujiwara et al. [6] studied parallel generation of
balanced decomposition trees. The most important difference between our ternary-tree repre-
sentation and the decomposition trees is that the original tree structure can be restored or not.
The decomposition trees drop some information of the original structures, and therefore they
only accept a limited class of computation that includes applications in the computational ge-
ometry [3]. On the other hand, the ternary-tree representation keeps all the information needed
in restoring the original structure and thus we can perform any computation on it.

In this paper, we formalized the ternary-tree representation based on recursive division of
binary trees. In fact, we can consider that the ternary-tree representation is a computation
tree of the parallel tree contraction algorithm proposed by Abrahamson et al. [1]. Parallel
tree contraction is the tree-version pointer jumping (shortcutting) algorithm and the idea was
first proposed by Miller and Reif [7]. The algorithm by Abrahamson et al. [1] is a simple and
practical one for binary trees on EREW PRAMSs. A ternary-tree representation corresponds to
the scheduling of computations in the tree contraction, and the rebalancing can be considered
as the rescheduling. In this sense, the ternary-tree representation can be used for parallel
computation of dynamically shape-changing binary trees.

In Section 3, we showed the optimal height of the ternary-tree representation, 1.44log n,
for a binary tree of n nodes. This result was already given by Plandowski et al. [8]. We also
show an upper bound of the height of the dynamically balanced ternary-tree representation,
but there may be some room of improving the difference from the optimal height.

6 Conclusion

In this paper, we have proposed the novel representation of binary trees, namely the balanced
ternary-tree representation. We formalized the ternary-tree representation based on flexible
division of binary trees, and discussed the equivalence of ternary-tree representations from the
viewpoint of local labels assigned to the ternary internal nodes. For any binary tree, balanced or
ill-balanced, we can obtain a balanced ternary-tree representation by using sequential or parallel
algorithms, and furthermore we can rebalance the ternary-tree representation after addition or
deletion of nodes. Based on this balanced property, we can use the ternary-tree representation
for efficient parallel computation on binary trees.

Our future work includes to develop a better rebalancing algorithm that keeps the ternary-
tree representation more balanced, and to implement the balanced data structure as a library.
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A A Larger Example of The Ternary-Tree Representation

Figure 12. A larger binary tree. The number of nodes is 39 and the height is ten.
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Figure 13. A ternary tree representing the binary tree in Figure 12, which is given by the greedy balancing algorithm (Algorithm 1).
The height of the ternary tree is six. This ternary tree is not fairly balanced since the heights of three subtrees of the grayed
node differ by two.
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Figure 14. A fairly balanced ternary tree representing the binary tree in Figure 12, which is given from Figure 13 by a single rotation.
Note that the value of height’ of the subtree rooted at the grayed node is three, even though the actual height is four. For
the other nodes, the values of height’ are the same as the heights, respectively.
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