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Abstract
We propose a perturbation method for determining the (largest) group of in-

variance of a toric ideal defined in Aoki and Takemura [2008b]. In the perturbation
method, we investigate how a generic element in the row space of the configuration
defining a toric ideal is mapped by a permutation of the indeterminates. Compared
to the proof in Aoki and Takemura [2008b] which was based on stabilizers of a
subset of indeterminates, the perturbation method gives a much simpler proof of
the group of invariance. In particular, we determine the group of invariance for a
general hierarchical model of contingency tables in statistics, under the assumption
that the numbers of the levels of the factors are generic. We prove that it is a
wreath product indexed by a poset related to the intersection poset of the maximal
interaction effects of the model.

Key words and phrases: computational algebraic statistics, group action, stabilizer, su-
doku, wreath product.

1 Introduction

Since the introduction of the notion of Markov basis by Diaconis and Sturmfels [1998],
toric ideals associated with various statistical models have been intensively investigated by
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both statisticians and algebraists. In particular, statistical models for contingency tables
have been rich sources for new developments (e.g. Aoki and Takemura [2003], Dobra
and Sullivant [2004], Ohsugi and Hibi [2008]). The most important statistical model
for contingency tables is the hierarchical model (e.g. Lauritzen [1996]), which describes
interactions of factors in terms an abstract simplicial complex. The configuration and
the toric ideal associated with a hierarchical model is highly symmetric. Therefore it
is of considerable interest to determine the (largest) group of invariance of a general
hierarchical model. The group of invariance is the set of permutations of the cells of
contingency tables (or the indeterminates of a polynomial ring) which leaves the model
(or, equivalently, the kernel of the configuration, or the row space of the configuration)
invariant. Once the group of invariance is determined, a Markov basis (or equivalently
a system of binomial generators of the toric ideal) can be very concisely described (Aoki
and Takemura [2008a,b], Hara et al. [2007]) by a list of representative elements from the
orbits of the group. Without the consideration of symmetry, Markov bases for statistical
problems tend to be very large (e.g. Hemmecke and Malkin [2006]).

Given a particular statistical model it is often easy to guess a candidate group, under
which the model is clearly invariant. However as shown in Aoki and Takemura [2008b] it
is often difficult to prove that it is the largest group of invariance, i.e., every permutation
outside the group does not leave the model invariant. In this paper we propose a pertur-
bation method to determine the group of invariance. In this method, we look at a generic
element of the model and check if a permutation maps the element to another element
in the model. The candidate group is shown to be the largest group of invariance, if
every permutation which maps a sufficiently generic element of the model into the model
is necessarily an element of the candidate group. In order to show the effectiveness of
this approach, we determine the group of invariance for a general hierarchical model of
contingency tables, under the assumption that the numbers of the levels of the factors are
generic. We prove that the group of invariance is a wreath product indexed by a poset
related to the intersection poset of the maximal interaction effects of the hierarchical
model.

In our proof we need to establish some basic facts on hierarchical models, which are
not found in the existing statistical literature. These facts are of independent interest and
we present them in Section 4.

The organization of the paper is as follows. In Section 2 we give preliminaries and
present a perturbation lemma. In Section 3 we state our main theorem, which expresses
the group of invariance of a hierarchical model as an intersection of wreath products of
symmetric groups. In Section 4 we establish some basic facts on hierarchical models and
in Section 5 we give a proof of the main theorem. In Section 6 we rewrite the group of
invariance as a wreath product indexed by a poset related to the intersection poset of the
maximal interaction effects of the hierarchical model. We conclude the paper by some
discussions in Section 7.
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2 Preliminaries and a perturbation lemma

In this section we summarize preliminary facts on hierarchical models for contingency
tables, define the group of invariance and present a perturbation lemma, which is essential
for our proofs. We mainly follow the notation and terminology of Lauritzen [1996].

2.1 Preliminaries on hierarchical models for contingency tables

A hierarchical model for m-factor contingency tables with numbers of levels I1, . . . , Im

is specified by an abstract simplicial complex. Let ∆ be an abstract simplicial complex
([Kozlov, 2008, Section 2.1]) of subsets of a finite set {1, . . . ,m} = [m] of “factors”. We
denote the set of maximal simplices of ∆ by red ∆ = {D1, . . . , DK}. Maximal simplices
are called maximal interaction effects of the model. For each factor j ∈ [m], the set of
“levels”of j is denoted by Ij = {1, . . . , Ij} = [Ij], where Ij ≥ 2. The direct product of
the set of levels I = I1 × · · · × Im is the set of “cells” and its element i = (i1, . . . , im) is
a cell. A contingency table x = (x(i))i∈I is a vector of nonnegative integers indexed by
the cells. x(i) is the frequency of the cell i. In this paper, the symbol A ⊂ B means that
A is a subset of B. If A is a proper subset of B, then we write A ( B.

For a subset D ⊂ [m] of factors, let ID =
∏

j∈D Ij. A subvector of indices iD =
(ij)j∈D ∈ ID is called “a marginal cell”. When a particular cell i = (i1, . . . , im) is given,
iD is regarded as a subvector of i, i.e., the projection of i onto the coordinates in D. For
a contingency table x, its D-marginal table x+

D = (x+(iD))iD∈ID
is defined by

x+(iD) =
∑

j∈I, jD=iD

x(j).

Similar notation is used even when x(i) is not necessarily a nonnegative integer.
Fix I and a hierarchical model ∆ with red ∆ = {D1, . . . , DK}. Write ν =

∑K
k=1 |IDk

|
and p = |I|. For each i = (i1, . . . , im) ∈ I consider the following vector (cf. Ohsugi and
Hibi [2008])

e(1)(iD1) ⊕ e(2)(iD2) ⊕ · · · ⊕ e(K)(iDK
) ∈ Zν

where e(k)(iDk
) is a unit coordinate vector of dimension |IDk

| with 1 at the position iDk

and 0 everywhere else. The configuration A∆ for ∆ is the set of p vectors

A∆ =
{
e(1)(iD1) ⊕ · · · ⊕ e(K)(iDK

)
}

i∈I .

In this paper we regard A∆ as a ν × p integral matrix representing a linear map from Qp

to Qν . The matrix A∆ can also be expressed by Kronecker products of identity matrices
and vectors consisting of 1’s ([Takemura and Aoki, 2004, Section 2.1]). We also assume
that the domain Qp is equipped with the standard inner product and we identify Qp with
its dual space by the standard inner product.

Let {ui}i∈I be the set of indeterminates indexed by the cells and let {t(1)iD1
}iD1

∈ID1
∪· · ·∪

{t(K)
iDK

}iDK
∈IDK

denote the set of indeterminates indexed by the rows of A∆. The toric ideal
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IA∆
is the kernel of the polynomial homomorphism π∆ defined by π∆(ui) = t

(1)
iD1

×· · ·×t
(K)
iDK

.

The structure of the toric ideal is much more difficult than the kernel of matrix A∆.
However we will define the invariance property of IA∆

in terms of the invariance property
of the kernel of A∆.

As we discuss in Section 2.2 we are interested in the kernel of A∆ and the linear space
spanned by the rows of A∆. In the following we denote the kernel of A∆ and the the linear
space spanned by the rows of A∆ by ker A∆ and r(A∆), respectively. Note that kerA∆

and r(A∆) are orthogonal complements to each other: r(A∆) = (ker A∆)⊥.
In statistical theory, r(A∆) corresponds to a log-linear model of cell probabilities,

where the canonical parameter vector of the exponential family is specified to lie in the
linear space r(A∆). We use the single term “model” for ∆, r(A∆) and ker A∆ because
they correspond to each other.

The explicit form of ker A∆ and r(A∆) are well known in the literature on contingency
tables (e.g. Lauritzen [1996]). kerA∆ is written as

ker A∆ = {y | y+(iD) = 0,∀iD ∈ ID,∀D ∈ red ∆}. (1)

For D ⊂ [m], let θD : ID → Q denote a function defined on the set of marginal cells ID.
Then extend the domain of θD to I by θD(i) = θD(iD). We call θD a function (or a table)
depending only on the marginal cell iD. Let LD = {θD} ⊂ Qp denote the linear space of
these tables. Then

r(A∆) =
∑

D∈red ∆

LD, (2)

where the summation on the right-hand side denotes the subspace spanned by {LD}D∈red∆.
Note that if E ∈ ∆, then LE ⊂ LD for some D ∈ red ∆. Therefore the right-hand is
spanned by LE, E ∈ ∆.

2.2 The group of invariance of a toric ideal

Now we give a definition of the group of invariance of a toric ideal.
Let SI denote the symmetric group on I, i.e. an element g ∈ SI is a permutation of the

cells of I. Then g ∈ SI acts (from the left) on the |I|-dimensional rational vector space
Q|I| = {(y(i))i∈I} by the permutation of components: (gy)(i) = y(g−1(i)). Similarly g
acts on the set of indeterminates {ui}i∈I . If we regard g as a linear map from Q|I| to itself,
then it is represented by a permutation matrix. We denote the permutation matrix also by
g. Note that g is orthogonal. For a given subspace L ⊂ Q|I|, let GL = {g ∈ S|I| | gL = L}
denote the set-wise stabilizer of L.

Let A be a ν × p rational matrix as in the previous subsection. The symmetric
group Sp acts on the set of columns of A and on Qp. In Aoki and Takemura [2008b]
we defined the group of invariance for A as the set-wise stabilizer Gker A ⊂ Sp of ker A.
From the viewpoint of toric ideal, the group of invariance is the set of permutations of the
indeterminates, which leaves the toric ideal invariant. Let r(A) ⊂ Qp denote the linear
space spanned by the rows of A. By Proposition 1 of Aoki and Takemura [2008b], we
have Gker A = Gr(A).
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Our objective is to understand Gker A∆
= Gr(A∆) of a hierarchical model ∆.

2.3 A perturbation lemma

Here we present the following lemma.

Lemma 1. (Perturbation lemma) Let n, b be positive integers. There exist n positive
integers (Yl)

n
l=1, such that

{−b,−b + 1, . . . , b − 1, b}n 3 (cl)
n
l=1 7→

n∑
l=1

clYl (3)

is injective. Furthermore we can choose n vectors Y (j) = (Y
(j)
l )n

l=1, j = 1, . . . , n, such that
(3) is injective for each j and they constitute a basis of the vector space Qn.

Proof. Let Y
(j)
l = (2b + j)l−1, (l, j ∈ [n]). By the uniqueness of the base 2b + j expression

of positive integers, the map (cl)
n
l=1 7→

∑n
l=1 clY

(j)
l is injective. Furthermore Y

(j)
l , j =

1, . . . , n, are linearly independent in view of the van der Monde determinant.

In view of the above lemma, we define a generic contingency table belonging to r(A∆)
for a given set of cells I and a hierarchical model ∆ with red ∆ = {D1, . . . , DK}.

Definition 1. For n = ν =
∑K

k=1 |IDk
| and b = |I| choose (Yl)

n
l=1 such that (3) is

injective. Decompose (Yl)
n
l=1 into subvectors of sizes |IDk

|, k = 1, . . . , K, as (Yl)
n
l=1 =(

(θD1(iD1))iD1
∈ID1

, . . . , (θDK
(iDK

))iDK
∈IDK

)
and define

x(i) = θD1(iD1) + · · · + θDK
(iDK

), i ∈ I.

We call this x a generic element of r(A∆).

Note that an element g of the group of invariance Gr(A∆) has to map a generic element
x of r(A∆) into r(A∆). This fact helps us to determine Gr(A∆).

3 Group of invariance of hierarchical models

In this section we first consider a candidate group for the group of invariance Gker A∆
and

then present our main theorem, which states that the candidate group is indeed the group
of invariance, provided that the number of levels Ij, j ∈ [m], are generic.

For D ⊂ [m] consider a simplicial complex ∆D, which consists of all subsets of D, and
let ker A∆D = L⊥

D = {y | y+(iD) = 0, ∀iD ∈ ID}. Then ker A∆ =
∩

D∈red∆ ker A∆D by (1).
Let GD = Gker A

∆D
denote the group of invariance for ∆D. Then it is easily seen that∩

D∈red∆

GD ⊂ Gker A∆
. (4)
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Therefore we can take
∩

D∈red∆ GD as a candidate group for the group of invariance
Gker A∆

. As we will present an example of sudoku in Section 6, in general the inclusion in
(4) is strict. However if the number of levels Ij, j ∈ [m], are generic, then the inclusion
in (4) is in fact an equality.

Before stating our main theorem, we prove that GD = Gker A
∆D

is a wreath product of
symmetric groups. Let SID

denote the symmetric group acting on the set of D-marginal
cells and SI

DC
denote the symmetric group acting on the set of DC-marginal cells, where

DC is the complement of D. Let (SI
DC

)ID denote the set of all functions from ID to SI
DC

.

Then the wreath product SI
DC

wr SID
is a set W = SID

× (SI
DC

)ID . The operation of W

as a subgroup of SI is defined by its action to I, where g = (h, h̃) ∈ W acts on i ∈ I by
(gi)D = hiD and (gi)DC = h̃(iD)iDC . Then we have the following proposition.

Proposition 1. The group of invariance GD for the hierarchical model ∆D is given by
the wreath product SI

DC
wr SID

.

Proof. For notational simplicity, we prove the proposition for the case of m = 2 and
D = {1} and write i as (i, j). We denote SID

and SI
DC

by SI1 and SI2 , respectively. The
proof for a general case is totally the same by the consideration of a “pseudofactor” (see
Section 4 for details on pseudofactors).

First we show that SI2 wr SI1 ⊂ GD. Let x ∈ r(A∆D) = LD. Then x(i, j) = θ(i). Let
g ∈ SI2 wr SI1 . Then g(i, j) = (h(i), h̃i(j)), where h ∈ SI1 and h̃i ∈ SI2 for each i ∈ [I1].
Then

(gx)(i, j) = x(g−1(i, j)) = θ(g−1(i, j)1) = θ(h−1(i)),

where the subscript “1” in g−1(i, j)1 denotes the first component. Therefore gx ∈ LD.
We now show the converse GD ⊂ SI2 wr SI1 . In order to show this we assume that

x ∈ LD is generic, i.e. θ(i)’s are distinct. Suppose that (gx)(i, j) = θ(g−1(i, j)1) ∈ LD.
Then g−1(i, j)1 does not depend on j. Therefore we can write g−1(i, j) = (h(i), h̄(i, j)).
Since g is a bijection, h is a bijection and j 7→ h̄(i, j) is a bijection for each i. Therefore
g−1 ∈ SI2 wr SI1 .

Now we state the main theorem of this paper.

Theorem 1. Consider a hierarchical model ∆. Assume that |ID|, D ∈ red ∆, are distinct
and Ij > 2 except for at most one j ∈ [m]. Then the group of invariance Gker A∆

is given
by

Gker A∆
=

∩
D∈red ∆

(
SI

DC
wr SID

)
. (5)

A proof of this theorem is given in Section 5 after we establish several important
facts on hierarchical models in Section 4. As seen from the statement of Theorem 1, it
seems that the case of two-level factors Ij = 2 needs a special consideration, although the
requirements on the levels in Theorem 1 may be too restrictive. We discuss these points
again in Section 7. We will give some examples of Theorem 1 in Section 6 after rewriting
the right-hand side of (5).
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4 Some basic facts on hierarchical models

In this section we establish basic facts on hierarchical models. In particular we are in-
terested in the behavior of a hierarchical model, when a maximal simplex is deleted from
red ∆. This is because for our proof of Theorem 1 we employ the induction on the number
K = | red ∆| of maximal interaction effects in ∆.

Let E ⊂ [m]. We first define “incremental subspaces” of LE by

NE = LE ∩

(∑
j∈E

LE\{j}

)⊥

(6)

if E 6= ∅, and N∅ = L∅. Recall that LE is the linear space of tables depending only
on the marginal cell iD and that

∑
j∈E LE\{j} is the subspace spanned by {LE\{j}}j∈E.

The following lemma is easily proved and well known in statistical analysis of variance
(ANOVA).

Lemma 2. Let E and F be subsets of [m].

(1) NE = LE ∩ (
∑

j∈E L[m]\{j})
⊥.

(2) If E 6= F , then NE⊥NF .

(3) LE =
∑

F⊂E NF .

(4) For any simplicial complex ∆, r(A∆) =
∑

F∈∆ NF and ker A∆ =
∑

F /∈∆ NF .

(5) The orthogonal projection πNE
onto NE is given by

(πNE
x)(i) = (πNE

x)(iE) =
∑
F⊂E

(−1)|E\F |

|IF C |
x+(iF )

for all x ∈ QI. Recall that |E \ F | is the cardinality of E \ F .

Let D ∈ red ∆ be a maximal simplex. As in the beginning of Section 3 let ∆D denote
the simplicial complex consisting of all subsets of D. Note that r(A∆D) = LD. Now we
define ∆\D by “deleting the maximal interaction effects D from red ∆”, i.e. by

red ∆\D = (red ∆) \ D.

We have the following proposition.

Proposition 2. Let D ∈ red ∆. Then

r(A∆) ∩ ker A∆\D
= r(A∆D) ∩ ker A∆\D

=
∑

E∈∆D\∆\D

NE. (7)
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Proof. By Lemma 2, we have r(A∆) =
∑

E∈∆ NE and ker A∆\D
=

∑
E /∈∆\D

NE. Therefore

the equalities follow from the relation ∆ \ ∆\D = ∆D \ ∆\D.

We next define a partial difference operator. For j ∈ [m] and x = (x(i))i∈I define

(∂jx)(i) = x(i) − x(i1, . . . , ij−1, 1, ij+1, . . . , im), i = (i1, . . . , im).

For E ⊂ [m] define ∂E =
∏

j∈E ∂j. Note that for two subsets D,E ⊂ [m], E 6⊂ D, we
have

∂EθD = 0, ∀θD ∈ LD. (8)

It is obvious that for any D,E ⊂ [m] and θD ∈ LD, we have ∂EθD ∈ LD.
Concerning the partial difference operator ∂E we have the following proposition.

Proposition 3. For all E ⊂ [m], ker(∂E) =
∑

F 6⊃E NF .

Proof. We first show that the subspace ker ∂j is equal to L[m]\{j}. Let x ∈ ker ∂j. Then
x(i) = x(i1, . . . , ij−1, 1, ij+1, . . . , im) and therefore x ∈ L[m]\{j}. Conversely, if x ∈ L[m]\{j},
then ∂jx = 0. Therefore we see that ker ∂j = L[m]\{j}. Since the operators {∂j}j∈[m] are
mutually commutable projectors (and therefore simultaneously diagonalizable), we have
ker ∂E =

∑
j∈E ker ∂j. Therefore, by using Lemma 2,

ker ∂E =
∑
j∈E

ker ∂j =
∑
j∈E

L[m]\{j} =
∑
j∈E

∑
F⊂[m]\{j}

NF =
∑
F 6⊃E

NF .

The last equality comes from the fact that F 6⊃ E if and only if F ⊂ [m] \ {j} for some
j ∈ E.

Combining Lemma 2 and Proposition 3, we have the following proposition. We will
use the proposition with ∆′ = ∆\D in the proof of the main theorem.

Proposition 4. Let ∆ and ∆′ be two simplicial complexes such that ∆ ⊃ ∆′. Then
x ∈ r(A∆′) if and only if x ∈ r(A∆) and ∂Ex = 0 for all E ∈ ∆ \ ∆′.

Proof. The statement is equivalent to r(A∆′) = r(A∆) ∩ (∩E∈∆\∆′ ker ∂E). The left-hand
side is

∑
F∈∆′ NF . The right-hand side is(∑

F∈∆

NF

)
∩

 ∩
E∈∆\∆′

∑
F 6⊃E

NF

 =
∑

F∈∆′′

NF ,

where ∆′′ = {F ∈ ∆ | F 6⊃ E, ∀E ∈ ∆ \ ∆′}. It is sufficient to prove that ∆′ = ∆′′.
Let F ∈ ∆′. Clearly F ∈ ∆. Now assume that there exists some E ∈ ∆ \ ∆′ such that
F ⊃ E. Then, since F ∈ ∆′ and F ⊃ E, we have E ∈ ∆′. This contradicts to E ∈ ∆\∆′.
Therefore F 6⊃ E for any E ∈ ∆ \ ∆′. Conversely, suppose that F ∈ ∆ and F 6⊃ E for
any E ∈ ∆ \∆′. Then, since F ∈ ∆ and F /∈ ∆ \∆′, we have F ∈ ∆ \ (∆ \∆′) = ∆′.
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Note that in the proof of Proposition 1, we treated the combination of factors in D
as a single factor and the combination of factors in DC as another single factor. This
identification is well known in design of experiments as a “pseudofactor” (e.g. Monod
and Bailey [1992]). As the last topic of this section we fully discuss the notion of a
pseudofactor and a natural partial order induced on the set of pseudofactors from the
hierarchical model. The resulting poset plays an essential role in the next section.

For each i ∈ [m] let
(red ∆)(i) = {D ∈ red ∆ | i ∈ D} (9)

denote the set of maximal interaction effects containing i. If (red ∆)(i) = (red ∆)(j) we

say that i, j belong to the same pseudofactor and denote this as i
∆∼ j. The relation

∆∼
is an equivalence relation and [m] is partitioned into disjoint equivalence classes. We call
each equivalence class a pseudofactor. In the framework of this paper, we can replace a
pseudofactor by a single factor, although we do not do this in this paper. Let P denote

the set of pseudofactors, i.e. P = [m]/
∆∼. For ρ ∈ P let

(red ∆)(ρ) = (red ∆)(i), i ∈ ρ.

Now we introduce a partial order onto P by

ρ ≥ ρ′ ⇔ (red ∆)(ρ) ⊃ (red ∆)(ρ′).

With this partial order P becomes a partially ordered set (poset). We call this poset the
“sieve poset”, induced by the simplicial complex ∆.

The sieve poset induced by ∆ is related to the intersection poset. The intersection
poset Q of red ∆ is the set of intersections of red ∆, that is, Q = {∩D∈SD | S ⊂ red ∆}.
The order of Q is the reverse inclusion order: ∩D∈SD ≤ ∩D∈S′D if S ⊂ S ′. We assume
[m] ∈ Q just for convenience. We show that there is an injective homomorphism from P
into Q. In fact, the following lemma holds.

Lemma 3. Let V (ρ) = ∪ρ′≥ρρ
′. Then V (ρ) = ∩D∈(red∆)(ρ)D. Furthermore V is an

injective homomorphism from P into Q.

Proof. Let i ∈ V (ρ). Then there exists some ρ′ ≥ ρ such that i ∈ ρ′. This means
(red ∆)(i) = (red ∆)(ρ′) ⊃ (red ∆)(ρ). Therefore i ∈ ∩D∈(red∆)(ρ)D. The converse is
similarly proved. Next we prove that V is homomorphic and injective. If ρ′ ≥ ρ then
(red ∆)(ρ′) ⊃ (red ∆)(ρ) and therefore V (ρ′) = ∩D∈(red∆)(ρ′)D ≥ ∩D∈(red∆)(ρ)D = V (ρ)
from the definition of the order of Q. If ρ′ 6= ρ, then V (ρ′) = ∪ρ′′≥ρ′ρ

′′ 6= ∪ρ′′≥ρρ
′′ =

V (ρ).

We remark that V is not surjective in general. For example, let m = 3 and red ∆ =
{{1, 2}, {2, 3}, {1, 3}}. Then P = {{1}, {2}, {3}} with a trivial order (i.e. no two distinct
elements are comparable) and Q = {∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}}. The
homomorphism is V ({i}) = {i} for i ∈ {1, 2, 3}. Thus V is not surjective. In other words,
the poset Q has the same amount of information as red ∆ because red ∆ = red(Q\{[m]}),
but the poset P loses the information as the example shows. For description of the group
of invariance, we only need the sieve poset rather than the intersection poset.
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5 A proof of the main theorem

Now we employ induction on K = | red ∆|. The theorem is true for K = 1 by Proposition
1. Therefore assume that the theorem holds for K − 1. Throughout the proof we choose
D ∈ red ∆ such that |ID| = minF∈red∆ |IF |. We consider deleting D from red ∆.

Let x =
∑

F∈red∆ θF be a generic element of r(A∆) (Definition 1). List the values of
θF as αiF

= θF (iF ) = θF (i), iF ∈ IF . Then x(i) can be written as

x(i) =
∑

F∈red∆

∑
jF∈IF

χjF
(i)αjF

, χjF
(i) =

{
1 if iF = jF ,

0 otherwise.
(10)

In view of (4) it suffices to show that any g ∈ Gr(A∆) belongs to the right-hand side of
(5). Fix an arbitrary g ∈ Gker A∆

= Gr(A∆) and let y = gx. Then y ∈ r(A∆) and y can be
written as y =

∑
F∈red∆ ηF . Note that at this point we do not have any relation between

θF ’s and ηF ’s. Fix an arbitrary E ∈ ∆ \ ∆\D and take the partial difference with respect
to E.

∂Ey = ∂EηD (11)

by (8). The right-hand side ∂EηD depends only on iD. Now consider the left-hand side
∂Ey. (∂Ey)(i) is a linear combination of 2|E| y(j)’s with the coefficient 1 for 2|E|−1 terms
and −1 for other 2|E|−1 terms. Now y(j) = x(g−1(j)) = (x ◦ g−1)(j). We substitute
x(g−1(j)) by the right-hand side of (10) and take the linear combination. Then (∂Ey)(i)
is written as

(∂Ey)(i) =
∑

F∈red ∆

∑
jF∈IF

QjF
(i)αjF

, (12)

where
QjF

(i) = (∂E(χjF
◦ g−1))(i) ∈ {−2|E|−1, . . . , 2|E|−1}.

Since we have taken generic αjF
’s, by the perturbation lemma, QjF

(i) is uniquely deter-
mined by (∂Ey)(i) for each i and for each F ∈ red ∆ and jF . However recall by (11) that
(∂Ey)(i) only depends on iD. This implies that QjF

(i) also depends only on iD for each
jF . More precisely, if we take the iD marginal of (12), then we have

(∂Ey)+(iD) = |IDC |(∂Ey)(i) =
∑

F∈red∆

∑
jF∈IF

Q+
jF

(iD)αjF
.

Therefore by uniqueness we see that QjF
(i) = Q+

jF
(iD)/|IDC | depends only on iD.

Now we claim that QjF
(i) = 0 for all jF , F 6= D, and for all i ∈ I. For readability,

we state this as a lemma and give a proof. Recall that E ∈ ∆ \ ∆\D is arbitrarily fixed
and the following lemma holds for any such E.

Lemma 4. QjF
(i) = 0 for all jF ∈ IF , F ∈ (red ∆) \ {D}, and for all i ∈ I.

10



Proof. Suppose that there exists some i0 and some jF , such that QjF
(i0) 6= 0. Then,

because QjF
(i0) only depends on i0

D, for this jF we have

|{i | QjF
(i) 6= 0}| ≥ |{i | iD = i0

D}| = |IDC | =
|I|
|ID|

.

Write
I|i0D = {i | iD = i0

D} = {(iDC , i0
D)}i

DC∈I
DC

.

The DC-component iDC of the elements of I|i0D are all distinct.

For i ∈ I|i0D , consider QjF
(iDC , i0

D) = (∂E(χjF
◦ g−1))(iDC , i0

D), which is a sum of 2|E|

terms of the form ±χjF
(g−1(i′)). Since the operator ∂E only touches indices ij, j ∈ E ⊂ D,

we note that these terms χjF
(g−1(i′)) have the common index iDC , i.e., i′DC = iDC .

Therefore we can write

QjF
(iDC , i0

D) =
∑

jD∈ID

βjD
χjF

(g−1(iDC , jD)), (13)

where βjD
∈ {−1, 0, 1}. It is important to note that the sets of cells {g−1(iDC , jD)}jD∈ID

are mutually disjoint for different values of iDC , because g−1 is a bijection on I.
Now if QjF

(iDC , i0
D) 6= 0, there exists at least one non-zero term on the right-hand

side of (13). Therefore for each iDC there exists jD such that χjF
(g−1(iDC , jD)) = 1. By

the disjointness noted above, it follows that

|{i′ | χjF
(g−1(i′)) = 1}| ≥ |IDC |.

On the other hand, by the definition of χjF
, we have

|{i′ | χjF
(g−1(i′)) = 1}| = |{i′ | χjF

(i′) = 1}| = |IF C |.

Combining the above results we have

|I|
|IF |

= |IF C | ≥ |IDC | =
|I|
|ID|

or |IF | ≤ |ID|

However we have assumed that |ID| is the (unique) minimum among |IF |, F ∈ red ∆.
Therefore F = D.

From the above lemma, we have

(∂Ey)(i) =
∑

jD∈ID

QjD
(i)αjD

. (14)

We have shown (14) for generic x. However, since (14) is an algebraic relation and all
generic tables span r(A∆) by the perturbation lemma, (14) holds for all x ∈ r(A∆). Now
in (10) set αjD

= 0, ∀jD ∈ ID. Namely let x =
∑

F∈red∆,F 6=D θF be any element of

r(A∆\D
). Then ∂Ey = ∂E(x ◦ g−1) = 0 for all E ∈ ∆ \ ∆\D. Therefore y ∈ r(A∆\D

) by

11



Proposition 4. This means that g ∈ Gr(A∆) has to map every x ∈ r(A∆\D
) into r(A∆\D

).
In other words, g ∈ Gr(A∆\D

). By induction assumption we have shown

g ∈
∩

F∈red∆,F 6=D

(
SI

FC
wr SIF

)
.

Now it remains to show that g ∈ SI
DC

wr SID
. By assumption g maps r(A∆) into itself.

We have shown that g maps r(A∆\D
) into itself. Since g is orthogonal as a linear map, it

follows that g maps the subspace M = r(A∆) ∩ r(A∆\D
)⊥ into itself. By Proposition 2,

we obtain

M = r(A∆) ∩ r(A∆\D
)⊥ = r(A∆D) ∩ ker A∆\D

=
∑

E∈∆D\∆\D

NE.

Recall that NE is the incremental subspace defined by (6). Note that ND ⊂ M ⊂ r(A∆D).
We claim that there exists a table φD in M such that φD(iD), iD ∈ ID, are all distinct.
We state this as a lemma and give a proof.

Lemma 5. There exists a table φD in M such that φD(iD), iD ∈ ID, are all distinct.

Proof. Consider a generic element θD of LD. Let πND
denote the orthogonal projection

to ND and put φD = πND
θD. By Lemma 2, the following expression for φD(iD) holds.

φD(iD) =
∑
E⊂D

(−1)|D\E| 1

|IEC |
θ+

D(iE).

Recall that θ+
D(iE) =

∑
j∈I,jE=iE

θD(jD). Multiplying each side by |I|, we have

|I|φD(iD) =
∑
E⊂D

(−1)|D\E||IE|θ+
D(iE)

=
∑

jD∈ID

C(iD, jD)θD(jD),

where

C(iD, jD) =
∑

E⊂eq(iD,jD)

(−1)|D\E||IE||IDC |

= |IDC |(−1)|D\eq(iD,jD)|
∏

j∈eq(iD,jD)

(Ij − 1)

and eq(iD, jD) = {j ∈ D | ij = jj}. Note that C(iD, jD) ∈ {−|I|, . . . , |I|}. For given
iD and i′D, if C(iD, jD) 6= C(i′D, jD) for some jD, then φD(iD) 6= φD(i′D) because θD

is generic. Therefore it is sufficient to prove that if iD 6= i′D, then there exists some
jD ∈ ID such that C(iD, jD) 6= C(i′D, jD). Since Ij is greater than 2 except for at most
one j ∈ [m], we can show that C(iD, jD) = |IDC |

∏
j∈D(Ij − 1) if and only if iD = jD.

Thus C(iD, iD) 6= C(i′D, iD) whenever iD 6= i′D. This proves the lemma.
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We have proved that there exists φD ∈ ND ⊂ M such that φD(iD), iD ∈ ID, are
all distinct. Since gφD ∈ M ⊂ r(A∆D), the same proof as in Proposition 1 shows that
g ∈ SI

DC
wr SID

.
This completes the proof of Theorem 1.

6 The wreath product indexed by the sieve poset

Although (5) gives a form of the group of invariance, it is not yet sufficiently explicit to
write down the group of invariance for a given hierarchical model. We can employ the
notion of a wreath product of a partially ordered set of actions to describe the group of
invariance more explicitly. The notion of a wreath product of an partially ordered set of
actions has been defined by many authors (Holland [1969], Wells [1976], Silcock [1977],
Bailey et al. [1983]). We follow a succinct definition in Section 7 of Wells [1976].

The poset we use is the sieve poset (P ,≤) defined in Section 4. Recall that P is a
partition of [m] and each class ρ ∈ P has (red ∆)(ρ) = (red ∆)(i) = {D ∈ red ∆ | i ∈ D}
for i ∈ ρ. The order relation ρ ≤ ρ′ on P is defined by (red ∆)(ρ) ⊂ (red ∆)(ρ′). Recall
that V (ρ) = ∪ρ′≥ρρ

′. We also define the ancestor set of ρ by

A(ρ) = ∪ρ′>ρρ
′ = V (ρ) \ ρ.

If A(ρ) = ∅, then we let IA(ρ) be a 1-element set, say {1}.

Definition 2 (Wells [1976]). The wreath product of the symmetric groups (SIρ)ρ∈P indexed
by the poset P is defined by W =

∏
ρ∈P(SIρ)

IA(ρ), where (SIρ)
IA(ρ) is the set of all functions

from IA(ρ) to SIρ. The action of w = (wρ)ρ∈P ∈ W on I is defined by

(wi)ρ = wρ(iA(ρ))iρ.

In the above definition, we use the parentheses for evaluating functions (such as
wρ(iA(ρ))) and do not use them for action (such as wi).

For example, if red ∆ = {D} and ∅ ( D ( [m], then P = {D,DC} with the order
relation D > DC . In this case, the wreath product of (SIρ)ρ∈P is the usual wreath product
SI

DC
wr SID

because IA(D) = {1} and IA(DC) = ID.
The following lemma by Bailey et al. [1983] is useful.

Lemma 6 (Theorem B of Bailey et al. [1983]). The wreath product is characterized as
follows.∏

ρ∈P

(SIρ)
IA(ρ) =

{
g ∈ SI | (gi)V (ρ) depends only on iV (ρ) for any ρ ∈ P

}
.

The proof of the following lemma is easy and omitted.

Lemma 7. Let A and B be two subsets of [m]. Let g ∈ SI. Assume that (gi)A depends
only on iA and that (gi)B depends only on iB. Then (gi)A∩B depends only on iA∩B, and
(gi)A∪B depends only on iA∪B.

13



Now we establish the following theorem.

Theorem 2. The group of invariance coincides with the wreath product of (SIρ)ρ∈P , that
is, ∩

D∈red∆

(SI
DC

wr SID
) =

∏
ρ∈P

(SIρ)
IA(ρ) . (15)

Proof. By Lemma 6, the left-hand side in (15) is equal to

{g ∈ SI | (gi)D depends only on iD for any D ∈ red ∆}.

On the other hand, also by Lemma 6, the right-hand side in (15) is equal to

{g ∈ SI | (gi)V (ρ) depends only on iV (ρ) for any ρ ∈ P}.

Now the equality (15) is clear if one uses Lemma 7 with two relations

D =
∪

ρ∈P,ρ⊂D

V (ρ) and V (ρ) =
∩

D∈(red∆)(ρ)

D.

The former one is from the construction of P . The latter one is Lemma 3.

Corollary 1. The group of invariance is equal to the direct product of the symmetric
groups (SIρ)ρ∈P if and only if the poset P has the trivial order, i.e. no two distinct elements
of P are comparable.

Let us present some examples. Here we abbreviate (SIρ)
IA(ρ) to S∗

ρ|A(ρ), and SIρ to S∗
ρ ,

respectively.

Example 1. Let red ∆ = {{1}, . . . , {m}}. Then P = {{1}, . . . , {m}} with the trivial
order. The wreath product is the direct product W =

∏m
j=1 S∗

{j}.

Example 2. Let m = 3 and red ∆ = {{1}, {2, 3}}. In this case, {2, 3} is a pseudofactor
but not a single factor. Then the sieve poset is {{1}, {2, 3}} with the trivial order. The
wreath product is W = S∗

{1} × S∗
{2,3}.

Example 3. Let m = 3 and red ∆ = {{1, 2}, {2, 3}}. Then the sieve poset is {{1}, {2}, {3}}
with the order relations {1} < {2} and {3} < {2} (no other relations). The wreath product
is W = S∗

{1}|{2} × S∗
{2} × S∗

{3}|{2}.

Example 4. Let m = 3 and red ∆ = {{1}, {2}}. Note that the factor {3} does not appear
explicitly. Then the sieve poset is {{1}, {2}, {3}} with the order relations {3} < {1} and
{3} < {2}. The wreath product is W = S∗

{1} × S∗
{2} × S∗

{3}|{1,2}.

Example 5. Let m ≥ 3 and red ∆ = {{1, 2}, {2, 3}, . . . , {m − 1,m}, {m, 1}}. Then
P = {{1}, . . . , {m}} with the trivial order. The wreath product is W =

∏m
j=1 S∗

{j}.
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Example 6. Let m = 6 and red ∆ = {{1, 4, 5}, {2, 5, 6}, {3, 4, 6}}. Then the sieve poset
is P = {{1}, {2}, {3}, {4}, {5}, {6}} with the order relations {1} < {5}, {1} < {4},
{2} < {5}, {2} < {6}, {3} < {4} and {3} < {6} (no other relations). The wreath
product is W = S∗

{1}|{4,5} × S∗
{2}|{5,6} × S∗

{3}|{4,6} × S∗
{4} × S∗

{5} × S∗
{6}.

The last example is a counter-example to the conjecture in the discussion of [Aoki
and Takemura, 2008b, Section 5]. In our terminology, the conjecture is stated as “If all
pseudofactors are single, i.e. P = {{1}, . . . , {m}}, and the intersection of red ∆ is empty,
then the group of invariance is the direct product of the symmetric groups on each factor”.
The conjecture is justified if we impose an additional condition that P has the trivial order
(see Corollary 1).

We show an example in that the inclusion (4) is strict.

Example 7 (Sudoku). The solution of sudoku is a 9 × 9 table whose each row, each
column and each 3 × 3 block contains the digits from 1 to 9 exactly once. Following the
terminology of Russel and Jarvis [2006], we call a “row” of 3 blocks a band and a “column”
of 3 blocks a stack. The solution is considered as a 3 × 3 × 3 × 3 × 9 contingency table
x(i, j, k, l, c) where we define x(i, j, k, l, c) = 1 if the number c ∈ [9] is put on the j-th
row of the i-th band and the l-th column of the k-th stack and x(i, j, k, l, c) = 0 otherwise.
Then the restriction is given by four equations

x(i, j, +, +, c) = 1, x(+, +, k, l, c) = 1, x(i, +, k, +, c) = 1, x(i, j, k, l, +) = 1,

where “+” denotes taking marginal (sum) over the index. The maximal simplices of this
model is given by

red ∆ = {{1, 2, 5}, {3, 4, 5}, {1, 3, 5}, {1, 2, 3, 4}}.

The sieve poset is P = {{1}, {2}, {3}, {4}, {5}} with the order {1} > {2} and {3} > {4}
(no other relations). The wreath product is given by

W = S∗
{1} × S∗

{2}|{1} × S∗
{3} × S∗

{4}|{3} × S∗
{5},

which consists of permutation of bands, permutation of rows in each band, permutation
of stacks, permutation of columns in each stack and permutation of numbers. However,
the group of invariance Gker A∆

has an additional permutation f defined by f(i, j, k, l, c) =
(k, l, i, j, c). The permutation f does not belong to the wreath product W . Note that
the model does not satisfy the assumption of Theorem 1 because |I{1,2,5}| = |I{3,4,5}| =
|I{1,3,5}| = |I{1,2,3,4}| = 81. The group generated by W and f is used to count the number
of essentially different solutions of sudoku in Russel and Jarvis [2006].

7 Discussions

We derived an explicit formula of the group of invariance provided that the number of
levels Ij, j ∈ [m], are generic. In our future work we intend to generalize this result
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by weakening the restriction on the number of levels. We conjecture that under mild
regularity conditions the group of invariance is generated by the wreath product of this
paper and the permutation of factors with a common number of levels. However, it seems
to be difficult to solve this problem. For example, as described in Example 3 of Aoki
and Takemura [2008b], the group of invariance for the 2 × 2 × 2 contingency tables with
fixed two-dimensional marginals is different from the new conjectured candidate group.
In the example, as was pointed out by a referee to Aoki and Takemura [2008b], the
group of invariance is not faithful. Here an action G to L is called faithful if the kernel
{g ∈ G | gx = x, ∀x ∈ L} of the action consists only of the unit element. On the
other hand, we can prove that the group of invariance is faithful under the assumption of
Theorem 1. Indeed, in a similar way to the proof of Lemma 5, we can show that there
exists a table φ ∈ N[m] ⊂ ker A∆ such that {φ(i)}i∈I are all distinct. Therefore if gφ = φ,
then g has to be the identity map.

Random sampling from the group of invariance is important for performing the Markov
Chain Monte Carlo (MCMC) method on contingency tables. See Aoki and Takemura
[2008a] for details. In Theorem 2 we rewrote the group of invariance from an intersection
form to a wreath-product form. The wreath product is useful for random sampling. Let
us briefly describe it. The wreath product is given by W =

∏
ρ∈P(SIρ)

IA(ρ) . We show an
algorithm to obtain a uniformly random sample w = (wρ)ρ∈P from W . Let us number P
as P = {ρ1, . . . , ρl} such that i < j whenever ρi < ρj. Then, from i = l down to 1, we
independently generate wρi

(iA(ρi)) from SIρi
for each iA(ρi) ∈ IA(ρi). The resulting element

w = (wρ)ρ∈P is a uniformly random sample from W . Remark that the intersection form
in Theorem 1 does not give such a procedure.
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