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Abstract

This paper sheds a new light on submodular function minimiza-
tion and maximization from the viewpoint of discrete convex analysis.
L\-convex functions and M\-concave functions constitute subclasses of
submodular functions on an integer interval. Whereas L\-convex func-
tions can be minimized efficiently on the basis of submodular (set)
function minimization algorithms, M\-concave functions are identified
as a computationally tractable subclass for maximization.

1 Introduction

A function f : S → R defined on a set S of integer vectors is called submod-
ular if

f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y) (∀x, y ∈ S),

where x ∨ y and x ∧ y denote, respectively, the vectors of componentwise
maxima and minima, and S is assumed to be closed under the operations
of ∨ and ∧. In the special case of S = {0, 1}n such f can be identified with
a submodular set function.

This paper sheds a new light on submodular function minimization and
maximization from the viewpoint of discrete convex analysis. Discrete con-
vex analysis [27, 29, 30, 32] is a general theoretical framework for solvable
discrete optimization problems by means of a combination of the ideas in
continuous optimization and combinatorial optimization. The theory ex-
tends the direction set forth by J. Edmonds, A. Frank, S. Fujishige, and L.
Lovász [6, 10, 11, 22]; see also [12, Chapter VII]. The reader is referred to
[12, 41] for submodular function theory.

The objective of this paper is to explain the following:
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1. L\-convex functions and M\-concave functions constitute subclasses of
submodular functions on an integer interval.

2. L\-convex functions can be minimized efficiently on the basis of sub-
modular (set) function minimization algorithms.

3. Functions represented as the sum of a small number of M\-concave
functions form computationally tractable subclasses for maximization.

We denote the set of all real numbers by R, and put R = R ∪ {+∞}
and R = R ∪ {−∞}. Similarly, we denote the set of all integers by Z, and
put Z = Z ∪ {+∞} and Z = Z ∪ {−∞}.

2 Discrete Convex Functions

In this section we describe two convexity concepts defined for functions in
discrete variables f : Zn → R. We denote its effective domain and the set
of its minimizers by

domZf = {x ∈ Zn | f(x) ∈ R},
argminZf = {x ∈ Zn | f(x) ≤ f(y) (∀y ∈ Zn)}.

For any function f : Zn → R that can be qualified as a “discrete convex
function” it would be natural to expect the following properties:

1. Function f is extensible to a convex function on Rn.

2. Local optimality (or minimality) guarantees global optimality.

3. Duality theorems such as min-max relation and separation hold.

It should be clear that f : Zn → R is said to be convex-extensible if there
exists a convex function f : Rn → R such that f(x) = f(x) for all x ∈ Zn.

2.1 L-convex functions

The concept of L-convex functions [13, 27] is explained here by featuring an
equivalent variant thereof, called L\-convex functions (“L\” should be read
“el natural”).

First recall that a function g : Zn → R is called submodular if

g(p) + g(q) ≥ g(p ∨ q) + g(p ∧ q) (p, q ∈ Zn), (2.1)

where p ∨ q and p ∧ q denote the vectors of componentwise maxima and
minima, respectively, i.e.,

(p ∨ q)i = max(pi, qi), (p ∧ q)i = min(pi, qi). (2.2)
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As a strengthening of submodularity we consider translation submodu-
larity:

g(p) + g(q) ≥ g((p−α1)∨ q) + g(p∧ (q + α1)) (α ∈ Z+, p, q ∈ Zn), (2.3)

where 1 = (1, 1, . . . , 1) and Z+ denotes the set of nonnegative integers.
Then we say that a function g : Zn → R is L\-convex if it satisfies (2.3) and
domZg 6= ∅.

With this definition we can actually have the following expected state-
ment. Note here that submodularity (2.1) alone does not imply convex-
extensibility.

Theorem 2.1. An L\-convex function g : Zn → R is convex-extensible.

An L-convex function is defined as a function g : Zn → R that satisfies
submodularity (2.1) and

g(p + 1) = g(p) + r (p ∈ Zn) (2.4)

for some r ∈ R (which is independent of p), where domZg 6= ∅ is assumed.
It is known that g is L-convex if and only if it is an L\-convex function that
satisfies (2.4). Thus L-convex functions form a subclass of L\-convex func-
tions. However, they are essentially the same, in that L\-convex functions
in n variables can be identified, up to the constant r in (2.4), with L-convex
functions in n + 1 variables; see [30, Section 7.1] for details.

Remark 2.1. For a function g : Zn → R in discrete variables, the translation
submodularity (2.3) is known to be equivalent to discrete midpoint convexity
of [7]:

g(p) + g(q) ≥ g

(⌈
p + q

2

⌉)
+ g

(⌊
p + q

2

⌋)
(p, q ∈ Zn),

where, for z ∈ R in general, dze denotes the smallest integer not smaller
than z (rounding-up to the nearest integer) and bzc the largest integer not
larger than z (rounding-down to the nearest integer), and this operation is
extended to a vector by componentwise applications.

L-convexity can also be defined for functions in continuous variables
[34, 35, 36]. A convex function g : Rn → R is called L\-convex if

g(p)+ g(q) ≥ g((p−α1)∨ q)+ g(p∧ (q +α1)) (α ∈ R+, p, q ∈ Rn), (2.5)

where R+ denotes the set of nonnegative reals, and the effective domain of
g,

domRg = {x ∈ Rn | g(x) ∈ R},
is assumed to be nonempty. An L-convex function (in continuous variables)
is defined as an L\-convex function g : Rn → R that satisfies

g(p + α1) = g(p) + αr (α ∈ R, p ∈ Rn) (2.6)
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for some r ∈ R (which is independent of p and α). L-convex functions and
L\-convex functions are essentially the same, in that L\-convex functions in
n variables can be identified, up to the constant r in (2.6), with L-convex
functions in n + 1 variables.

2.2 M-convex functions

Another kind of discrete convex functions, called M-convex functions, [26,
27, 33], is explained here by featuring an equivalent variant thereof, called
M\-convex functions (“M\” should be read “em natural”).

The characteristic vector of a subset X of V = {1, . . . , n} is denoted by
χX ∈ {0, 1}n. For i ∈ V , we write χi for χ{i}, which is the ith unit vector,
and χ0 = 0 (zero vector). For a vector z ∈ Rn, we define the positive and
negative supports of z as

supp+(z) = {i | zi > 0}, supp−(z) = {j | zj < 0}.

For a function f : Zn → R in discrete variables we consider the following
condition: For any x, y ∈ domZf and any i ∈ supp+(x − y), there exists
j ∈ supp−(x − y) ∪ {0} such that

f(x) + f(y) ≥ f(x − χi + χj) + f(y + χi − χj), (2.7)

which is referred to as the exchange property. A function f : Zn → R having
this exchange property is called an M\-convex function, where domZf 6= ∅
is assumed. The effective domain domZf of an M\-convex function f is a
g-polymatroid.

With this definition we can obtain the following statement, comparable
to Theorem 2.1.

Theorem 2.2. An M\-convex function f : Zn → R is convex-extensible.

An M-convex function is defined as an M\-convex function f that satisfies
(2.7) with j ∈ supp−(x − y) (i.e., j 6= 0). This is equivalent to saying that
f is an M-convex function if and only if it is M\-convex and domZf ⊆ {x ∈
Zn |

∑n
i=1 xi = r} for some r ∈ Z. Thus M-convex functions form a subclass

of M\-convex functions. However, they are essentially the same, in that M\-
convex functions in n variables can be obtained as projections of M-convex
functions in n + 1 variables; see [30, Section 6.1] for details.

Remark 2.2. Valuated matroids, introduced in [4, 5], can be identified with
M-concave set functions. To be more specific, a set function ω : 2V → R
is a valuated matroid if and only if the function f : Zn → R defined by
f(χX) = −ω(X) for X ⊆ V with domZf ⊆ {0, 1}n, is an M-convex function.
See [24, 25] and [28, Chapter 5] for more on valuated matroids.
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M-convexity can also be defined for functions in continuous variables
[34, 35, 36]. We say that a convex function f : Rn → R is M\-convex if, for
any x, y ∈ domRf and any i ∈ supp+(x− y), there exist j ∈ supp−(x− y)∪
{0} and a positive real number α0 such that

f(x) + f(y) ≥ f(x − α(χi − χj)) + f(y + α(χi − χj)) (2.8)

for all α ∈ R with 0 ≤ α ≤ α0.
An M-convex function (in continuous variables) is defined as an M\-

convex function f : Rn → R that satisfies (2.8) with j ∈ supp−(x − y)
(i.e., j 6= 0). This is equivalent to saying that f is M-convex if and only
if it is M\-convex and domRf ⊆ {x ∈ Rn |

∑n
i=1 xi = r} for some r ∈ R.

M-convex functions and M\-convex functions are essentially the same, in
that M\-convex functions in n variables can be obtained as projections of
M-convex functions in n + 1 variables.

2.3 Conjugacy

Conjugacy under the Legendre transformation is one of the most appealing
facts in convex analysis. In discrete convex analysis, the discrete Legendre
transformation gives a one-to-one correspondence between L-convex func-
tions and M-convex functions.

For a function f : Zn → R with domZf 6= ∅, the discrete version of the
Legendre transformation is defined as

f•(p) = sup{〈p, x〉 − f(x) | x ∈ Zn} (p ∈ Rn), (2.9)

where 〈p, x〉 =
∑n

i=1 pixi is the inner product of two vectors p = (pi) and
x = (xi). We call (2.9) the discrete Legendre(–Fenchel) transformation, and
the function f• : Rn → R the conjugate of f .

Theorem 2.3. For an M\-convex function f : Zn → R, the conjugate
function f• : Rn → R is a (locally polyhedral) L\-convex function. For
an L\-convex function g : Zn → R, the conjugate function g• : Rn → R
is a (locally polyhedral) M\-convex function. Similarly for M-convex and
L-convex functions.

For an integer-valued function f : Zn → Z, the conjugate function f•(p)
is integer for an integer vector p. Hence (2.9) with p ∈ Zn defines a trans-
formation of f : Zn → Z to f• : Zn → Z. We refer to (2.9) with p ∈ Zn as
(2.9)Z.

The conjugacy theorem for discrete M-convex and L-convex functions
reads as follows.

Theorem 2.4 ([27]). The discrete Legendre transformation (2.9)Z gives
a one-to-one correspondence between the classes of all integer-valued M\-
convex functions and L\-convex functions in discrete variables. Similarly
for M-convex and L-convex functions.
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It should be clear that the first statement above means that, for an
integer-valued M\-convex function f : Zn → Z, the function f• in (2.9)Z
is an integer-valued L\-convex function and f•• = f holds, where f•• is a
short-hand notation for (f•)• using the discrete Legendre transformation
(2.9)Z, and similarly when f is L\-convex.

The conjugacy between M-convex and L-convex functions is also valid
for functions in continuous variables. For a function f : Rn → R with
domRf 6= ∅, the conjugate f• : Rn → R is defined by

f•(p) = sup{〈p, x〉 − f(x) | x ∈ Rn} (p ∈ Rn). (2.10)

Theorem 2.5 ([34]). The Legendre transformation (2.10) gives a one-to-
one correspondence between the classes of all polyhedral M\-convex functions
and L\-convex functions. Similarly for M-convex and L-convex functions.

Theorem 2.6 ([35]). The Legendre transformation (2.10) gives a one-to-one
correspondence between the classes of all closed proper M\-convex functions
and L\-convex functions. Similarly for M-convex and L-convex functions.

3 Convexity, Concavity, and Submodularity

In this section we consider functions f : [a, b]Z → R defined on an integer
interval [a, b]Z = {x ∈ Zn | a ≤ x ≤ b}, where a ∈ Zn and b ∈ Zn.
We are particularly concerned with submodular functions, which satisfy, by
definition, the following inequality:

f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y) (x, y ∈ [a, b]Z). (3.1)

Both L\-convex functions and M\-concave functions constitute subclasses
of submodular functions on [a, b]Z.

Theorem 3.1. (1) An L\-convex function f : [a, b]Z → R is submodular.
(2) An M\-concave function f : [a, b]Z → R is submodular.

Proof. (1) This follows from the fact that translation submodularity (2.3)
with α = 0 coincides with submodularity (2.1).

(2) For x ∈ [a, b]Z, the exchange property (2.7) for (x+χi +χj , x) yields

f(x + χi) + f(x + χj) ≥ f(x + χi + χj) + f(x) (i 6= j).

This is the so-called local submodularity, from which (3.1) follows by induc-
tion on ||x − y||1. See the proof of Theorem 6.19 in [30] for detail.

L\-convex functions are convex-extensible submodular functions by The-
orem 2.1 and Theorem 3.1 (1). By Theorem 2.2 and Theorem 3.1 (2), on
the other hand, M\-concave functions are concave-extensible submodular
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functions. Recall that submodularity (3.1) alone does not imply convex-
extensibility nor concave-extensibility. It is also mentioned that there ex-
ist convex-extensible submodular functions that are not L\-concave, and
that there exist concave-extensible submodular functions that are not M\-
concave.

In the case of a = 0 and b = 1 we have f : [0,1]Z → R, with which a
set function ρ : 2V → R is associated naturally by

ρ(X) = f(χX) (X ⊆ V ). (3.2)

Then the submodularity (3.1) is translated to

ρ(X) + ρ(Y ) ≥ ρ(X ∪ Y ) + ρ(X ∩ Y ) (X,Y ⊆ V ), (3.3)

which is the submodular inequality for set functions. We say a set function
ρ : 2V → R is L\-convex if the function f associated with ρ by (3.2) is
L\-convex on [0,1]Z. Similarly for an M\-concave set function.

Theorem 3.2. (1) An L\-convex set function is submodular, and the con-
verse is also true.

(2) An M\-concave set function is submodular.

Not every submodular set function is M\-concave, as the following ex-
ample shows. Thus M\-concave set functions form a proper subclass of
submodular set functions.

Example 3.1. This is an example of a submodular set function that is not
M\-concave. Let ρ be defined on V = {1, 2, 3} as ρ(∅) = 0, ρ({2, 3}) = 2,
ρ({1}) = ρ({2}) = ρ({3}) = ρ({1, 2}) = ρ({1, 3}) = ρ({1, 2, 3}) = 1. The
exchange property (2.7) fails for the associated f with x = χ{2,3}, y = χ{1}
and i = 2.

Theorem 3.1 carries over to functions in continuous variables, as follows,
where [a, b]R = {x ∈ Rn | a ≤ x ≤ b}.

Theorem 3.3. (1) An L\-convex function f : [a, b]R → R is submodular.
(2) An M\-concave function f : [a, b]R → R is submodular.

4 Submodular Function Minimization

Minimization of submodular functions is one of the most fundamental prob-
lems in discrete optimization. General submodular functions on integer lat-
tices are computationally tractable for minimization, and L\-convex func-
tions form a subclass of submodular functions that admits natural ap-
proaches such as the descent method and the scaling technique.
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4.1 Submodular functions on integer lattices

Importance of the submodular set function minimization problem seems to
have been recognized around 1970 by Edmonds [6] and others, and com-
binatorial strongly polynomial algorithms were found in 1999 by Iwata–
Fleischer–Fujishige [16] and Schrijver [39]. The (presently) fastest algorithm
is due to Orlin [38]. It is worth noting that these algorithms can cope with
submodular set functions ρ : 2V → R defined effectively on a ring family.
See surveys [15, 23] for details.

Let g : Zn → R be a submodular function, which implies that domZg is
a distributive sublattice of Zn with respect to (∨,∧) of (2.2). It is assumed
that domZg is a finite set with `1-size K1 = max{‖p − q‖1 | p, q ∈ domZg}.
By Birkhoff’s representation theorem the distributive lattice (domZg,∨,∧)
can be represented in the form of a ring family on some underlying set Ṽ ,
where the size of Ṽ is equal to the length of a maximal chain of domZg. Thus,
with an appropriate representation of (domZg,∨,∧), the function g can be
minimized using a submodular function minimization algorithm, where the
time complexity is a polynomial in n and |Ṽ |. Note that |Ṽ | = K1.

4.2 L\-convex functions

L\-convex functions form a subclass of submodular functions that admits a
local characterization of global minimality and a natural steepest descent
algorithm.

Theorem 4.1 ([30, Theorem 7.14]). Let g : Zn → R be an L\-convex
function. A point p ∈ domZg is a global minimum of g if and only if it is a
local minimum in the sense that

g(p) ≤ min{g(p − q), g(p + q)} (∀q ∈ {0, 1}n). (4.1)

Steepest descent algorithm for L\-convex function g
S0: Find a vector p ∈ domZg.
S1: Find ε ∈ {1,−1} and X ⊆ V that minimize g(p + εχX).
S2: If g(p) ≤ g(p + εχX), then stop (p is a minimizer of g).
S3: Set p := p + εχX and go to S1.

Step S1 amounts to minimizing a pair of submodular set functions

ρ+
p (X) = g(p + χX) − g(p), ρ−p (X) = g(p − χX) − g(p).

This can be done by using the existing algorithms for submodular set func-
tion minimization. Assuming that a minimizer of a submodular set function
can be computed with O(σ(n)) function evaluations and O(τ(n)) arithmetic
operations1, and denoting by F an upper bound on the time to evaluate g,
we can perform Step S1 in O(σ(n)F + τ(n)) time.

1σ(n) = n5 and τ(n) = n6 by Orlin’s algorithm [38].
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As to the number of iterations of the above algorithm a sharp upper
bound has been shown by Kolmogorov–Shioura [19] as an improvement upon
[31]. We denote by K∞ the `∞-size of the effective domain of g, i.e.,

K∞ = max{‖p − q‖∞ | p, q ∈ domZg}.

Theorem 4.2 ([19]). The number of iterations of the steepest descent algo-
rithm for an L\-convex function is bounded by 2K∞ + 2.

The steepest descent algorithm can be made more efficient with the aid
of a scaling technique. Efficiency of the resulting algorithm is guaranteed by
the complexity bound in Theorem 4.2 and a proximity theorem (Theorem
4.3 below).

Steepest descent-scaling algorithm for L\-convex function g

S0: Find a vector b ∈ domZg, and set p∗ := 0, α := 2dlog2 K∞e.
S1: If α < 1, then stop (b + p∗ is a minimizer of g).
S2: Find an integer vector p that minimizes g(αp + b) in the range of

2p∗ − n1 ≤ p ≤ 2p∗ + n1.
S3: Set p∗ := p, α := α/2, and go to S1.

Note that the function g̃(p) = g(αp + b) is an L\-convex function. By
Theorem 4.3 below, there exists a minimizer p of g̃ satisfying 2p∗−n1 ≤ p ≤
2p∗ + n1. Then, by Theorem 4.2, the minimizer in Step S2 can be found in
O(n(σ(n)F + τ(n))) time by the steepest descent algorithm. The number of
executions of Step S2 is bounded by dlog2 K∞e. Thus the above algorithm
finds a minimizer of g in O(n(σ(n)F + τ(n))dlog2 K∞e) time.

Theorem 4.3 ([17], [30, Theorem 7.18]). Let g : Zn → R be an L\-convex
function, α a positive integer, and p ∈ domZg. If

g(p) ≤ min{g(p − αq), g(p + αq)} (∀q ∈ {0, 1}n),

then argminZg 6= ∅ and there exists p∗ ∈ argminZg such that

p − n(α − 1)1 ≤ p∗ ≤ p + n(α − 1)1.

5 Submodular Function Maximization

Maximization of a submodular set function is a difficult task in general.
Many NP-hard problems can be reduced to this problem. Also known is
that no polynomial algorithm exists in the ordinary oracle model (and this
statement is independent of the P6=NP conjecture) [18, 21, 22]. For approx-
imate maximization under matroid constraints the performance bounds of
greedy or ascent type algorithms were analyzed in [3, 8, 37] and, recently,
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a pipage rounding algorithm [1] has been designed for a subclass of sub-
modular functions in [2], which is extended in [42] to general nondecreasing
submodular functions with the aid of randomization.

M\-concave functions on {0, 1}-vectors form a subclass of submodular
set functions that are algorithmically tractable for maximization. This fact,
being compatible with our general understanding that concave functions are
easy to maximize, explains why certain submodular functions treated in the
literature are easier to maximize. To be specific, we have the following.

1. The greedy algorithm can be generalized for maximization of a single
M\-concave set function.

2. The matroid intersection algorithm can be generalized for maximiza-
tion of a sum of two M\-concave set functions.

3. The pipage rounding algorithm can be generalized for approximate
maximization of a sum of nondecreasing M\-concave set functions un-
der a matroid constraint.

Note that a sum of M\-concave set functions is not necessarily M\-
concave, though it is submodular. It is also mentioned that maximization
of a sum of three M\-concave set functions is NP-hard, since it includes the
three-matroid intersection problem as a special case.

In the following we dwell on the above three points by focusing on set
functions, although much of the argument carries over to functions on inte-
gers.

5.1 M\-concave set functions

A set function µ : 2V → R is said to be M\-concave2 if, for any X,Y ⊆ V
and i ∈ X \ Y , we have

µ(X) + µ(Y ) ≤ µ(X − i) + µ(Y + i) (5.1)

or else
µ(X) + µ(Y ) ≤ µ(X − i + j) + µ(Y + i − j) (5.2)

for some j ∈ Y \ X. Here we use short-hand notations X − i = X \ {i},
Y +i = Y ∪{i}, X−i+j = (X\{i})∪{j}, Y +i−j = (Y ∪{i})\{j}. We refer
to this property, consisting of (5.1) and (5.2) above, as the exchange property.
The effective domain of µ, denoted dom µ, is assumed to be nonempty. Note
that domµ is a g-matroid.

2In Section 3 we have defined a set function ρ : 2V → R to be M\-concave if the
function f : [0,1]Z → R associated with ρ by (3.2) is M\-concave. The definition here is
consistent with this.
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An M\-concave set function is submodular (cf. Theorem 3.2), but, not
every submodular set function is M\-concave (cf. Example 3.1). Thus M\-
concave set functions form a proper subclass of submodular set functions.
M\-concavity is known [14] to be equivalent to gross substitutes property,
which is used in economics; see, e.g., [20].

A linear function µ on a g-matroid on V , defined by a weight vector
w ∈ RV as

µ(X) =
{ ∑

{wi | i ∈ X} if X is a feasible (or independent) set,
−∞ otherwise,

(5.3)

is an M\-concave set function.
Another simple example of an M\-concave set function is given by µ(X) =

ϕ(|X|), where ϕ is a univariate concave function. This is a classical example
of a submodular function that connects submodularity and concavity [6, 22].

For a family of univariate concave functions {ϕA | A ∈ T } indexed by a
family T of subsets of V , the function

µ(X) =
∑
A∈T

ϕA(|A ∩ X|) (X ⊆ V )

is submodular. This function is M\-concave if, in addition, T is a laminar
family (i.e., A,B ∈ T ⇒ A ∩ B = ∅ or A ⊆ B or A ⊇ B).

Given a set of real numbers ai indexed by i ∈ V , the maximum-value
function

µ(X) = max
i∈X

ai (X ⊆ V )

is an M\-concave function, where µ(∅) is defined to be sufficiently small.
Given a matroid on V in terms of the family I of independent sets, the

rank function µ is defined by

µ(X) = max{|I| | I ∈ I, I ⊆ X} (X ⊆ V ), (5.4)

which denotes the maximum size of an independent set contained in X.

Theorem 5.1. Matroid rank function (5.4) is M\-concave.

Proof. Here we give two different proofs, although this is a special case of
the M\-concavity of the vector rank function of a matroid stated in [12,
p. 51].

First proof: Take X,Y ⊆ V and i ∈ X \ Y , and suppose that

µ(X) + µ(Y ) > µ(X − i) + µ(Y + i).

This implies that µ(X) − 1 = µ(X − i) and µ(Y ) = µ(Y + i). Hence i is
not a loop and it is contained in the closure (span) of Y . Therefore, there
exists a circuit C such that i ∈ C ⊆ Y ∪ {i}. Similarly, i is not a co-loop
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and there exists a co-circuit D such that i ∈ D ⊆ (V \ X) ∪ {i}. Since
|C ∩ D| ≥ 2, there exists some j ∈ (C ∩ D) \ {i} ⊆ Y \ X. For this j we
have µ(X) = µ(X − i + j) and µ(Y ) = µ(Y + i − j). This implies (5.2).

Second proof: Let f : Zn → Z be such that f(χX) = µ(X) for X ⊆ V
and domZf = {0, 1}n, and denote by f• the discrete Legendre transform of
f defined by (2.9)Z (i.e., (2.9) with p ∈ Zn). Since µ is submodular, f is
L\-convex, and hence f• is M\-convex by conjugacy (Theorem 2.4). On the
other hand, for X ⊆ V we have

f•(χX) = max
Y

{|X ∩ Y | − µ(Y ) | Y ⊆ V }

= max
Y

{|X ∩ Y | − µ(Y ) | X ⊆ Y ⊆ V }

= max
Y

{|X| − µ(Y ) | X ⊆ Y ⊆ V }

= |X| − µ(X).

Since f• is M\-convex, this expression shows that µ is M\-concave.

A weighted matroid rank function is a function represented as

µ(X) = max{
∑
i∈I

wi | I ∈ I, I ⊆ X} (X ⊆ V ) (5.5)

with w ∈ RV , where w is not assumed to be nonnegative.

Theorem 5.2 ([40]). Weighted matroid rank function (5.5) is M\-concave.

Proof. The original proof of Shioura [40] relies on the convolution theorem
[30, Theorem 6.13 (8)] for M\-concave functions. Here we give an elementary
proof on the basis of the simultaneous exchange property of independent
sets:

For any I, J ∈ I and i ∈ I \ J , either I − i, J + i ∈ I or
I − i + j, J + i − j ∈ I for some j ∈ J \ I.

Take X,Y ⊆ V and i ∈ X \ Y . Let I and J be independent subsets of X
and Y , respectively, such that µ(X) = w(I) and µ(Y ) = w(J). If i 6∈ I,
then

µ(X − i) ≥ w(I) = µ(X), µ(Y + i) ≥ µ(Y ),

which implies (5.1). So assume i ∈ I. If J + i ∈ I, then

µ(X − i) ≥ w(I − i) = µ(X) − wi, µ(Y + i) ≥ w(J + i) = µ(Y ) + wi,

which implies (5.1). So assume J + i 6∈ I. Then we have the second case
in the simultaneous exchange axiom of I for I, J , i. That is, there exists
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j ∈ J \ I such that I − i + j, J + i− j ∈ I. If j ∈ X, then I − i + j ⊆ X − i,
J + i − j ⊆ Y + i, and hence

µ(X − i) ≥ w(I − i + j) = µ(X) − wi + wj ,

µ(Y + i) ≥ w(J + i − j) = µ(Y ) + wi − wj ,

which implies (5.1). If j 6∈ X, then j ∈ Y \ X, and

µ(X − i + j) ≥ w(I − i + j) = µ(X) − wi + wj ,

µ(Y + i − j) ≥ w(J + i − j) = µ(Y ) + wi − wj ,

which implies (5.2).

Example 5.1. A polymatroid rank function is not necessarily M\-concave.
Let V = {1, 2, 3, 4} and define µ : 2V → R by µ(∅) = 0, µ({i}) = 2
(i ∈ V ), µ({1, 2}) = µ({3, 4}) = 4, µ({1, 3}) = µ({1, 4}) = µ({2, 3}) =
µ({2, 4}) = 3, µ(X) = 4 if |X| ≥ 3. The exchange property fails, since for
X = {1, 2}, Y = {3, 4} there exists no i ∈ X \ Y such that µ(X) + µ(Y ) ≤
µ(X − i) + µ(Y + i), nor (i, j) such that i ∈ X \ Y , j ∈ Y \ X, and
µ(X) + µ(Y ) ≤ µ(X − i + j) + µ(Y + i − j). This example is due to A.
Shioura.

5.2 Greedy algorithm

M\-concave set functions admit the following local characterization of global
maximum.

Theorem 5.3. Let µ : 2V → R be an M\-concave set function. For a subset
X ∈ domµ, we have µ(X) ≥ µ(Y ) (∀Y ⊆ V ) if and only if

µ(X) ≥ max
i∈X,j∈V \X

{µ(X − i + j), µ(X − i), µ(X + j)}.

For maximization of an M\-concave set function µ the following natural
greedy algorithm works. It is assumed that ∅ ∈ domµ.

S0: Put X := ∅.
S1: Find j ∈ V \ X that maximizes µ(X + j).
S2: If µ(X) ≥ µ(X + j), then stop (X is a maximizer of µ).
S3: Set X := X + j and go to S1.

This algorithm may be regarded as a variant of the algorithm of Dress–
Wenzel [4] for valuated matroids, and the validity can be shown similarly.

Theorem 5.4. For an M\-concave set function µ : 2V → R, the family of
maximizers of µ, argmaxµ, is a g-matroid.
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Proof. Let X and Y be maximizers of µ, and let i ∈ X \ Y . By (5.1) and
(5.2) we see that both X − i and Y + i are maximizers, or else there exists
some j ∈ Y \ X such that both X − i + j and Y + i − j are maximizers of
µ. This shows that argmax µ is a g-matroid.

It is mentioned that Theorems 5.3 and 5.4 as well as the greedy algorithm
carry over to an M\-concave function f : Zn → R on integers. In particular
we have the following local characterization of global maximum.

Theorem 5.5 ([26], [30, Theorem 6.26]). Let f : Zn → R be an M\-concave
function. A point x ∈ domZf is a global maximum of f if and only if it is
a local maximum in the sense that

f(x) ≥ max
1≤i,j≤n

{f(x − χi + χj), f(x − χi), f(x + χj)}.

5.3 Intersection algorithm

In this section we shed a new light on the matroid intersection/union from
the viewpoint of discrete convex analysis.

Let ρ1 and ρ2 be the rank functions of two matroids on ground set V .
For the maximum size of a common independent set of matroids (V, ρ1) and
(V, ρ2) we have a well-known formula:

max
X

{ρ1(X) + ρ2(X) − |X|} = min
Y

{ρ1(Y ) + ρ2(V \ Y )}. (5.6)

For the rank of the union of two matroids (V, ρ1) and (V, ρ2) we have another
well-known formula:

max
X

{ρ1(X) + ρ2(V \ X)} = min
Y

{ρ1(Y ) + ρ2(Y ) − |Y |} + |V |. (5.7)

Edmonds’s matroid intersection/union algorithms show that we can effi-
ciently maximize the submodular functions appearing on the left-hand sides
of (5.6) and (5.7). Why can we maximize these submodular functions effi-
ciently?

In Theorem 5.1 we have seen that matroid rank functions are M\-concave.
Hence both ρ1(X)+ (ρ2(X)−|X|) and ρ1(X)+ρ2(V \X), to be maximized
in (5.6) and (5.7), are submodular functions that are represented as a sum of
two M\-concave set functions. This is a crucial observation here. In fact, a
sum of arbitrary two M\-concave set functions can be maximized in strongly
polynomial time by an adaptation of the valuated matroid intersection al-
gorithm [24, 25]; see also [28, Chapter 5].

The following is an optimality criterion, of duality nature, for the prob-
lem of maximizing a sum of two M\-concave set functions. Note that a sum
of M\-concave set functions is no longer M\-concave in general and the opti-
mality criterion in Theorem 5.3 does not apply. For a vector p ∈ Rn we use
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the notations µ1 − p and µ2 + p to mean the set functions defined, respec-
tively, by (µ1 − p)(X) = µ1(X)− p(X) and (µ2 + p)(X) = µ2(X)+ p(X) for
X ⊆ V , where p(X) =

∑
i∈X pi.

Theorem 5.6. For M\-concave set functions µ1, µ2 : 2V → R and a subset
X ∈ domµ1 ∩ domµ2 we have X ∈ argmax (µ1 + µ2) if and only if there
exists p ∈ Rn such that X ∈ argmax (µ1−p)∩argmax (µ2 +p). In addition,
for such p we have

argmax (µ1 + µ2) = argmax (µ1 − p) ∩ argmax (µ2 + p).

Moreover, if µ1 and µ2 are integer-valued, we can choose integer-valued p ∈
Zn.

The duality nature of Theorem 5.6 is revealed by rewriting the claim as

max
X

{µ1(X) + µ2(X)} = min
p

{max(µ1 − p) + max(µ2 + p)}, (5.8)

where the minimum on the right-hand side may be taken over integer vectors
p when µ1 and µ2 are integer-valued. The formula (5.6) of matroid inter-
section can be understood as a special case of (5.8) with µ1(X) = ρ1(X)
and µ2(X) = ρ2(X) − |X|. On assuming that p is of the form p = χZ − χY

we can easily see that the right-hand side of (5.8) reduces to that of (5.6).
Similarly, the formula (5.7) of matroid union can be understood as a special
case of (5.8) with µ1(X) = ρ1(X) and µ2(X) = ρ2(V \ X).

Theorem 5.6 is a generalization of Frank’s “weight splitting” theorem
[9] for the weighted matroid intersection problem. Given a weight vector w,
define µ1(X) = w(X) if X is independent in the first matroid, and = −∞
otherwise (see (5.3)); and µ2(X) = 0 if X is independent in the second
matroid, and = −∞ otherwise. Then a splitting w = w1 + w2 corresponds
to p = w2.

We now turn to the family of maximizers in the formula (5.6) of matroid
intersection. Let F be the family of maximizers on the left-hand side, i.e.,

F = argmax X(ρ1(X) + ρ2(X) − |X|).

Note that the minimal elements of F are exactly the maximum common
independent sets. Theorem 5.6 implies the following.

Theorem 5.7. F = G1 ∩ G2 for some g-matroids G1 and G2.

We prove this by establishing a more general statement involving

F(a1, a2, w) = argmax X(a1ρ1(X) + a2ρ2(X) + w(X)),

which contains parameters, a1 ≥ 0 and a2 ≥ 0, and a modular function (or
a weight vector) w.
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Theorem 5.8. F(a1, a2, w) = G1 ∩ G2 for some g-matroids G1 and G2.

Proof. Take µ1(X) = a1ρ1(X) and µ2(X) = a2ρ2(X) + w(X) in Theorem
5.6, and put G1 = argmax (µ1 − p) and G2 = argmax (µ2 + p), both of which
are g-matroids by Theorem 5.4.

It is mentioned that Theorem 5.6 as well as the valuated matroid intersec-
tion algorithm carries over to a pair of M\-concave functions f1, f2 : Zn → R
on integers. In particular we have the following theorem, a version of the
M-convex intersection theorem ([26, 27], [30, Theorem 8.17]). Note that the
sum of M-concave functions is no longer M-concave in general and Theorem
5.5 does not apply. We use notations f1 − p, f2 + p for functions defined by
(f1 − p)(x) = f1(x) − 〈p, x〉, (f2 + p)(x) = f2(x) + 〈p, x〉 for x ∈ Zn.

Theorem 5.9. For M\-concave functions f1, f2 : Zn → R and a point
x ∈ domZf1 ∩ domZf2 we have x ∈ argmaxZ(f1 + f2) if and only if there
exists p ∈ Rn such that x ∈ argmaxZ(f1−p)∩argmaxZ(f2+p). In addition,
for such p we have

argmaxZ(f1 + f2) = argmaxZ(f1 − p) ∩ argmaxZ(f2 + p).

Moreover, if f1 and f2 are integer-valued, we can choose integer-valued p ∈
Zn.

5.4 Pipage rounding algorithm

Let ρ be a nondecreasing submodular set function on V and (V, I) be a
matroid on V with the family I of independent sets. We consider the prob-
lem of maximizing ρ(X) subject to X ∈ I. It is assumed that the function
evaluation oracle for ρ and the membership oracle for I are available.

A recent paper of Calinescu–Chekuri–Pál–Vondrák [2] proposes a pipage
rounding framework for approximate solution of this problem, showing that
it works if the function ρ is represented as a sum of weighted matroid rank
functions (5.5). Subsequently, it is pointed out by Shioura [40] that this
approach can be extended to the class of functions ρ represented as a sum
of nondecreasing M\-concave functions.

The framework of [2] consists of three major steps.

1. Define a continuous relaxation: maximize f(x) subject to x ∈ P , where
P is the matroid polytope (convex hull of the characteristic vectors
of independent sets) of (V, I), and f(x) is a nondecreasing concave
function on P such that f(χX) = ρ(X) for all X ⊆ V .

2. Find an (approximately) optimal solution x∗ ∈ P of the continuous
relaxation.
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3. Round the fractional vector x∗ ∈ P to a {0, 1}-vector x̂ ∈ P by ap-
plying the “pipage rounding scheme,” and output the corresponding
subset X̂ (such that χX̂ = x̂) as an approximate solution to the origi-
nal problem.

This algorithm, if computationally feasible at all, is guaranteed to output
a (1− 1/e)-approximate solution, where e denotes the base of natural loga-
rithm.

In the case where ρ =
∑m

k=1 ρk with nondecreasing M\-concave set func-
tions ρk, the above algorithm can be executed in polynomial time. As the
concave extension f we may take the sum of the concave closures, say, ρk of
ρk for k = 1, . . . ,m. The continuous relaxation can be solved by the ellipsoid
method, which uses subgradients of ρk. The subgradients of ρk can in turn
be computed in polynomial time by exploiting the combinatorial structure
of M\-concave functions.
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