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1 Introduction

This paper describes recent developments in discrete convex analysis. Par-
ticular emphasis is laid on natural introduction of the classes of L-convex
and M-convex functions in discrete and continuous variables. Expansion
of the application areas is demonstrated by recent connections to submod-
ular function maximization, finite metric space, eigenvalues of Hermitian
matrices, discrete fixed point theorem, and matching games.

Discrete convex analysis [59, 62, 63] is aimed at establishing a general
theoretical framework for solvable discrete optimization problems by means
of a combination of the ideas in continuous optimization and combinatorial
optimization. The framework of convex analysis is adapted to discrete set-
tings and the mathematical results in matroid/submodular function theory
are generalized. Viewed from the continuous side, it is a theory of con-
vex functions f : Rn → R that have additional combinatorial properties.
Viewed from the discrete side, it is a theory of discrete functions f : Zn → R
or f : Zn → Z that enjoy certain nice properties comparable to convexity.
Symbolically,

Discrete Convex Analysis = Convex Analysis + Matroid Theory.

The theory extends the direction set forth by J. Edmonds, A. Frank, S.
Fujishige, and L. Lovász [16, 23, 24, 52]; see also [25, Chapter VII]. The
reader is referred to [77] for convex analysis, [10, 49, 79] for combinatorial
optimization, [75, 76, 94] for matroid theory, and [25, 74, 91] for submodular
function theory.

Two convexity concepts, called L-convexity and M-convexity, play pri-
mary roles. L-convex functions and M-convex functions are conjugate to
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tion (W. Cook, L. Lovász, J. Vygen, eds.), Springer-Verlag, Berlin, 2009. The original
publication will be available at http://www.springer.com/978-3-540-76795-4.
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each other through the (continuous or discrete) Legendre–Fenchel transfor-
mation. L-convex functions and M-convex functions generalize, respectively,
the concepts of submodular set functions and base polyhedra. It is noted
that “L” stands for “Lattice” and “M” for “Matroid.”

The contents of this paper are as follows. The first part, Sections 2 to
5, presents the fundamental facts with some new observations, whereas the
second part, Sections 6 to 10, deals with recent topics.

Section 1: Introduction
Section 2: Concepts of Discrete Convex Functions
Section 3: Conjugacy
Section 4: Examples
Section 5: Separation and Fenchel Duality
Section 6: Submodular Function Maximization
Section 7: Finite Metric Space
Section 8: Eigenvalue of Hermitian Matrices
Section 9: Discrete Fixed Point Theorem
Section 10: Stable Marriage and Assignment Game

The set of all real numbers is denoted by R, and R = R ∪ {+∞} and
R = R∪{−∞}. The set of all integers is denoted by Z, and Z = Z∪{+∞}
and Z = Z ∪ {−∞}. Let V = {1, 2, . . . , n} for a positive integer n. The
characteristic vector of X ⊆ V is denoted by χX ∈ {0, 1}n. For i ∈ V , we
write χi for χ{i}, which is the ith unit vector, and χ0 = 0 (zero vector).

2 Concepts of Discrete Convex Functions

The concepts of L-convex and M-convex functions can be obtained through
discretization of two different characterizations of convex functions.

2.1 Ordinary Convex Functions

We start by recalling the definition of ordinary convex functions. A function
f : Rn → R is said to be convex if

λf(x) + (1 − λ)f(y) ≥ f(λx + (1 − λ)y) (2.1)

for all x, y ∈ Rn and for all λ with 0 ≤ λ ≤ 1, where it is understood
that the inequality is satisfied if f(x) or f(y) is equal to +∞. A function
h : Rn → R is said to be concave if −h is convex.

A set S ⊆ Rn is called convex if, for any x, y ∈ S and 0 ≤ λ ≤ 1, we
have λx + (1 − λ)y ∈ S. The indicator function of a set S is a function
δS : Rn → {0,+∞} defined by

δS(x) =
{

0 (x ∈ S),
+∞ (x 6∈ S).

(2.2)
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Then S is a convex set if and only if δS is a convex function.
For a function f : Rn → R ∪ {−∞, +∞} in general, the set

domRf = {x ∈ Rn | f(x) ∈ R}

is called the effective domain of f . A point x ∈ Rn is said to be a global
minimum of f if the inequality f(x) ≤ f(y) holds for every y ∈ Rn. Point x
is a local minimum if this inequality holds for every y in some neighborhood
of x. The set of global minima (minimizers) is denoted as

argminRf = {x ∈ Rn | f(x) ≤ f(y) (∀y ∈ Rn)}.

Convex functions are tractable in optimization (or minimization) prob-
lems and this is mainly because of the following properties.

1. Local optimality (or minimality) guarantees global optimality.

2. Duality theorems such as min-max relation and separation hold.

Duality is a central issue in convex analysis, and is discussed in Section 5.
A separable convex function is a function f : Rn → R that can be

represented as

f(x) =
n∑

i=1

ϕi(xi), (2.3)

where x = (xi | i = 1, . . . , n) and ϕi : R → R (i = 1, . . . , n) are univariate
convex functions.

2.2 Discrete Convex Functions

We now consider how convexity concept can (or should) be defined for func-
tions in discrete variables. It would be natural to expect the following prop-
erties of any function f : Zn → R that is qualified as a “discrete convex
function.”

1. Function f is extensible to a convex function on Rn.

2. Local optimality (or minimality) guarantees global optimality.

3. Duality theorems such as min-max relation and separation hold.

Recall that f : Zn → R is said to be convex-extensible if there exists a
convex function f : Rn → R such that f(x) = f(x) for all x ∈ Zn. It is
widely understood that convex extensibility alone does not yield a fruitful
theoretical framework, which fact motivates us to introduce L-convex and
M-convex functions. In this section we focus on convex extensibility and
local optimality while deferring duality issues to Section 5. The effective
domain and the set of minimizers are denoted respectively as

domZf = {x ∈ Zn | f(x) ∈ R},
argminZf = {x ∈ Zn | f(x) ≤ f(y) (∀y ∈ Zn)}.
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2.2.1 Univariate and separable convex functions

The univariate case (n = 1) is simple and straightforward. We may regard
a function f : Z → R as a discrete convex function if

f(x − 1) + f(x + 1) ≥ 2f(x) (∀x ∈ Z). (2.4)

This is justified by the following facts.

Theorem 2.1. A function f : Z → R is convex-extensible if and only if it
satisfies (2.4).

Theorem 2.2. For a function f : Z → R satisfying (2.4), a point x ∈
domZf is a global minimum if and only if it is a local minimum in the sense
that

f(x) ≤ min{f(x − 1), f(x + 1)}.

Theorems 2.1 and 2.2 above can be extended in obvious ways to a sep-
arable (discrete) convex function f : Zn → R, which is, by definition, rep-
resentable in the form of (2.3) with univariate functions ϕi : Z → R having
property (2.4).

2.2.2 L-convex functions

We explain the concept of L-convex functions [59] by featuring an equivalent
variant thereof, called L\-convex functions [26] (“L\” should be read “el
natural”).

We first observe that a convex function g on Rn satisfies

g(p) + g(q) ≥ g

(
p + q

2

)
+ g

(
p + q

2

)
(p, q ∈ Rn), (2.5)

which is a special case of (2.1) with λ = 1/2. This property, called midpoint
convexity, is known to be equivalent to convexity if g is a continuous function.

For a function g : Zn → R in discrete variables the above inequality does
not always make sense, since the midpoint p+q

2 of two integer vectors p and
q may not be integral. Instead we simulate (2.5) by

g(p) + g(q) ≥ g

(⌈
p + q

2

⌉)
+ g

(⌊
p + q

2

⌋)
(p, q ∈ Zn), (2.6)

where, for z ∈ R in general, dze denotes the smallest integer not smaller
than z (rounding-up to the nearest integer) and bzc the largest integer not
larger than z (rounding-down to the nearest integer), and this operation is
extended to a vector by componentwise applications, as illustrated in Fig. 1
in the case of n = 2. We refer to (2.6) as discrete midpoint convexity.

We say that a function g : Zn → R is L\-convex if it satisfies discrete
midpoint convexity (2.6). In the case of n = 1, L\-convexity is equivalent to
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図 1: 離散中点凸性
Figure 1: Discrete midpoint convexity

p1

p2

g(p)

Figure 2: An L\-convex function (n = 2)
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the condition (2.4). A concrete example of an L\-convex function (n = 2) is
shown in Fig. 2. Examples of L\-convex functions are given in Section 4.1.

With this definition we can obtain the following desired statements in
parallel with Theorems 2.1 and 2.2.

Theorem 2.3. An L\-convex function g : Zn → R is convex-extensible.

Theorem 2.4. For an L\-convex function g : Zn → R, a point p ∈ domZg
is a global minimum if and only if it is a local minimum in the sense that

g(p) ≤ min{g(p − q), g(p + q)} (∀q ∈ {0, 1}n). (2.7)

Although Theorem 2.4 affords a local criterion for global optimality of
a point p, a straightforward verification of (2.7) requires O(2n) function
evaluations. The verification can be done in polynomial time as follows. We
consider set functions ρ+

p and ρ−p defined by ρ±p (Y ) = g(p ± χY ) − g(p) for
Y ⊆ V , both of which are submodular. Since (2.7) is equivalent to saying
that both ρ+

p and ρ−p achieve the minimum at Y = ∅, this condition can be
verified in polynomial time by submodular function minimization algorithms
[36].

L\-convexity is closely related with submodularity. For two vectors p
and q, the vectors of componentwise maxima and minima are denoted re-
spectively by p ∨ q and p ∧ q, that is,

(p ∨ q)i = max(pi, qi), (p ∧ q)i = min(pi, qi).

A function g : Zn → R is called submodular if

g(p) + g(q) ≥ g(p ∨ q) + g(p ∧ q) (p, q ∈ Zn), (2.8)

and translation submodular if

g(p) + g(q) ≥ g((p−α1)∨ q) + g(p∧ (q + α1)) (α ∈ Z+, p, q ∈ Zn), (2.9)

where 1 = (1, 1, . . . , 1) and Z+ denotes the set of nonnegative integers. The
latter property characterizes L\-convexity, as follows.

Theorem 2.5. For a function g : Zn → R, translation submodularity (2.9)
is equivalent to discrete midpoint convexity (2.6).

An L-convex function is defined as an L\-convex function g that satisfies

g(p + 1) = g(p) + r (2.10)

for some r ∈ R (which is independent of p). It is known that g is L-convex
if and only if it satisfies (2.8) and (2.10); in fact this is the original definition
of L-convexity. L-convex functions and L\-convex functions are essentially
the same, in that L\-convex functions in n variables can be identified, up to
the constant r in (2.10), with L-convex functions in n + 1 variables.
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図 1: 凸関数の性質（等近凸性）

Figure 3: Equidistance convexity

2.2.3 M-convex functions

Just as L-convexity is defined through discretization of midpoint convexity,
another kind of discrete convexity, called M-convexity [57, 59], can be de-
fined through discretization of another convexity property. We feature an
equivalent variant of M-convexity, called M\-convexity [67] (“M\” should be
read “em natural”).

We first observe that a convex function f on Rn satisfies the inequality

f(x) + f(y) ≥ f(x − α(x − y)) + f(y + α(x − y)) (2.11)

for every α ∈ R with 0 ≤ α ≤ 1. This inequality follows from (2.1) for
λ = α and λ = 1 − α, whereas it implies (2.1) if f is a continuous function.
The inequality (2.11) says that the sum of the function values evaluated at
two points, x and y, does not increase if the two points approach each other
by the same distance on the line segment connecting them (see Fig. 3). We
refer to this property as equidistance convexity.

For a function f : Zn → R in discrete variables we simulate equidistance
convexity (2.11) by moving a pair of points (x, y) to another pair (x′, y′)
along the coordinate axes rather than on the connecting line segment. To
be more specific, we consider two kinds of possibilities

(x′, y′) = (x − χi, y + χi) or (x′, y′) = (x − χi + χj , y + χi − χj) (2.12)

with indices i and j such that xi > yi and xj < yj ; see Fig. 4. For a vector
z ∈ Rn in general, define the positive and negative supports of z as

supp+(z) = {i | zi > 0}, supp−(z) = {j | zj < 0}.

Then the expression (2.12) can be rewritten compactly as (x′, y′) = (x −
χi + χj , y + χi − χj) with i ∈ supp+(x − y) and j ∈ supp−(x − y) ∪ {0},
where χ0 is defined to be the zero vector.
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x1

x2

f(x)

Figure 5: An M\-convex function (n = 2)

As a discrete analogue of equidistance convexity (2.11) we consider the
following condition: For any x, y ∈ domZf and any i ∈ supp+(x − y), there
exists j ∈ supp−(x − y) ∪ {0} such that

f(x) + f(y) ≥ f(x − χi + χj) + f(y + χi − χj), (2.13)

which is referred to as the exchange property. A function f : Zn → R
having this exchange property is called M\-convex. In the case of n = 1,
M\-convexity is equivalent to the condition (2.4). A concrete example of
an M\-convex function (n = 2) is shown in Fig. 5. Examples of M\-convex
functions are given in Section 4.2.

With this definition we can obtain the following desired statements com-
parable to Theorems 2.1 and 2.2.

Theorem 2.6. An M\-convex function f : Zn → R is convex-extensible.

Theorem 2.7. For an M\-convex function f : Zn → R, a point x ∈ domZf
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〈Continuous Variables〉 〈Discrete Variables〉
f : Rn → R f : Zn → R

midpoint convex −→ discrete midpoint convex (L\-convex)
m [discretization]

(ordinary) convex
m [discretization]

equidistance convex −→ exchange property (M\-convex)
discrete midpoint convex: f(x) + f(y) ≥ f

(⌈
x+y

2

⌉)
+ f

(⌊
x+y

2

⌋)
midpoint convex: f(x) + f(y) ≥ 2 f

(
x+y

2

)
(ordinary) convex: λf(x) + (1 − λ)f(y) ≥ f(λx + (1 − λ)y)
equidistance convex: f(x) + f(y) ≥ f(x − α(x − y)) + f(y + α(x − y))
exchange property: f(x) + f(y) ≥ min[f(x − χi) + f(y + χi),

min
xj<yj

{f(x − χi + χj) + f(y + χi − χj)}]

Figure 6: Definitions of L\-convexity and M\-convexity by discretization

is a global minimum if and only if it is a local minimum in the sense that

f(x) ≤ f(x − χi + χj) (∀i, j ∈ {0, 1, . . . , n}).

An M-convex function is defined as an M\-convex function f that satisfies
(2.13) with j ∈ supp−(x − y). This is equivalent to saying that f is an M-
convex function if and only if it is M\-convex and domZf ⊆ {x ∈ Zn |∑n

i=1 xi = r} for some r ∈ Z. M-convex functions and M\-convex functions
are essentially the same, in that M\-convex functions in n variables can be
obtained as projections of M-convex functions in n + 1 variables.

2.2.4 Classes of discrete convex functions

We have thus defined L\-convex functions and M\-convex functions by dis-
cretization of midpoint convexity and equidistance convexity, respectively.
The definitions are summarized in Fig. 6.

Figure 7 shows the classes of discrete convex functions we have intro-
duced. L\-convex functions contain L-convex functions as a special case.
The same is true for M\-convex and M-convex functions. By Theorems 2.3
and 2.6 both L\-convex functions and M\-convex functions are contained
in the class of convex-extensible functions. It is known that the classes
of L-convex functions and M-convex functions are disjoint, whereas the in-
tersection of the classes of L\-convex functions and M\-convex functions is
exactly the class of separable convex functions.
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Fig. 1. Classes of discrete convex functions
(M♮-convex ∩ L♮-convex = separable convex)

Figure 7: Classes of discrete convex functions
(L\-convex ∩ M\-convex = separable convex)

2.2.5 Discrete convex sets

In the continuous case the convexity of a set S ⊆ Rn can be characterized
by that of its indicator function δS as

S is a convex set ⇐⇒ δS is a convex function.

We make use of this relation to define the concepts of discrete convex sets.
For a set S ⊆ Zn the indicator function of S is a function δS : Zn → R

given by (2.2). L\-convex sets and M\-convex sets are defined as

S is an L\-convex set ⇐⇒ δS is an L\-convex function,

S is an M\-convex set ⇐⇒ δS is an M\-convex function.

Similarly for the definitions of L-convex and M-convex sets. We have S =
S ∩Zn for an L\-convex (M\-convex, L-convex or M-convex) set S, where S
denotes the convex hull of S.

For an L\-convex function f , both domZf and argminZf are L\-convex
sets. This statement remains true when L\-convexity is replaced by M\-
convexity, L-convexity or M-convexity.

2.3 Discrete Convex Functions in Continuous Variables

So far we have been concerned with the translation from “continuous” to
“discrete.” We have defined L-convex and M-convex functions by discretiza-
tion of midpoint convexity and equidistance convexity, respectively. Al-
though these two properites are both equivalent to (ordinary) convexity for
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continuous functions in continuous variables, their discrete versions have
given rise to different concepts (cf. Fig. 6).

We are now interested in the reverse direction, from “discrete” to “con-
tinuous,” to define the concepts of L-convex and M-convex functions in con-
tinuous variables [68, 69, 70]. In so doing we intend to capture certain classes
of convex functions with additional combinatorial structures. We refer to
such functions as discrete convex functions in continuous variables. This
may sound somewhat contradictory, but the adjective “discrete” indicates
the discreteness in direction in the space Rn of continuous variables.

2.3.1 L-convex functions

L\-convex functions in discrete variables have been introduced in terms of
a discretization of midpoint convexity. By Theorem 2.5, however, we can
alternatively say that L\-convex functions are those functions which satisfy
translation submodularity (2.9).

This alternative definition enables us to introduce the concept of L\-
convex functions in continuous variables. That is, a convex function g :
Rn → R is defined to be L\-convex if

g(p)+g(q) ≥ g((p−α1)∨q)+g(p∧(q+α1)) (α ∈ R+, p, q ∈ Rn), (2.14)

where R+ denotes the set of nonnegative reals. Examples of L\-convex
functions are given in Section 4.1.

L\-convex functions constitute a subclass of convex functions that are
equipped with certain combinatorial properties in addition to convexity. It
is known [70], for example, that a smooth function g is L\-convex if and
only if the Hessian matrix H = (hij = ∂2g/∂pi∂pj) is a diagonally dominant
symmetric M-matrix, i.e.,

hij ≤ 0 (i 6= j),
n∑

j=1

hij ≥ 0 (i = 1, . . . , n) (2.15)

at each point. This is a combinatorial property on top of positive semidefi-
niteness, which is familiar in operations research, mathematical economics,
and numerical analysis. It may be said that L\-convexity extends this well-
known property to nonsmooth functions.

An L-convex function in continuous variables is defined as an L\-convex
function g : Rn → R that satisfies

g(p + α1) = g(p) + αr (α ∈ R, p ∈ Rn) (2.16)

for some r ∈ R (which is independent of p and α). L-convex functions and
L\-convex functions are essentially the same, in that L\-convex functions in
n variables can be identified, up to the constant r in (2.16), with L-convex
functions in n + 1 variables.
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〈Continuous Variables〉 〈Discrete Variables〉
g : Rn → R g : Zn → R

(ordinary) convex
m [discretization]

midpoint convex −→ discrete midpoint convex
m

translation submodular ←− translation submodular
(L\-convex) [prolongation] (L\-convex)

(ordinary) convex: λg(p) + (1 − λ)g(q) ≥ g(λp + (1 − λ)q)
midpoint convex: g(p) + g(q) ≥ 2 g

(
p+q
2

)
discrete midpoint convex: g(p) + g(q) ≥ g

(⌈
p+q
2

⌉)
+ g

(⌊
p+q
2

⌋)
translation submodular: g(p) + g(q) ≥ g((p − α1) ∨ q) + g(p ∧ (q + α1))

Figure 8: Definitions of L\-convexity by discretization and prolongation

The inequality (2.14) is a continuous version of the translation submod-
ularity (2.9), in which we had α ∈ Z+ and p, q ∈ Zn instead of α ∈ R+ and
p, q ∈ Rn. It may be said that (2.14) is obtained from (2.9) by prolongation,
by which we mean a process converse to discretization. Figure 8 summa-
rizes how we have defined L\-convex functions in discrete and continuous
variables. Note that prolongation of discrete midpoint convexity renders no
novel concept, but reduces to midpoint convexity, which is (almost) equiva-
lent to convexity.

2.3.2 M-convex functions

M\-convex functions in continuous variables can be defined by prolongation
of the exchange property (2.13). We say that a convex function f : Rn → R
is M\-convex if, for any x, y ∈ domRf and any i ∈ supp+(x− y), there exist
j ∈ supp−(x − y) ∪ {0} and a positive real number α0 such that

f(x) + f(y) ≥ f(x − α(χi − χj)) + f(y + α(χi − χj)) (2.17)

for all α ∈ R with 0 ≤ α ≤ α0.
M\-convex functions in continuous variables constitute another subclass

of convex functions, different from L\-convex functions, that are equipped
with another kind of combinatorial properties. See examples in Section 4.2.

An M-convex function in continuous variables is defined as an M\-convex
function f : Rn → R that satisfies (2.17) with j ∈ supp−(x − y). This is
equivalent to saying that f is M-convex if and only if it is M\-convex and
domRf ⊆ {x ∈ Rn |

∑n
i=1 xi = r} for some r ∈ R. M-convex functions and

M\-convex functions are essentially the same, in that M\-convex functions
in n variables can be obtained as projections of M-convex functions in n+1
variables.

12
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Fig. 1. Classes of convex functions
(M♮-convex ∩ L♮-convex = separable convex)

Figure 9: Classes of convex functions
(L\-convex ∩ M\-convex = separable convex)

2.3.3 Classes of discrete convex functions in continuous variables

Figure 9 shows the classes of discrete convex functions in continuous vari-
ables. L\-convex functions contain L-convex functions as a special case. The
same is true for M\-convex and M-convex functions. It is known that the
classes of L-convex functions and M-convex functions are disjoint, whereas
the intersection of the classes of L\-convex functions and M\-convex func-
tions is exactly the class of separable convex functions.

Comparison of Fig. 9 with Fig. 7 shows the parallelism between the
continous and discrete cases.

3 Conjugacy

Conjugacy under the Legendre transformation is one of the most appealing
facts in convex analysis. In discrete convex analysis, the discrete Legendre
transformation gives a one-to-one correspondence between L-convex func-
tions and M-convex functions.

3.1 Continuous Case

For a function f : Rn → R (not necessarily convex) with domRf 6= ∅, the
convex conjugate f• : Rn → R is defined by

f•(p) = sup{〈p, x〉 − f(x) | x ∈ Rn} (p ∈ Rn), (3.18)

13



where 〈p, x〉 =
∑n

i=1 pixi is the inner product of p = (pi) ∈ Rn and x =
(xi) ∈ Rn. The function f• is also referred to as the (convex) Legendre(–
Fenchel) transform of f , and the mapping f 7→ f• as the (convex) Legendre(–
Fenchel) transformation. Similarly to (3.18), the concave conjugate of h :
Rn → R is defined to be the function h◦ : Rn → R given by

h◦(p) = inf{〈p, x〉 − h(x) | x ∈ Rn} (p ∈ Rn). (3.19)

Note that h◦(p) = −(−h)•(−p).
The conjugacy theorem in convex analysis states that the Legendre trans-

formation gives a one-to-one correspondence in the class of closed proper
convex functions, where a convex function f is said to be proper if domRf is
nonempty, and closed if the epigraph {(x, y) ∈ Rn+1 | y ≥ f(x)} is a closed
subset of Rn+1. Notation f•• means (f•)•.

Theorem 3.1. The Legendre transformation (3.18) gives a symmetric one-
to-one correspondence in the class of all closed proper convex functions.
That is, for a closed proper convex function f , the conjugate function f• is
a closed proper convex function and f•• = f .

Addition of combinatorial ingredients to the above theorem yields the
conjugacy between M-convex and L-convex functions.

Theorem 3.2 ([69]). The Legendre transformation (3.18) gives a one-to-one
correspondence between the classes of all closed proper M\-convex functions
and L\-convex functions. Similarly for M-convex and L-convex functions.

The first statement above means that, for a closed proper M\-convex
function f , f• is a closed proper L\-convex function and f•• = f , and that,
for a closed proper L\-convex function g, g• is a closed proper M\-convex
function and g•• = g. To express this one-to-one correspondence we have
indicated M\-convex functions and L\-convex functions by congruent regions
in Fig. 9. The second statement means similarly that, for a closed proper
M-convex function f , f• is a closed proper L-convex function and f•• = f ,
and that, for a closed proper L-convex function g, g• is a closed proper
M-convex function and g•• = g. It is also noted that the conjugate of a
separable convex function is another separable convex function.

The L/M-conjugacy is also valid for polyhedral convex functions.

Theorem 3.3 ([68]). The Legendre transformation (3.18) gives a one-to-
one correspondence between the classes of all polyhedral M\-convex functions
and L\-convex functions. Similarly for M-convex and L-convex functions.

3.2 Discrete Case

We turn to functions defined on integer points. For functions f : Zn → R
and h : Zn → R with domZf 6= ∅ and domZh 6= ∅, discrete versions of the
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Legendre transformations are defined by

f•(p) = sup{〈p, x〉 − f(x) | x ∈ Zn} (p ∈ Rn), (3.20)
h◦(p) = inf{〈p, x〉 − h(x) | x ∈ Zn} (p ∈ Rn). (3.21)

We call (3.20) and (3.21), respectively, convex and concave discrete Legendre(–
Fenchel) transformations. The functions f• : Rn → R and h◦ : Rn → R are
called the convex conjugate of f and the concave conjugate of h, respectively.

Theorem 3.4. For an M\-convex function f : Zn → R, the conjugate
function f• : Rn → R is a (locally polyhedral) L\-convex function. For
an L\-convex function g : Zn → R, the conjugate function g• : Rn → R
is a (locally polyhedral) M\-convex function. Similarly for M-convex and
L-convex functions.

For an integer-valued function f , f•(p) is integer for an integer vector
p. Hence (3.20) with p ∈ Zn defines a transformation of f : Zn → Z to
f• : Zn → Z; we refer to (3.20) with p ∈ Zn as (3.20)Z.

The conjugacy theorem for discrete M-convex and L-convex functions
reads as follows.

Theorem 3.5 ([59]). The discrete Legendre transformation (3.20)Z gives
a one-to-one correspondence between the classes of all integer-valued M\-
convex functions and L\-convex functions in discrete variables. Similarly
for M-convex and L-convex functions.

It should be clear that the first statement above means that, for an
integer-valued M\-convex function f : Zn → Z, the function f• in (3.20)Z is
an integer-valued L\-convex function and f•• = f , where f•• is a short-hand
notation for (f•)• using the discrete Legendre transformation (3.20)Z, and
similarly when f is L\-convex.

4 Examples

4.1 L-convex Functions

Some examples of L\- and L-convex functions are given in this section. The
following basic facts are noted.

1. The effective domain of an L\-convex function is an L\-convex set.

2. An L\-convex function remains to be L\-convex when its effective do-
main is restricted to any L\-convex set.

3. A sum of L\-convex functions is L\-convex.

15



Similar statements are true when “L\-convex” is replaced by “L-convex” in
the above.

We first consider functions in discrete variable p = (p1, . . . , pn) ∈ Zn.

Linear function: A linear (or affine) function

g(p) = α + 〈p, x〉 (4.22)

with x ∈ Rn and α ∈ R is L-convex (and hence L\-convex).
Quadratic function: A quadratic function

g(p) =
n∑

i=1

n∑
j=1

aijpipj (4.23)

with aij = aji ∈ R (i, j = 1, . . . , n) is L\-convex if and only if

aij ≤ 0 (i 6= j),
n∑

j=1

aij ≥ 0 (i = 1, . . . , n). (4.24)

It is L-convex if and only if

aij ≤ 0 (i 6= j),
n∑

j=1

aij = 0 (i = 1, . . . , n). (4.25)

Separable convex function: For univariate convex functions ψi (i =
1, . . . , n) and ψij (i, j = 1, . . . , n; i 6= j),

g(p) =
n∑

i=1

ψi(pi) +
∑
i6=j

ψij(pi − pj) (4.26)

is an L\-convex function. This is L-convex if ψi = 0 for i = 1, . . . , n.
Maximum-component function: For any τ0, τ1, . . . , τn ∈ R,

g(p) = max{τ0, p1 + τ1, p2 + τ2, . . . , pn + τn} (4.27)

is an L\-convex function. This is L-convex if τ0 does not exist (i.e., τ0 =
−∞). Hence

g(p) = max{p1, p2, . . . , pn} − min{p1, p2, . . . , pn} (4.28)

is an L-convex function. Furthermore, if ψ is a nondecreasing univariate
convex function,

g(p) = ψ( max
1≤i≤n

{pi + τi}) (4.29)
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is an L\-convex function. It is also mentioned that, if g0(p, t) is L\-convex
in (p, t) ∈ Zn × Z and nondecreasing in t, then the max-aggregation g :
Zn × Zm → R defined by

g(p, q) = g0(p,max(q1, . . . , qm)) (p ∈ Zn, q ∈ Zm) (4.30)

is L\-convex in (p, q), whereas g is L-convex if g0 is L-convex.
Submodular set function: A submodular set function ρ : 2V → R

can be identified with an L\-convex function g under the correspondence
g(χX) = ρ(X) for X ⊆ V , where domZg ⊆ {0, 1}n.

Multimodular function: A function h : Zn → R is multimodular if
and only if it can be represented as

h(p) = g(p1, p1 + p2, . . . , p1 + · · · + pn)

for some L\-convex function g; see [2, 3, 31, 65].

The constructions above work for functions in continuous variable p ∈
Rn. That is, the functions g : Rn → R defined by the expressions (4.22) to
(4.30) are L\- or L-convex functions, if all the variables are understood as
real numbers or vectors. It is noteworthy that quadratic L\-convex functions
are exactly the same as the (finite dimensional case of) Dirichlet forms used
in probability theory [28]. The energy consumed in a nonlinear electrical
network, when expressed as a function in terminal voltages, is an L\-convex
function [63, Section 2.2].

4.2 M-convex Functions

Some examples of M\- and M-convex functions are given in this section. The
following basic facts are noted.

1. The effective domain of an M\-convex function is an M\-convex set.

2. An M\-convex function does not necessarily remain M\-convex when
its effective domain is restricted to an M\-convex set.

3. A sum of M\-convex functions is not necessarily M\-convex.

4. The infimal convolution of M\-convex functions f1 and f2, defined as

(f12 f2)(x) = inf{f1(x1) + f2(x2) | x = x1 + x2}, (4.31)

is M\-convex if f12 f2 does not take −∞, where x1, x2 ∈ Zn in the
discrete case and x1, x2 ∈ Rn in the continuous case.
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Similar statements are true when “M\-convex” is replaced by “M-convex”
in the above.

We first consider functions in discrete variable x = (x1, . . . , xn) ∈ Zn.

Linear function: A linear (or affine) function

f(x) = α + 〈p, x〉 (4.32)

with p ∈ Rn and α ∈ R is M\-convex. It is M-convex if domZf is an
M-convex set.

Quadratic function: A quadratic function

f(x) =
n∑

i=1

n∑
j=1

aijxixj (4.33)

with aij = aji ∈ R (i, j = 1, . . . , n) is M\-convex if and only if aij ≥ 0 for
all (i, j) and

aij ≥ min(aik, ajk) if {i, j} ∩ {k} = ∅, (4.34)

where domZf = Zn. A function f of (4.33), with domZf = {x ∈ Zn |∑n
i=1 xi = r} for some r ∈ Z, is M-convex if and only if

aij + akl ≥ min(aik + ajl, ail + ajk) if {i, j} ∩ {k, l} = ∅. (4.35)

Laminar convex function: By a laminar family we mean a nonempty
family T of subsets of V such that X ∩ Y = ∅ or X ⊆ Y or X ⊇ Y for any
X,Y ∈ T . A function f is called laminar convex if it can be represented as

f(x) =
∑
X∈T

fX(x(X)) (4.36)

for a laminar family T and a family of univariate convex functions fX in-
dexed by X ∈ T , where x(X) =

∑
i∈X xi. A laminar convex function is

M\-convex. A separable convex function (2.3) is laminar convex and hence
M\-convex. It is known [33] that every quadratic M\-convex function (in
discrete variables) is laminar convex.

Minimum-value function: Given ai for i ∈ V we define a set function
µ : 2V → R as µ(X) = min{ai | i ∈ X} for nonempty X ⊆ V . By convention
we put µ(∅) = a∗ by choosing a∗ ∈ R such that a∗ ≥ max{ai | i ∈ V }.
Then µ is M\-convex when identified with a function f : Zn → R with
domZf ⊆ {0, 1}n by f(χX) = µ(X) for X ⊆ V .

Bipartite matching: Let G = (V,W ; E) be a bipartite graph with
vertex set V ∪ W and edge set E, and suppose that each edge e ∈ E is
associated with weight γ(e) ∈ R. For X ⊆ V denote by Γ(X) the minimum
weight of a matching that matches with X, i.e.,

Γ(X) = min{
∑
e∈M

γ(e) | M is a matching, V ∩ ∂M = X},
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where Γ(X) = +∞ if such M does not exist. Then Γ is M\-convex when
identified with a function f : Zn → R with domZf ⊆ {0, 1}n by f(χX) =
Γ(X) for X ⊆ V . This construction can be extended to the minimum
convex-cost flow problem.

Stable marriage problem: The payoff function of the stable marriage
problem is M\-concave; see (10.54) in Section 10.

Matroid: Let (V,B, I, ρ) be a matroid on V with base family B, independent-
set family I and rank function ρ. The characteristic vectors of bases {χB |
B ∈ B} form an M-convex set and those of independent sets {χI | I ∈ I}
form an M\-convex set. The rank function ρ : 2V → Z is M\-concave
when identified with a function f : Zn → R with domZf = {0, 1}n by
f(χX) = ρ(X) for X ⊆ V ; see Section 6.1. More generally, the vector rank
function of an integral submodular system is M\-concave [25, p. 51].

Valuated matroid: A valuated matroid ω : 2V → R of [14, 15] (see
also [61, Chapter 5]) can be identified with an M\-concave function f under
the correspondence f(χX) = ω(X) for X ⊆ V , where domZf ⊆ {0, 1}n.
The tropical geometry [87] is closely related with valuated matroids. For
example, the tropical linear space [86] is essentially the same as the circuit
valuation of matroids [71].

Next we turn to functions f : Rn → R in continuous variable x ∈ Rn.
The infimal convolution (4.31) preserves M\-convexity when the infimum is
taken over x1, x2 ∈ Rn. Laminar convex functions (4.36) as well as linear
functions (4.32) remain to be M\-convex when x is understood as a real vec-
tor. The energy consumed in a nonlinear electrical network, when expressed
as a function in terminal currents, is an M\-convex function [63, Section 2.2].

A subtlety arises for quadratic functions. Condition (4.34), together
with aij ≥ 0 for all (i, j), is sufficient but not necessary for f : Rn → R of
the form of (4.33) to be M\-convex. A necessary and sufficient condition in
terms of the matrix A = (aij) is that, for any β > 0, A + βI is nonsingular
and (A+βI)−1 satisfies (4.24). It is also mentioned that not every quadratic
M\-convex function in real variables is laminar convex. As for M-convexity,
condition (4.35) is sufficient but not necessary for f to be M-convex.

Thus the relation between discrete and continuous cases are not so simple
in M-convexity as in L-convexity.

5 Separation and Fenchel Duality

5.1 Separation Theorem

The duality principle in convex analysis can be expressed in a number of
different forms. One of the most appealing statements is in the form of
the separation theorem, which asserts the existence of a separating affine
function y = α∗ + 〈p∗, x〉 for a pair of convex and concave functions.
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In the continuous case we have the following.

Theorem 5.1. Let f : Rn → R and h : Rn → R be convex and concave
functions, respectively (satisfying certain regularity conditions). If

f(x) ≥ h(x) (∀x ∈ Rn),

there exist α∗ ∈ R and p∗ ∈ Rn such that

f(x) ≥ α∗ + 〈p∗, x〉 ≥ h(x) (∀x ∈ Rn).

A discrete separation theorem means a statement like:

For any f : Zn → R and h : Zn → R belonging to certain
classes of functions, if f(x) ≥ h(x) for all x ∈ Zn, then there
exist α∗ ∈ R and p∗ ∈ Rn such that

f(x) ≥ α∗ + 〈p∗, x〉 ≥ h(x) (∀x ∈ Zn).

Moreover, if f and h are integer-valued, there exist integer-valued
α∗ ∈ Z and p∗ ∈ Zn.

Discrete separation theorems often capture deep combinatorial properties in
spite of the apparent similarity to the separation theorem in convex analysis.
In this connection we note the following facts (see [63, Examples 1.5 and
1.6] for concrete examples), where f denotes the convex closure of f , h the
concave closure of h, and 6=⇒ stands for “does not imply.”

1. f(x) ≥ h(x) (∀x ∈ Zn) 6=⇒ f(x) ≥ h(x) (∀x ∈ Rn).

2. f(x) ≥ h(x) (∀x ∈ Zn) 6=⇒ existence of α∗ ∈ R and p∗ ∈ Rn.

3. existence of α∗ ∈ R and p∗ ∈ Rn 6=⇒ existence of α∗ ∈ Z and
p∗ ∈ Zn.

The separation theorems for M-convex/M-concave functions and for L-
convex/L-concave functions read as follows. It should be clear that f• and
h◦ are the convex and concave conjugate functions of f and h defined by
(3.20) and (3.21), respectively.

Theorem 5.2 (M-separation theorem). Let f : Zn → R be an M\-convex
function and h : Zn → R be an M\-concave function such that domZf ∩
domZh 6= ∅ or domRf• ∩ domRh◦ 6= ∅. If f(x) ≥ h(x) (∀x ∈ Zn), there
exist α∗ ∈ R and p∗ ∈ Rn such that

f(x) ≥ α∗ + 〈p∗, x〉 ≥ h(x) (∀x ∈ Zn).

Moreover, if f and h are integer-valued, there exist integer-valued α∗ ∈ Z
and p∗ ∈ Zn.
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Theorem 5.3 (L-separation theorem). Let g : Zn → R be an L\-convex
function and k : Zn → R be an L\-concave function such that domZg ∩
domZk 6= ∅ or domRg• ∩ domRk◦ 6= ∅. If g(p) ≥ k(p) (∀p ∈ Zn), there exist
β∗ ∈ R and x∗ ∈ Rn such that

g(p) ≥ β∗ + 〈p, x∗〉 ≥ k(p) (∀p ∈ Zn).

Moreover, if g and k are integer-valued, there exist integer-valued β∗ ∈ Z
and x∗ ∈ Zn.

As an immediate corollary of the M-separation theorem we can obtain an
optimality criterion for the problem of minimizing the sum of two M-convex
functions, which we call the M-convex intersection problem. Note that the
sum of M-convex functions is no longer M-convex and Theorem 2.7 does not
apply.

Theorem 5.4 (M-convex intersection theorem). For M\-convex functions
f1, f2 : Zn → R and a point x∗ ∈ domZf1 ∩ domZf2 we have

f1(x∗) + f2(x∗) ≤ f1(x) + f2(x) (∀x ∈ Zn)

if and only if there exists p∗ ∈ Rn such that

(f1 − p∗)(x∗) ≤ (f1 − p∗)(x) (∀x ∈ Zn),
(f2 + p∗)(x∗) ≤ (f2 + p∗)(x) (∀x ∈ Zn).

These conditions are equivalent, respectively, to

(f1 − p∗)(x∗) ≤ (f1 − p∗)(x∗ + χi − χj) (∀ i, j ∈ {0, 1, . . . , n}),
(f2 + p∗)(x∗) ≤ (f2 + p∗)(x∗ + χi − χj) (∀ i, j ∈ {0, 1, . . . , n}),

and for such p∗ we have

argminZ(f1 + f2) = argminZ(f1 − p∗) ∩ argminZ(f2 + p∗).

Moreover, if f1 and f2 are integer-valued, we can choose integer-valued p∗ ∈
Zn.

Frank’s discrete separation theorem [23] for submodular/supermodular
set functions is a special case of the L-separation theorem. Frank’s weight
splitting theorem [22] for the weighted matroid intersection problem is a
special case of the M-convex intersection problem. The submodular flow
problem can be generalized to the M-convex submodular flow problem [60];
see also [37, 38].
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5.2 Fenchel Duality

Another expression of the duality principle is in the form of the Fenchel
duality. This is a min-max relation between a pair of convex and concave
functions and their conjugate functions. Such a min-max theorem is com-
putationally useful in that it affords a certificate of optimality.

The Fenchel duality theorem in the continuous case reads as follows.
Recall the notations f• and h◦ in (3.18) and (3.19).

Theorem 5.5. Let f : Rn → R and h : Rn → R be convex and concave
functions, respectively (satisfying certain regularity conditions). Then

inf{f(x) − h(x) | x ∈ Rn} = sup{h◦(p) − f•(p) | p ∈ Rn}.

We now turn to the discrete case. For any functions f : Zn → Z and
h : Zn → Z we have a chain of inequalities:

inf{f(x) − h(x) | x ∈ Zn} sup{h◦(p) − f•(p) | p ∈ Zn}≥ ≥
inf{f(x) − h(x) | x ∈ Rn} ≥ sup{h◦(p) − f

•(p) | p ∈ Rn}
(5.37)

from the definitions (3.20) and (3.21) of conjugate functions f• and h◦,
where f and h are convex and concave closures of f and h, respectively. It
should be observed that

1. The second inequality in the middle of (5.37) is in fact an equality by
the Fenchel duality theorem (Theorem 5.5) in convex analysis;

2. The first (left) inequality in (5.37) can be strict even when f is convex-
extensible and h is concave-extensible, and similarly for the third
(right) inequality. See Examples 5.1 and 5.2 below.

Example 5.1. For f, h : Z2 → Z defined as

f(x1, x2) = |x1 + x2 − 1|, h(x1, x2) = 1 − |x1 − x2|

we have inf{f −h} = 0, inf{f −h} = −1. The discrete Legendre transforms
are given by

f•(p1, p2) =
{

p1 ((p1, p2) ∈ S)
+∞ (otherwise),

h◦(p1, p2) =
{

−1 ((p1, p2) ∈ T )
−∞ (otherwise)

with S = {(−1,−1), (0, 0), (1, 1)} and T = {(−1, 1), (0, 0), (1,−1)}. Hence
sup{h◦ − f•} = h◦(0, 0) − f•(0, 0) = −1 − 0 = −1. Then (5.37) reads as

inf{f − h} > inf{f − h} = sup{h◦ − f
•} = sup{h◦ − f•}.

(0) (−1) (−1) (−1)
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Example 5.2. For f, h : Z2 → Z defined as

f(x1, x2) = max(0, x1 + x2), h(x1, x2) = min(x1, x2)

we have inf{f − h} = inf{f − h} = 0. The discrete Legendre transforms
are given as f• = δS and h◦ = −δT in terms of the indicator functions of
S = {(0, 0), (1, 1)} and T = {(1, 0), (0, 1)}. Since S ∩ T = ∅, h◦ − f• is
identically equal to −∞, whereas sup{h◦−f

•} = 0 since f
• = δS , h

◦ = −δT

and S ∩ T = {(1/2, 1/2)}. Then (5.37) reads as

inf{f − h} = inf{f − h} = sup{h◦ − f
•} > sup{h◦ − f•}.

(0) (0) (0) (−∞)

From the observations above, we see that the essence of the following
theorem is the assertion that the first and third inequalities in (5.37) are
in fact equalities for M\-convex/M\-concave functions and L\-convex/L\-
concave functions.

Theorem 5.6 (Fenchel-type duality theorem).
(1) Let f : Zn → Z be an integer-valued M\-convex function and h : Zn → Z
be an integer-valued M\-concave function such that domZf ∩ domZh 6= ∅ or
domZf• ∩ domZh◦ 6= ∅. Then we have

inf{f(x) − h(x) | x ∈ Zn} = sup{h◦(p) − f•(p) | p ∈ Zn}. (5.38)

If this common value is finite, the infimum and the supremum are attained.
(2) Let g : Zn → Z be an integer-valued L\-convex function and k : Zn → Z
be an integer-valued L\-concave function such that domZg ∩ domZk 6= ∅ or
domZg• ∩ domZk◦ 6= ∅. Then we have

inf{g(p) − k(p) | p ∈ Zn} = sup{k◦(x) − g•(x) | x ∈ Zn}. (5.39)

If this common value is finite, the infimum and the supremum are attained.

Edmonds’ intersection theorem [16] in the integral case is a special case
of Theorem 5.6 (1) above, and Fujishige’s Fenchel-type duality theorem [24]
(see also [25, Section 6.1]) for submodular set functions is a special case of
Theorem 5.6 (2) above.

Whereas L-separation and M-separation theorems are parallel or conju-
gate in their statements, the Fenchel-type duality theorem is self-conjugate,
in that the substitution of f = g• and h = k◦ into (5.38) results in (5.39)
by virtue of g = g•• and k = k◦◦. With the knowledge of M-/L-conjugacy,
these three duality theorems are almost equivalent to one another; once one
of them is established, the other two theorems can be derived by relatively
easy formal calculations.
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6 Submodular Function Maximization

Maximization of a submodular set function is a difficult task in general.
Many NP-hard problems can be reduced to this problem. Also known is
that no polynomial algorithm exists in the ordinary oracle model (and this
statement is independent of the P6=NP conjecture) [39, 51, 52]. For approx-
imate maximization under matroid constraints the performance bounds of
greedy or ascent type algorithms were analyzed in [9, 19, 73] and, recently, a
pipage rounding algorithm has been designed for a subclass of submodular
functions in [7], which is extended in [93] to general submodular functions
with the aid of randomization.

M\-concave functions on {0, 1}-vectors form a subclass of submodular
set functions that are algorithmically tractable for maximization. This is
compatible with our general understanding that concave functions are easy
to maximize, and explains why certain submodular functions treated in the
literature are easier to maximize. To be specific, we have the following.

1. The greedy algorithm can be generalized for maximization of a single
M\-concave function.

2. The matroid intersection algorithm can be generalized for maximiza-
tion of a sum of two M\-concave functions.

3. The pipage rounding algorithm [1] can be generalized for approximate
maximization of a sum of nondecreasing M\-concave functions under
a matroid constraint.

Note that a sum of M\-concave functions is not necessarily M\-concave,
though it is submodular. It is also mentioned that maximization of a sum of
three M\-concave functions is NP-hard, since it includes the three-matroid
intersection problem as a special case.

6.1 M\-concave set functions

Let us say that a set function ρ : 2V → R is M\-concave if the function
h : Zn → R defined as h(χX) = ρ(X) for X ⊆ V and h(x) = −∞ for
x 6∈ {0, 1}n is M\-concave. In other words, ρ is M\-concave if and only if, for
any X,Y ⊆ V and i ∈ X \Y , we have ρ(X)+ρ(Y ) ≤ ρ(X \{i})+ρ(Y ∪{i})
or ρ(X)+ ρ(Y ) ≤ ρ((X \ {i})∪{j})+ ρ((Y ∪{i}) \ {j}) for some j ∈ Y \X.
An M\-concave set function is submodular [63, Theorem 6.19].

Not every submodular set function is M\-concave. An example of a
submodular function that is not M\-concave is given by ρ on V = {1, 2, 3}
defined as ρ(∅) = 0, ρ({2, 3}) = 2, ρ({1}) = ρ({2}) = ρ({3}) = ρ({1, 2}) =
ρ({1, 3}) = ρ({1, 2, 3}) = 1. The condition above fails for X = {2, 3},
Y = {1} and i = 2.
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A simple example of an M\-concave set function is given by ρ(X) =
ϕ(|X|), where ϕ is a univariate concave function. This is a classical ex-
ample of a submodular function [16, 52] that connects submodularity and
concavity.

For a family of univariate concave functions {ϕA | A ∈ T } indexed by a
family T of subsets of V , the function

ρ(X) =
∑
A∈T

ϕA(|A ∩ X|) (X ⊆ V )

is submodular. This function is M\-concave if, in addition, T is a laminar
family (i.e., A,B ∈ T ⇒ A ∩ B = ∅ or A ⊆ B or A ⊇ B).

Given a set of real numbers ai indexed by i ∈ V , the maximum-value
function

ρ(X) = max
i∈X

ai (X ⊆ V )

is an M\-concave function, where ρ(∅) is defined to be sufficiently small.
A matroid rank function is M\-concave [25, p. 51]. Given a matroid on V

in terms of the family I of independent sets, the rank function ρ is defined
by

ρ(X) = max{|I| | I ∈ I, I ⊆ X} (X ⊆ V ),

which denotes the maximum size of an independent set contained in X. An
interesting identity exists that indicates a kind of self-conjugacy of a matroid
rank function. Let g : Zn → Z be such that g(χX) = ρ(X) for X ⊆ V and
domZg = {0, 1}n, and denote by ρ• the discrete Legendre transform g• of g
defined by (3.20)Z (i.e., (3.20) with p ∈ Zn). Then we have

ρ(X) = |X| − ρ•(χX) (X ⊆ V ). (6.40)

This can be shown as follows: ρ•(χX) = maxY {|X ∩ Y | − ρ(Y ) | Y ⊆ V } =
maxY {|X ∩ Y | − ρ(Y ) | X ⊆ Y ⊆ V } = maxY {|X| − ρ(Y ) | X ⊆ Y ⊆ V } =
|X|−ρ(X); see also [25, Lemma 6.2]. Since ρ is submodular, g is L\-convex,
and hence g• (= ρ•) is M\-convex by conjugacy (Theorem 3.5). Then the
expression (6.40) shows that ρ is M\-concave.

A weighted matroid rank function, represented as

ρ(X) = max{
∑
i∈I

wi | I ∈ I, I ⊆ X} (X ⊆ V ) (6.41)

with a nonnegative vector w ∈ Rn, is also M\-concave. This is a recent
observation by Shioura [83].

6.2 Greedy algorithm

M\-concave set functions admit the following local characterization of global
maximum, an immediate corollary of Theorem 2.7.
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Theorem 6.1. For an M\-concave set function ρ : 2V → R and a subset
X ⊆ V , we have ρ(X) ≥ ρ(Y ) (∀Y ⊆ V ) if and only if

ρ(X) ≥ max
i∈X,j∈V \X

{ρ((X \ {i}) ∪ {j}), ρ(X \ {i}), ρ(X ∪ {j})}.

A natural greedy algorithm works for maximization of an M\-concave
set function ρ:

S0: Put X := ∅.
S1: Find j ∈ V \ X that maximizes ρ(X ∪ {j}).
S2: If ρ(X) ≥ ρ(X ∪ {j}), then stop (X is a maximizer of ρ).
S3: Set X := X ∪ {j} and go to S1.

This algorithm may be regarded as a variant of the algorithm of Dress–
Wenzel [14] for valuated matroids, and the validity can be shown similarly.

6.3 Intersection algorithm

Edmonds’s matroid intersection/union algorithms show that we can effi-
ciently maximize ρ1(X)+ρ2(V \X) and ρ1(X)+ρ2(X)−|X| for two matroid
rank functions ρ1 and ρ2. It should be clear that maxX{ρ1(X)+ρ2(V \X)}
is equal to the rank of the union of two matroids (V, ρ1) and (V, ρ2), and
that maxX{ρ1(X)+ρ2(X)−|X|} is equal to the maximum size of a common
independent set for matroid (V, ρ1) and the dual of matroid (V, ρ2). We note
here that both ρ1(X)+ρ2(V \X) and ρ1(X)+(ρ2(X)−|X|) are submodular
functions that are represented as a sum of two M\-concave functions.

Edmonds’s intersection algorithm can be generalized for M\-concave
functions. A sum of two M\-concave set functions can be maximized in
polynomial time by means of a variant of the valuated matroid intersection
algorithm [56]; see also [60, 61, 63]. It follows from the M-convex intersec-
tion theorem (Theorem 5.4) that, for two M\-concave set functions ρ1 and
ρ2, X maximizes ρ1(X) + ρ2(X) if and only if there exists p∗ ∈ Rn such
that X maximizes both ρ1(X)+p∗(X) and ρ1(X)−p∗(X) at the same time,
where p∗(X) =

∑
i∈X p∗i .

6.4 Pipage rounding algorithm

Let ρ be a nondecreasing submodular set function on V and (V, I) be a
matroid on V with the family I of independent sets. We consider the prob-
lem of maximizing ρ(X) subject to X ∈ I. It is assumed that the function
evaluation oracle for ρ and the membership oracle for I are available.

A recent paper of Calinescu–Chekuri–Pál–Vondrák [7] proposes a pipage
rounding framework for approximate solution of this problem, showing that
it works if the function ρ is represented as a sum of weighted matroid rank
functions (6.41). Subsequently, it is pointed out by Shioura [83] that this
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approach can be extended to the class of functions ρ represented as a sum
of M\-concave functions.

The framework of [7] consists of three major steps.

1. Define a continuous relaxation: maximize f(x) subject to x ∈ P , where
P is the matroid polytope (convex hull of the characteristic vectors
of independent sets) of (V, I), and f(x) is a nondecreasing concave
function on P such that f(χX) = ρ(X) for all X ⊆ V .

2. Find an (approximately) optimal solution x∗ ∈ P of the continuous
relaxation.

3. Round the fractional vector x∗ ∈ P to a {0, 1}-vector x̂ ∈ P by ap-
plying the “pipage rounding scheme,” and output the corresponding
subset X̂ (such that χX̂ = x̂) as an approximate solution to the origi-
nal problem.

This algorithm, if computationally feasible at all, is guaranteed to output
a (1− 1/e)-approximate solution, where e denotes the base of natural loga-
rithm.

In the case where ρ =
∑m

k=1 ρk with nondecreasing M\-concave set func-
tions ρk, the above algorithm can be executed in polynomial time. As the
concave extension f we may take the sum of the concave closures, say, ρk of
ρk for k = 1, . . . ,m. The continuous relaxation can be solved by the ellipsoid
method, which uses subgradients of ρk. The subgradients of ρk can in turn
be computed in polynomial time by exploiting the combinatorial structure
of M\-concave functions.

7 Finite Metric Space

Metrics are closely related to discrete convexity in several aspects. Distance
functions satisfying triangle inequality are in one-to-one correspondence with
positively homogeneous M-convex functions, and tree metrics are the same
as valuated matroids of rank two. Furthermore, the Buneman construction
and the Bandelt–Dress split decomposition can be derived as decompositions
of polyhedral convex functions.

7.1 Positively Homogeneous M-convex Functions

Recall that V = {1, 2, . . . , n}. By a distance function we mean a function
d : V ×V → R such that d(i, i) = 0 for all i ∈ V , where d may take negative
values and is not necessarily symmetric (i.e., d(i, j) 6= d(j, i) in general). As
usual, triangle inequality means the inequality:

d(i, j) + d(j, k) ≥ d(i, k) (∀i, j, k ∈ V ). (7.42)
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Figure 10: Correspondence between distance functions and positively ho-
mogeneous M-convex functions (n = 3)

There exists a one-to-one correspondence between distance functions
with triangle inequality and positively homogeneous (polyhedral) M-convex
functions, as follows (see [63, Section 6.12] for detail).

Theorem 7.1. For a distance function d : V × V → R satisfying triangle
inequality, the function f : Rn → R defined by

f(x) = inf
λ
{

∑
i,j∈V

λijd(i, j) |
∑

i,j∈V

λij(χj−χi) = x, λij ≥ 0 (i, j ∈ V )} (7.43)

is a positively homogeneous M-convex function, for which

d(i, j) = f(χj − χi) (i, j ∈ V ). (7.44)

Conversely, for a positively homogeneous M-convex function f , the function
d defined by (7.44) is a distance function with triangle inequality, for which
(7.43) is true.

Figure 10 illustrates this correspondence when V = {1, 2, 3}; (a) shows
the point set {χj − χi | i, j ∈ V }, (b) the function values of f , and (c) the
corresponding positively homogeneous M-convex function f .

7.2 Tree Metrics and Buneman Construction

In the following we assume that d is a metric, which means that d is finite-
valued (d : V ×V → R) and satisfies d(i, i) = 0 (∀i ∈ V ), d(i, j) = d(j, i) ≥ 0
(∀i, j ∈ V ), and triangle inequality (7.42).

A tree metric means a metric that can be represented as the distance
between vertices of a tree with nonnegative edge length. It is known that a
metric d is a tree metric if and only if

d(i, j) + d(k, l) ≤ max{d(i, k) + d(j, l), d(i, l) + d(j, k)} (7.45)

for all distinct i, j, k, l ∈ V . This condition is called the four-point condition.
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Remark 7.1. Consider the family B = {{i, j} | 1 ≤ i < j ≤ n} of unordered
pairs of V . A function d : V × V → R with d(i, j) = d(j, i) ≥ 0 and
d(i, i) = 0 for all i, j ∈ V can be identified with a function ω : B → R. Then
d is a tree metric if and only if ω is a valuated matroid. Thus a tree metric
is essentially equivalent to a valuated matroid on the uniform matroid of
rank two.

Remark 7.2. A metric d is called an ultrametric if

d(i, j) ≤ max{d(i, k), d(j, k)} (7.46)

for all distinct i, j, k ∈ V . An ultrametric is a tree metric. For a tree metric
d on V the function d̄ defined by

d̄(i, j) = d(i, j) − d(i, n) − d(j, n) (i, j ∈ V \ {n}) (7.47)

satisfies (7.46), where d̄(i, j) ≤ 0.
The four point condition is closely related to M- or M\-convexity of a

quadratic function f(x) = x>Ax in x ∈ Zn. The condition (4.35) for M-
convexity, aij +akl ≥ min(aik +ajl, ail +ajk), is equivalent to the four point
condition (7.45) for d(i, j) = −aij , and the condition (4.34) for M\-convexity,
aij ≥ min(aik, ajk), is the same as (7.46). Note also that the substitution
of xn = −(x1 + · · · + xn−1) into f(x) = x>Ax yields a quadratic function
f̄(x̄) = x̄>Āx̄ in x̄ = (x1, . . . , xn−1)> with āij = aij − ain − ajn + ann

(i, j = 1, . . . , n− 1). This is identical with (7.47) up to a constant term ann.

The Buneman construction decomposes a given metric d into a tree met-
ric d̂ and a residual d′, as follows.

A partition of V into two nonempty sets is called a split. For a split
σ = {A,B}, where A ∩ B = ∅, A ∪ B = V , A 6= ∅, B 6= ∅, we define split
metric or cut metric ∆σ : V × V → R by

∆σ(i, j) =
{

1 (|{i, j} ∩ A| = |{i, j} ∩ B| = 1),
0 ({i, j} ⊆ A or {i, j} ⊆ B).

For a metric d and a split σ = {A,B} the Buneman index is a real
number defined as

βσ(d) =
1
2

min
i,j∈A, k,l∈B

{d(i, k) + d(j, l) − d(i, j) − d(k, l)} .

With the notation B(d) = {σ | βσ(d) > 0} we define d̂ : V × V → R as

d̂(i, j) =
∑

σ∈B(d)

βσ(d)∆σ(i, j).

Then B(d) is compatible in the sense that for any two splits σ1 = {A1, B1},
σ2 = {A2, B2} in B(d) at least one of A1∩A2, A1∩B2, B1∩A2, and B1∩B2
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is empty. Accordingly, d̂ is a tree metric with d̂ ≤ d, where d̂ = d if (and
only if) d is a tree metric. Furthermore, d′ = d − d̂ is a metric such that
βσ′(d′) ≤ 0 for every split σ′. Note that we have obtained a decomposition
of d in the form of

d =
∑

σ∈B(d)

βσ(d)∆σ + d′. (7.48)

7.3 Discrete Convex Approach to Buneman Construction

The decomposition (7.48) of a metric d can be derived from a general decom-
position method for polyhedral convex functions applied to the positively
homogeneous M-convex function f that corresponds to d as in Theorem 7.1.
The decomposition method for polyhedral convex functions, called polyhe-
dral split decomposition, is as follows.

For a hyperplane H lying in Rn and a point x ∈ Rn let lH(x) denote
half the distance between x and H. That is, lH(x) = |〈a, x〉 − b| /2 if H is
represented as 〈a, x〉 = b, where a ∈ Rn, b ∈ R with ‖a‖2 = 1. This function
lH : Rn → R is called the split function associated with H.

For a polyhedral convex function f and a hyperplane H let cH(f) be the
maximum value of t ∈ R such that f − tlH is convex, i.e.,

cH(f) = sup{t ∈ R | f − tlH is convex}.

With the notation

H(f) = {H: hyperplane | 0 < cH(f) < +∞}

we obtain the following decomposition, called the polyhedral split decompo-
sition.

Theorem 7.2 ([32]). Any polyhedral convex function f : Rn → R with
dimdomRf = n can be represented uniquely as

f =
∑

H∈H(f)

cH(f) lH + f ′, (7.49)

where f ′ is a polyhedral convex function such that cH′(f ′) ∈ {0, +∞} for
every hyperplane H ′.

Given a metric d we consider the polyhedral convex function f of (7.43)
associated with d and apply the decomposition (7.49) to f with necessary
modifications to adapt to the case of dimdomRf = n−1; see Fig. 11, where
n = 3. It turns out that each hyperplane in H(f) is represented as

Hσ = {x ∈ Rn | x(A) = x(B)} (7.50)

30



= ++

Figure 11: Polyhedral split decomposition of the positively homogeneous
M-convex function associated with a metric (n = 3)

for a split σ = {A,B}. Moreover, the split function lHσ coincides essentially
with the split metric ∆σ in that

∆σ(i, j) =
1
2
|x(A) − x(B)| =

√
n lHσ(x) (x = χj − χi)

and the coefficient cHσ(f) is given in terms of the Buneman index βσ(d) as

cHσ(f) =
√

n max{βσ(d), 0}.

Furthermore, the residual term f ′ turns out to be M-convex and it corre-
sponds to a metric, which we denote as d′. Thus the decomposition (7.49)
evaluated at x = χj − χi (i 6= j) yields the decomposition (7.48) of d based
on the Buneman index.

All the terms in the decomposition (7.49) for f associated with d are
positively homogeneous M-convex functions. In other words, the sum of the
positively homogeneous M-convex functions, lHσ and f ′, is another positively
homogeneous M-convex function f . Compatibility of B(d) as a family of
splits plays a crucial role here. Note that a sum of M-convex functions is
not always M-convex.

7.4 Discrete Convex Approach to Split Decomposition

The split decomposition of Bandelt–Dress [4] can also be derived through
the polyhedral split decomposition.

For a metric d and a split σ = {A,B} the isolation index is a real number
defined as

ασ(d) =
1
2

min
i,j∈A, k,l∈B

{
max

{
d(i, k) + d(j, l),
d(i, l) + d(j, k)

}
− d(i, j) − d(k, l)

}
.

The split decomposition of d is defined as

d =
∑

σ∈A(d)

ασ(d)∆σ + d′′ (7.51)

with A(d) = {σ | ασ(d) > 0}. The “remainder term” d′′ is a metric such
that ασ′(d′′) ≤ 0 for every split σ′, whereas the “main part”

∑
ασ(d)∆σ

admits a graphical representation (a generalization of tree representation).
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Let f be the largest positively homogeneous convex function such that
f(χi+χj) = −d(i, j) for i, j ∈ V , which means, in particular, that f(2χi) = 0
for i ∈ V . This function f is a polyhedral convex function, to which the
decomposition (7.49) can be applied. It turns out that each hyperplane Hσ

in H(f) appearing in this decomposition is represented as (7.50) for a split
σ = {A,B}. Moreover, the split function lHσ coincides essentially with the
split metric ∆σ in that

∆σ(i, j) = −1
2
|x(A) − x(B)| + 1 = −

√
n lHσ(x) + 1 (x = χi + χj)

and the coefficient cHσ(f) is given in terms of the isolation index ασ(d) as

cHσ(f) =
√

n max{ασ(d), 0}.

Thus the polyhedral split decomposition (7.49) evaluated at x = χi + χj

(i 6= j) yields the split decomposition (7.51) of d.
The reader is referred to [12, 80] for fundamental facts about metrics

and phylogenetics, and to [13] for a survey of T-theory. In particular the
decomposition (7.48) based on the Buneman index is due to [6]. Discrete
convex approach was initiated by [32] for the split decomposition (7.51) of
Bandelt–Dress [4], whereas its application to the decomposition (7.48) based
on the Buneman index is due to [47].

8 Eigenvalue of Hermitian Matrices

An interesting connection exists between discrete concave functions in two
variables and the range of eigenvalues of a sum of two Hermitian matrices
with specified eigenvalues. For an n × n Hermitian matrix A we denote by
λ(A) the descending vector of eigenvalues of A, where a descending vector
means a vector α = (α1, . . . , αn) such that α1 ≥ α2 ≥ · · · ≥ αn.

Given two descending vectors α = (α1, . . . , αn) and β = (β1, . . . , βn), we
are concerned with the problem of determining the set

E(α, β) = {γ ∈ Rn | λ(A) = α, λ(B) = β, λ(A + B) = γ},

which denotes the range of eigenvalues of A + B when Hermitian matrices
A and B vary subject to the constraint that λ(A) = α and λ(B) = β. This
problem was first addressed by H. Weyl in 1912 and investigated intensively
by A. Horn around 1960, who posed a conjecture that E(α, β) is a convex
polyhedron described by the descending condition γ1 ≥ γ2 ≥ · · · ≥ γn, the
trace condition

∑n
k=1 γk =

∑n
i=1 αi +

∑n
j=1 βj and a family of inequalities

of the form ∑
k∈K

γk ≤
∑
i∈I

αi +
∑
j∈J

βj ,
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図 1: 三角形領域∆

Figure 12: Triangular region ∆

where (I, J,K) runs over a finite index set Π such that |I| = |J | = |K| for
(I, J,K) ∈ Π.

In the 1990’s this problem received revived interest. With contributions
by many researchers, in particular, by A. Klyachko, this problem has been
settled in the affirmative. The range E(α, β) is now understood and de-
scribed in terms of “puzzles” or “honeycombs.” See [11, 29, 40, 41, 42, 43]
for details.

The connection to discrete concave functions is as follows. Consider an
L\-convex set

∆ = {(i, j) ∈ Z2 | 0 ≤ j ≤ i ≤ n}

as depicted in Fig. 12. An L\-concave function f on ∆ determines three
descending vectors α, β and γ from its boundary values as

αi = f(i, 0) − f(i − 1, 0) (i = 1, . . . , n),
βj = f(n, j) − f(n, j − 1) (j = 1, . . . , n),
γk = f(k, k) − f(k − 1, k − 1) (k = 1, . . . , n).

(8.52)

It then follows that
∑n

k=1 γk =
∑n

i=1 αi +
∑n

j=1 βj . Conversely, given two
descending vectors α and β, let C(α, β) be the set of γ such that (8.52) holds
for some L\-concave function f : ∆ → R, i.e.,

C(α, β) = {γ ∈ Rn | ∃ L\-concave f : ∆ → R satisfying (8.52)}.

It is easy to see that C(α, β) is a polyhedral convex set, and moreover the
following relationship is known.

Theorem 8.1 ([11]). E(α, β) = C(α, β).

A further problem has been posed by [11]. Theorem 8.1 shows that for
any (A,B) with λ(A) = α and λ(B) = β there exists an L\-concave function
f that satisfies (8.52) for γ = λ(A + B). How can we construct such f from
(A,B)? It is conjectured in [11] that

f(i, j) = max{tr (AP + BQ) | trP = i, trQ = j,Q(I − P ) = 0},
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where P and Q run over orthogonal projectors satisfying the specified con-
ditions, is an L\-concave function on ∆, and that every L\-concave function
on ∆ can be represented in this form with some (A,B). Note that we have
(8.52), since

f(i, 0) = max{tr (AP ) | trP = i} = α1 + · · · + αi,

f(n, j) = max{tr (A + BQ) | trQ = j} = (α1 + · · · + αn) + β1 + · · · + βj ,

f(k, k) = max{tr (AP + BQ) | trP = tr Q = k, P = Q} = γ1 + · · · + γk.

Some attempts have been made, but no answer has yet been obtained, as
far as the present author knows.

9 Discrete Fixed Point Theorem

To motivate a discrete fixed point theorem we first take a glimpse at Kaku-
tani’s fixed point theorem. Then we explain how the conditions assumed in
that theorem can be “discretized” to yield a discrete fixed point theorem.

Let S be a subset of Rn and F be a set-valued mapping (or a correspon-
dence) from S to itself, which is denoted as F : S →→ S (or F : S → 2S). A
point x ∈ S satisfying x ∈ F (x) is said to be a fixed point of F . Kakutani’s
fixed point theorem reads as follows.

Theorem 9.1. A set-valued function F : S →→ S has a fixed point if
(a) S is a bounded closed convex subset of Rn,
(b) For each x ∈ S, F (x) is a nonempty closed convex set, and
(c) F is upper-semicontinuous.

In a discrete fixed point theorem we are concerned with F : S →→ S
where S is a subset of Zn. With reference to the three conditions in Theorem
9.1 above we proceed as follows to obtain a discrete fixed point theorem.

• Condition (a) assumes that the domain of definition S is nicely-shaped
or well-behaved. In the discrete case we assume S to be “integrally
convex.”

• Condition (b) assumes that each value F (x) is nicely-shaped or well-
behaved. In the discrete case we assume that F (x) = F (x)∩Zn, where
F (x) denotes the convex hull of F (x).

• Condition (c) assumes that function F is continuous in some sense. In
the discrete case we assume F to be “direction-preserving.”

We will explain the key concepts, “integrally convex” and “direction-preserving,”
in turn.

The integral neighborhood of a point y ∈ Rn is defined to be

N(y) = {z ∈ Zn | ‖z − y‖∞ < 1},
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図 1: 射影 π(x)と符号 σ(x)の定義

（σ(x) = sign (π(x) − x) = (+1,−1)）Figure 13: Projection π(x) with σ(x) = sign (π(x) − x) = (+1,−1)

where ‖·‖∞ means the maximum norm. A set S ⊆ Zn is said to be integrally
convex [18] if

y ∈ S =⇒ y ∈ S ∩ N(y)

for any y ∈ Rn. We have S = S ∩ Zn for an integrally convex set S. It is
known that L\-convex sets and M\-convex sets are integrally convex.

Given F : S →→ S and x ∈ Zn we denote by π(x) the projection of x to
F (x). This means that π(x) is the point of F (x) that is nearest to x with
respect to the Euclidean norm (see Fig. 13). We also define the direction
sign vector σ(x) ∈ {+1, 0,−1}n as

σ(x) = (σ1(x), . . . , σn(x)) = (sign (π1(x) − x1), . . . , sign (πn(x) − xn)).

Then we say that F is direction-preserving if for all x, z ∈ S with ‖x−z‖∞ ≤
1 we have

σi(x) > 0 =⇒ σi(z) ≥ 0 (i = 1, . . . , n).

Note that this is equivalent to saying that σi(x)σi(z) 6= −1 for each i =
1, . . . , n if x, z ∈ S and ‖x − z‖∞ ≤ 1.

We are now ready to state the discrete fixed point theorem.

Theorem 9.2 ([34, 35]). A set-valued function F : S →→ S has a fixed
point if

(a) S is a nonempty finite integrally convex subset of Zn,
(b) For each x ∈ S, F (x) is nonempty and F (x) = F (x) ∩ Zn, and
(c) F is direction-preserving.

The proof of this theorem consists of three major steps.

1. We show that an integrally convex set S has a simplicial decomposition
T such that for each y ∈ S all the vertices of T (y) belong to N(y),
where S means the convex hull of S and T (y) the smallest simplex in
T that contains y.

2. We consider a piecewise linear extension f : S → S of π defined as

f(y) =
∑

x∈V (y)

λxπ(x) (y =
∑

x∈V (y)

λxx,
∑

x∈V (y)

λx = 1, λx ≥ 0)
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where V (y) = T (y)∩N(y). By Brouwer’s fixed point theorem applied
to f we obtain a fixed point y ∈ S of f (i.e., y = f(y)).

3. From the identity∑
x∈V (y)

λx(π(x) − x) =
∑

x∈V (y)

λxπ(x) −
∑

x∈V (y)

λxx = f(y) − y = 0

and the assumption of F being direction-preserving, we see that π(x)−
x = 0 for some x ∈ V (y), which is a fixed point of F .

The discrete fixed point theorem originates in [34] with a subsequent
rectification in [35]. See [8] for a generalization and [92] for an algorithm.

10 Stable Marriage and Assignment Game

Two-sided matching [78] affords a fairly general framework in game the-
ory, including the stable matching of Gale–Shapley [30] and the assignment
model of Shapley–Shubik [81] as special cases. An even more general frame-
work has been proposed recently by Fujishige–Tamura [27], in which the
existence of an equilibrium is established on the basis of a novel duality-
related property of M\-concave functions.

Let P and Q be finite sets and put

E = P × Q = {(i, j) | i ∈ P, j ∈ Q},

where we think of P as a set of workers and Q as a set of firms, respectively.
We suppose that worker i works at firm j for xij units of time, gaining
a salary sij per unit time. Then the labor allocation is represented by an
integer vector

x = (xij | (i, j) ∈ E) ∈ ZE

and the salary by a real vector s = (sij | (i, j) ∈ E) ∈ RE . We are interested
in the stability of a pair (x, s) in the sense to be made precise later.

For i ∈ P and j ∈ Q we put

E(i) = {i} × Q = {(i, j) | j ∈ Q}, E(j) = P × {j} = {(i, j) | i ∈ P},

and for a vector y on E we denote by y(i) and y(j) the restrictions of y to E(i)

and E(j), respectively. For example, for the labor allocation x we obtain

x(i) = (xij | j ∈ Q) ∈ ZE(i) , x(j) = (xij | i ∈ P ) ∈ ZE(j)

and this convention also applies to the salary vector s to yield s(i) and s(j).
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It is supposed that for each (i, j) ∈ E lower and upper bounds on the
salary sij are given, denoted by πij ∈ R and πij ∈ R, where πij ≤ πij . A
salary s is called feasible if πij ≤ sij ≤ πij for all (i, j) ∈ E. We put

π = (πij | (i, j) ∈ E) ∈ RE , π = (πij | (i, j) ∈ E) ∈ RE
.

Each agent (worker or firm) k ∈ P ∪ Q evaluates his/her state x(k) of
labor allocation in monetary terms through a function fk : ZE(k) → R. Here
the effective domain domZfk = {z ∈ ZE(k) | fk(z) > −∞} is assumed to
satisfy the following natural condition:

domZfk is bounded and hereditary, with unique minimal element 0,
(10.53)

where domZfk being hereditary means that 0 ≤ z ≤ y ∈ domZfk implies
z ∈ domZfk. In what follows we always assume that x is feasible in the
sense that

x(i) ∈ domZfi (i ∈ P ), x(j) ∈ domZfj (j ∈ Q).

A pair (x, s) of feasible allocation x and feasible salary s is called an outcome.

Example 10.1. The stable marriage problem can be formulated as a special
case of the present setting. Put π = π = 0 and define fi : ZE(i) → R for
i ∈ P and fj : ZE(j) → R for j ∈ Q as

fi(y) =


aij (y = χj , j ∈ Q),
0 (y = 0),
−∞ (otherwise),

fj(z) =


bij (z = χi, i ∈ P ),
0 (z = 0),
−∞ (otherwise),

(10.54)
where the vector (aij | j ∈ Q) ∈ RQ represents (or, is an encoding of) the
preference of “man” i ∈ P over “women” Q, and (bij | i ∈ P ) ∈ RP the
preference of “woman” j ∈ Q over “men” P . Then a matching X is stable
if and only if (x, s) = (χX ,0) is stable in the present model.

Example 10.2. The assignment model is a special case where π = (−∞, . . . ,−∞),
π = (+∞, . . . , +∞) and the functions fi and fj are of the form of (10.54)
with some aij , bij ∈ R for all i ∈ P, j ∈ Q.

Given an outcome (x, s) the payoff of worker i ∈ P is defined to be the
sum of his/her evaluation of x(i) and the total income from firms:

fi(x(i)) +
∑
j∈Q

sijxij (=: (fi + s(i))(x(i))).

Similarly, the payoff of firm j ∈ Q is defined as

fj(x(j)) −
∑
i∈P

sijxij (=: (fj − s(j))(x(j))).
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Each agent (i ∈ P or j ∈ Q) naturally wishes to maximize his/her payoff
function.

A market equilibrium is defined as an outcome (x, s) that is stable under
reasonable actions (i) by each worker i, (ii) by each firm j, and (iii) by
each worker-firm pair (i, j). To be specific, we say that (x, s) is stable with
respect to i ∈ P if

(fi + s(i))(x(i)) = max{(fi + s(i))(y) | y ≤ x(i)}. (10.55)

Similarly, (x, s) is said to be stable with respect to j ∈ Q if

(fj − s(j))(x(j)) = max{(fj − s(j))(z) | z ≤ x(j)}. (10.56)

In technical terms (x, s) is said to satisfy the incentive constraint if it satisfies
(10.55) and (10.56).

The stability of (x, s) with respect to (i, j) is defined as follows. Suppose
that worker i and firm j think of a change of their contract to a new salary
α ∈ [πij , πij ]R and a new working time of β ∈ Z+ units. Worker i will be
happy with this contract if there exists y ∈ ZE(i) such that

yj = β, yk ≤ xik (k ∈ Q \ {j}), (10.57)

(fi + s(i))(x(i)) < (fi + (s−j
(i) , α))(y), (10.58)

where (s−j
(i) , α) denotes the vector s(i) with its j-th component replaced by

α. Note that y means the new labor allocation of worker i with an increased
payoff given on the right-hand side of (10.58). Similarly, firm j is motivated
to make the new contract if there exists z ∈ ZE(j) such that

zi = β, zk ≤ xkj (k ∈ P \ {i}), (10.59)
(fj − s(j))(x(j)) < (fj − (s−i

(j), α))(z), (10.60)

where (s−i
(j), α) is the vector s(j) with its i-th component replaced by α. Then

we say that (x, s) is stable with respect to (i, j) if there exists no (α, β, y, z)
that simultaneously satisfies (10.57), (10.58), (10.59) and (10.60).

We now define an outcome (x, s) to be stable if, for every i ∈ P , j ∈ Q,
(x, s) is (i) stable with respect to i, (ii) stable with respect to j, and (iii)
stable with respect to (i, j). This is our concept of market equilibrium.

A remarkable fact, Theorem 10.1 below, is that a market equilibrium
exists if the functions fk are M\-concave. See [63, Section 11.3] for the rele-
vance of M\-concave functions for economic or game-theoretic problems; in
particular, M\-concave functions enjoy gross substitutes property, concave-
extendibility. and submodularity. See [91] for the role of submodularity in
this context.
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Theorem 10.1 ([27]). Assume that π ≤ π and, for each k ∈ P ∪ Q, fk is
an M\-concave function satisfying (10.53). Then a stable outcome (x, s) ∈
ZE × RE exists. Furthermore, we can take an integral s ∈ ZE if π ∈ ZE,
π ∈ ZE, and fk is integer-valued for every k ∈ P ∪ Q.

The technical ingredients of the above theorem can be divided into the
following two theorems. Note also that sufficiency part of Theorem 10.2
(which we need here) is independent of M\-concavity.

Theorem 10.2 ([27]). Under the same assumption as in Theorem 10.1 let x
be a feasible allocation. Then (x, s) is a stable outcome for some s if and only
if there exist p ∈ RE, u = (u(i) | i ∈ P ) ∈ ZE and v = (v(j) | j ∈ Q) ∈ ZE

such that

x(i) ∈ argmaxZ{(fi + p(i))(y) | y ≤ u(i)}, (10.61)
x(j) ∈ argmaxZ{(fj − p(j))(z) | z ≤ v(j)}, (10.62)
π ≤ p ≤ π, (10.63)
(i, j) ∈ E, uij < +∞ =⇒ pij = πij , vij = +∞, (10.64)
(i, j) ∈ E, vij < +∞ =⇒ pij = πij , uij = +∞. (10.65)

Moreover, (x, p) is a stable outcome for any (x, p, u, v) satisfying the above
conditions.

Theorem 10.3 ([27]). Under the same assumption as in Theorem 10.1 there
exists (x, p, u, v) that satisfies (10.61)–(10.65). Furthermore, we can take an
integral p ∈ ZE if π ∈ ZE, π ∈ ZE, and fk is integer-valued for every
k ∈ P ∪ Q.

It is worth while noting that the essence of Theorem 10.3 is an intersection-
type theorem for a pair of M\-concave functions. Indeed it can be derived
easily from Theorem 10.4 below applied to

fP (x) =
∑
i∈P

fi(x(i)), fQ(x) =
∑
j∈Q

fj(x(j)).

Theorem 10.4 ([27]). Assume π ≤ π for π ∈ RE and π ∈ RE, and let
f, g : ZE → R be M\-concave functions such that the effective domains are
bounded and hereditary, with unique minimal element 0. Then there exist
x ∈ domZf ∩ domZg, p ∈ RE, u ∈ ZE and v ∈ ZE such that

x ∈ argmaxZ{(f + p)(y) | y ≤ u},
x ∈ argmaxZ{(g − p)(z) | z ≤ v},
π ≤ p ≤ π,

e ∈ E, ue < +∞ =⇒ pe = πe, ve = +∞,

e ∈ E, ve < +∞ =⇒ pe = πe, ue = +∞.
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Furthermore, we can take an integral p ∈ ZE if π ∈ ZE, π ∈ ZE, and f and
g are integer-valued.

The Fujishige–Tamura model contains recently proposed matching mod-
els such as [17, 20, 85] as special cases. In particular, the hybrid model
of Eriksson–Karlander [17], with flexible and rigid agents, is a special case
where P and Q are partitioned as P = P∞ ∪ P0 and Q = Q∞ ∪ Q0, and
πij = −∞, πij = +∞ for (i, j) ∈ P∞ × Q∞ and πij = πij = 0 for other
(i, j). Fleiner’s fixed point theorem approach [21] seems to be independent
of the Fujishige–Tamura model.

Concepts and results of discrete convex analysis are also useful for other
problems of mathematical economics. For instance, Walrasian equilibria
of indivisible markets are discussed in [63, Chapter 11] and combinatorial
auctions are treated in [50]. See [89] for a survey.

Conclusion

Efficient algorithms are available for minimization of L-convex and M-convex
functions [63, Chapter 10]. The complexity analysis for the L-convex func-
tion minimization algorithm of [64] is improved in [48]. As other recent
papers we refer to [82, 90] for M-convex function minimization, and [37] for
the submodular flow problem, or equivalently for the Fenchel duality. Most
of the efficient algorithms employ scaling techniques based on proximity
theorems; see [38, 54, 72] for proximity theorems.

Discrete convex functions appear naturally in operations research. Mul-
timodular functions, which are L\-convex functions in disguise, are used in
the analysis of queueing systems (or more generally, discrete event systems)
[2, 3, 31, 65]. In inventory theory Miller [53] was a forerunner of discrete
convexity in the 1970’s and a recent paper of Zipkin [95] sheds a new light
on some classical results of Karlin, Scarf, and Morton.

A jump system [5] is a generalization of a matroid, a delta-matroid and a
base polyhedron of an integral polymatroid (or a submodular system). The
concept of M-convex functions can be extended to functions on constant-
parity jump systems [66]. For x, y ∈ Zn we call s ∈ Zn an (x, y)-increment if
s = χi for some i ∈ supp+(y−x) or s = −χi for some i ∈ supp−(y−x). We
call f : Zn → R an M-convex function (on a constant-parity jump system)
if it satisfies the following exchange property: For any x, y ∈ domZf and
any (x, y)-increment s, there exists an (x + s, y)-increment t such that

f(x) + f(y) ≥ f(x + s + t) + f(y − s − t).

It then follows that domZf is a constant-parity jump system. Theorem 2.7
can be extended and operations such as infimal convolution can be general-
ized. See [44, 45, 46, 84].

40



My research of discrete convex analysis was started during my stay at
Forschungsinstitut für Diskrete Mathematik, Universität Bonn, 1994–1995.
In fact, the papers at the earlier stage were published as technical reports of
the institute: [55] as No. 95837-OR (January 1995), [56] as No. 95838-OR
(January 1995), [58] as No. 95839-OR (January 1995), [60] as No. 95843-
OR (March 1995), [57] as No. 95848-OR (June 1995). On this occasion I
would like to express my deep gratitude to Professor Bernhard Korte for
providing me with comfortable working environment.

I am indebted to Satoru Fujishige, Satoru Iwata, Shungo Koichi, Satoko
Moriguchi, Akiyoshi Shioura, and Akihisa Tamura for helpful comments.

This work is supported by a Grant-in-Aid for Scientific Research from the
Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

[1] A. Ageev and M. Sviridenko: Pipage rounding: A new method of con-
structing algorithms with proven performance guarantee, Journal of
Combinatorial Optimization, 8 (2004), 307–328.

[2] E. Altman, B. Gaujal, and A. Hordijk: Multimodularity, convexity,
and optimization properties, Mathematics of Operations Research, 25
(2000), 324–347.

[3] E. Altman, B. Gaujal, and A. Hordijk: Discrete-Event Control of
Stochastic Networks: Multimodularity and Regularity, Lecture Notes
in Mathematics, 1829, Springer-Verlag, Heidelberg, 2003.

[4] H.-J. Bandelt and A. W. M. Dress: A canonical decomposition theory
for metrics on a finite set, Advances in Mathematics, 92 (1992), 47–105.

[5] A. Bouchet and W. H. Cunningham: Delta-matroids, jump systems,
and bisubmodular polyhedra, SIAM Journal on Discrete Mathematics,
8 (1995), 17–32.

[6] P. Buneman: The recovery of trees from measures of dissimilarity, in:
R. F. Hodson, D. G. Kendall, and P. Tautu, eds., Mathematics in the
Archaeological and Historical Sciences, Edinburgh University Press, Ed-
inburgh, 1971, 387–395.

[7] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák: Maximizing a sub-
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