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Abstract

This paper presents semidefinite programming approaches for computing confidential
bounds for the dynamic steady-state responses of a damped structure subjected to un-
certain driving loads. We assume that amplitudes of harmonic driving loads obey a
non-probabilistic uncertainty model. The semidefinite programming problems are for-
mulated for finding confidential bounds for various characteristic amounts of dynamic
steady-state response, including the modulus and phase angle of the complex amplitude
of the displacement and stress. Numerical examples demonstrate that sufficiently tight
bounds can be obtained by solving the presented semidefinite programming problems.
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1 Introduction

Methodologies as well as numerical techniques for robustness and uncertainty analyses have received
increasing attention in structural and mechanical design. Since structures built in the real-world
always have various uncertainties caused by manufacture errors, limitation of knowledge of input
disturbance, observation errors, etc., various approaches have been developed to estimate responses
of structures including uncertainties [5, 16, 27–29, 31, 35].

In this paper, we propose a numerical approach to estimate the dynamic structural response
under uncertain harmonic loads. There exist two different frameworks with which we treat the
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uncertain property of a structural system. The one is probabilistic uncertainty modeling and the
other non-probabilistic uncertainty modeling. By using probabilistic uncertainty models, various
uncertainty analysis methods have been developed; see, e.g., [35, 39], and the references therein.
However, it is often difficult to accurately estimate stochastic parameters which are used in prob-
abilistic structural analyses, especially when the number of samples of the uncertain parameters is
limited.

In contrast to probabilistic approaches, the non-probabilistic uncertainty framework treats the
uncertain parameters as the so-called unknown-but-bounded parameters, which does not require to
estimate the probability distribution of the uncertain parameters. One of well-known approaches
with a non-probabilistic uncertainty model is the so-called convex model approach [3, 5, 31]. Note
that the conventional convex model approaches are valid only if the magnitude of uncertainty is small
enough, because it is essentially based on the first-order approximation of the structural response
with respect to the uncertain parameters.

As a non-probabilistic decision theory applicable to uncertainties with arbitrary large magnitude,
Ben-Haim [4] proposed the info-gap decision theory , and its applications have been found in various
fields. In the info-gap decision theory, the robustness function plays a key role which represents the
greatest level of uncertainty at which any failure cannot occur. The authors proposed numerical
methods for computing the robustness function of structures considering the static response [19] and
plastic limit-load factor [24].

For computing the exact bounds of structural responses of a truss including unknown-but-
bounded uncertainties, mixed integer programming approaches have been developed for the member
stress [16] and for the plastic limit-load factor [20].

Concerning uncertainty analysis in structural dynamics, the fuzzy theory has been applied to
uncertainty analysis [12, 26], which are also regarded as a non-probabilistic approach. For uncertain
linear equations (ULE) the interval linear algebra has been well developed [1], which gives a conserva-
tive bound for the solution set of the given ULE. The interval algebra has been applied to structural
analyses considering uncertainties [28, 29]. Particularly, there have been numerous studies of interval
analysis for eigenvalue problems including uncertain parameters [10, 11, 13–15, 23, 25, 32, 33, 36].
These studies are aimed at finding bounds for eigenvalues of structures [10, 11, 13, 15, 23, 25, 32, 33],
for eigenmodes [14], modal parameters including the frequency response function [36]. A compari-
son between the interval analysis and a probabilistic approach for dynamic uncertainty analysis was
performed by Qiu and Wang [34].

For convex optimization problems, including the linear program, semidefinite program (SDP) [17],
and second-order cone program (SOCP) [2], etc., a unified methodology of robust optimization was
established by Ben-Tal and Nemirovski [7], in which given data in optimization problems are as-
sumed to have non-probabilistic uncertainties. Calafiore and El Ghaoui [9] proposed a method for
finding an ellipsoidal bound for the solution set of ULE by using the SDP relaxation. The authors
formulated an SDP problem which provides a confidential ellipsoidal bound for static response of
uncertain structural systems, particularly of a truss [18] and a braced frame [21].

In this paper we consider the dynamic responses of a damped structure under uncertain driving
load. We are particularly interested in the steady state of a forced oscillation induced by harmonic
driving loads, where the amplitudes of driving loads have non-probabilistic uncertainties. We at-
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tempt to find various bounds for characteristic parameters, e.g. lower and upper bounds for the
modulus and phase angle of the complex amplitude of nodal displacements. It is shown that each
of these bound detection problems is formulated as an optimization problem with infinitely many
constraints, or as the form of robust optimization. We next present a sufficient condition, with
which the (infinitely many) constraints in the optimization problem stated above are satisfied, by
embedding the governing equations with uncertain parameters into quadratic inequalities and by
applying the so-called S-lemma [8, section 2.6.3]. Based on the sufficient condition presented, we
construct an approximation problem which is guaranteed to provide a conservative approximation
of the exact optimal solution to the bound detection problem. It should be emphasized that our
goal formulations for conservative bounds are either an SDP [17] or an SOCP [2] problem, both
of which are convex optimization problems and can be solved efficiently by using the primal-dual
interior-point method.

It is known that SDP and SOCP problems can be solved by using the primal-dual interior-point
method in polynomial time [2, 17]. Hence, our method can find a bound for the structural response
in polynomial time, in contrast to the fact that most of numerical methods based on the interval
algebra have in general exponential complexity [6, section 6.5.3].

This paper is organized as follows. Section 2 introduces the governing equation of our prob-
lem, as well as a non-stochastic uncertainty model of the dynamic load. In section 3, we formulate
SDP problems which give conservative bounds for the modulus and phase angle of the displacement
amplitude. In section 4, we particularly consider a nodal displacement vector, and propose further
bounds for the norm and ratio of the moduli of the nodal displacement amplitudes. Numerical
examples are presented in section 5 for the bound detection problems investigated in the two pre-
vious sections. In section 6, we consider a slightly generalized case of our uncertainty model, and
demonstrate numerical experiments. Some conclusions are drawn in section 7. For readability, all
proofs of the technical results are collected in appendix A.

We present a few words regarding our notation at first. All vectors are assumed to be column
vectors. For X ⊆ Rn and Y ⊆ Rm, their Cartesian product is defined by X × Y = {(xT,yT)T ∈
Rn+m | x ∈ X , y ∈ Y}, where T denotes the transpose of a vector or a matrix. Particularly, we
write Rn+m = Rn × Rm. The (n + m)-dimensional column vector (xT,yT)T consisting of x ∈ Rn
and y ∈ Rm is often written simply as (x,y). We denote by Rn+ the non-negative orthant defined by
Rn+ = {x = (xi) ∈ Rn | xi ≥ 0 (i = 1, . . . , n)}. We write x ≥ 0 if x ∈ Rn+. We denote by Sn ⊂ Rn×n
the set of all n× n real symmetric matrices. We write A � O if A ∈ Sn is positive semidefinite. It
should be clear that x ≥ y and A � B mean x− y ≥ 0 and A−B � O, respectively. For a vector
x ∈ Rn we denote by ‖x‖ the standard Euclidean norm, i.e. ‖x‖ = (xTx)1/2. We denote by In the
n × n identity matrix. We also write I instead of In, unless its size is not clear from the context.
Let Re z and Im z denote the real and imaginary parts of z ∈ C, respectively. We denote by |z| the
modulus, or the absolute value, of z ∈ C, i.e. |z| = [(Re z)2 + (Im z)2]1/2. We denote by Arg z the
principal value of the argument of z ∈ C, which satisfies −π < Arg z ≤ π.
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2 Uncertain equations for steady state

Consider a finite-dimensional linear elastic structure. Small displacements and small strains are
assumed.

2.1 Governing equations

Let d denote the number of degrees of freedom of displacements. In this paper we consider the
harmonic driving load defined by feiωt, where f ∈ Rd and ω ∈ R. We denote by K ∈ Sd, M ∈ Sd,
and C ∈ Sd the stiffness, mass and damping matrices, respectively. The d’Alembert principle yields

M ¨̂u+ C ˙̂u+Kû = feiωt, (1)

where û ∈ Cd is the displacement vector. By substituting û = ueiωt into (1), we find the steady
state oscillation, u ∈ Cd, driven by feiωt as the solution to

(−ω2M + iωC +K)u = f . (2)

2.2 Uncertainty model

In this section we define a non-probabilistic uncertainty model of the harmonic driving load.
Suppose that the amplitude vector of the load, f , in (2) is not known precisely, or is uncertain.

Throughout the paper we assume that the uncertainty exists only in f , and that K, M , C, and ω

in (2) are known precisely.
Let f̃ ∈ Rd denote the nominal value, or the best estimate, of f . We describe the uncertainty

of f by using an unknown vector ζ. Assume that f depends on ζ ∈ Rk affinely as

f = f̃ + F0ζ, (3)

where F0 ∈ Rd×k is a constant matrix. Note that the matrix F0 represents the relative magnitude of
the uncertainty of fj (j = 1, . . . , d) and the relationship of the uncertainties among f1, . . . , fd. See,
for an illustrative example, Example 2.1.

Suppose that ζ satisfies

α ≥ ‖Tjζ‖, j = 1, . . . , `, (4)

where Tj ∈ Rmj×k (j = 1, . . . , `) are constant matrices, and α ∈ R+ is constant. Throughout the
paper we assume that the set {ζ | α ≥ ‖Tjζ‖ (j = 1, . . . , `)} is bounded for any given α ∈ R+. This
assumption is satisfied if T1, . . . , T` satisfy

rank



T1

...
T`


 = k.

We call ζ the vector of uncertain parameters, or unknown-but-bounded parameters.
It follows (3) and (4) that the amplitude of driving load, f , is running through the set

F(α) =
{
f̃ + F0ζ | α ≥ ‖Tjζ‖ (j = 1, . . . , `)

}
. (5)

4



(b) (a) x

y

f
∼f

∼

Figure 1: A 29-bar truss.

We call F(α) the uncertainty set of f . Recall (2), and then the uncertain linear equations (ULE)
that we are interested in are written as

(−ω2M + iωC +K)u = f , f ∈ F(α). (6)

Throughout the paper we assume that the equations in (6) have a solution for any f ∈ F .
In the uncertainty model defined by (5), we see that the greater the value of α, the greater the

range of possible variation of f , and hence we call α the uncertainty parameter . More precisely,
0 ≤ α1 < α2 implies F(α1) ⊂ F(α2), which meats the nesting axiom in the info-gap theory [4].
As another important property it should be mentioned that our model in (5) satisfies F(0) = {f̃},
which implies that the estimate f̃ is correct at α = 0. This property is called the contraction axiom
in the info-gap theory [4]. In the remainder of the paper we often write F instead of F(α), unless
the meaning is not clear from the context.

For simple presentation we assume that F0 in (5) is nonsingular in sections 3–5. This assumption
implies that all elements, f1, . . . , fd, of f have uncertainties, and that d = k. See section 6 for the
case in which F0 is singular.

Example 2.1. Consider a plane truss shown in Figure 1, where d = 20. As the nominal load
f̃ , relatively large forces are applied at the nodes (a) and (b). Suppose that uncertain loads may
possibly exist at all free nodes, and then the external forces are independently running through the
circles depicted with the dotted lines in Figure 1. Such an uncertainty model can be represented by
(5) as follows.

Note that k = 20, because F0 is assumed to be regular. Suppose that all circles in Figure 1 have
common range. Then we may put F0 = f̄0I20. Since we consider 10 independent circles in Figure 1,
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put ` = 10 and define Tj ∈ R2×20 (j = 1, . . . , `) as

T1 =

[
1 0 0 0 · · · 0
0 1 0 0 · · · 0

]
, T2 =

[
0 0 1 0 · · · 0
0 0 0 1 · · · 0

]
, . . . , T10 =

[
0 · · · 0 1 0
0 · · · 0 0 1

]

Consequently, (5) with these Tj represents the uncertainty model illustrated in Figure 1, where the
nodal force at each node may perturb in the circle with the radius αf̄0.

Example 2.2. Consider the uncertainty model investigated in Example 2.1. Now we suppose that
the uncertain forces are running through squares instead of circles illustrated in Figure 1. Such an
uncertainty model is called the interval uncertainty model and widely used in uncertainty analysis
of structures [10, 11, 28, 29]. Let F0 in (5) be a diagonal matrix, where d = k = 20. Since we
consider 20 independent intervals, put ` = 20 and define T1, . . . , T` ∈ R1×20 by Tj = eT

j , where ej

denote the jth column vector of the 20 × 20 identity matrix. Thus (5) includes the conventional
interval uncertainty model as a particular case.

Note again that uncertain forces can exist at all free nodes in the uncertainty models studied in
Example 2.1 and Example 2.2, because F0 is nonsingular. In section 6 we suppose that uncertain
forces can exist only at specified nodes, in which F0 is singular.

3 Bounds for complex amplitude

For the given f ∈ F , let u(f) ∈ Cd denote a solution (complex number) to (2). We denote by uq(f)
the qth element of u(f). In this section, we attempt to find the bounds for |uq| and Arg uq when
f ∈ F . More precisely, the problem in this study is stated as follows: given the ULE (6), find r̄, r,
θ, and θ ∈ R satisfying

r ≤ |uq(f)| ≤ r, ∀f ∈ F(α),

θ ≤ Arg uq(f) ≤ θ, ∀f ∈ F(α).

Such a set of bounds is not unique in general. Naturally we are interested in a set of bounds which
is as tight as possible.

In this section we assume that F0 in (5) is regular, and hance k = d. A formulation that works
without this assumption will be given in section 6.

3.1 Upper bound for modulus of displacement amplitude

The maximum value, rmax, of |uq| is defined by

rmax = max
f
{|uq(f)| : f ∈ F} . (7)

In this section we formulate an optimization problem in order to obtain an upper bound of rmax,
i.e. r ∈ R satisfying r ≥ rmax. Certainly we are interested in finding a small upper bound r as far
as possible.

Observe that (2) is rewritten as
[
−ω2M +K −ωC

ωC −ω2M +K

][
Reu
Imu

]
=

[
f

0

]
. (8)
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For u ∈ Cd, define v ∈ R2d by

v =

[
Reu
Imu

]
. (9)

Then (8) is rewritten simply as

S1v = f , (10)

S2v = 0, (11)

where S1, S2 ∈ Rd×2d are defined by

S1 =
[
K − ΩeM −2βK

]
,

S2 =
[
2βK K − ΩeM

]
.

Define the set V ⊆ R2d by

V = {v | S1v = f , S2v = 0, f ∈ F} , (12)

i.e. V is the set of all possible solutions to the system of equations, (10) and (11), when f is running
through the uncertainty set F . Note that V is related to the solution set to ULE (6) as

V =

{[
Reu
Imu

]
| (−ω2M + iωC +K)u = f , f ∈ F

}
.

Let G ∈ R2×2d denote a constant matrix satisfying

Gv =

[
Reuq
Imuq

]
, (13)

which yields

|uq| = ‖Gv‖.

It should be clear that ‖Gv‖ denotes the standard Euclidean norm of the real vector Gv ∈ R2.
We first reformulate the optimization problem (7) into the form similar to the robust optimiza-

tion [7]. Our reformulation is based on the following idea. Assume that g : Rn → R is bounded
above on X ⊆ Rn. Then we can show the relation

max
x
{g(x) : x ∈ X} = min

t
{t : t ≥ g(x) (∀x ∈ X )} ,

because t is regarded as an upper bound of g(x) if t satisfies t ≥ g(x) (∀x ∈ X ). By applying this
idea to (7) we obtain the following proposition.

Proposition 3.1. rmax defined in (7) satisfies

rmax = min
r
{r : r ≥ ‖Gv‖ (∀v ∈ V)} . (14)

Note that all proofs in this section appear in appendix A.1.
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VG

Re uq

Im uq

rmax

r

Figure 2: A circle providing an upper bound of |uq|.

Remark 3.2. The assertion of Proposition 3.1 is interpreted geometrically as follows. In Figure 2, we
define the set VG ⊂ R2 by VG = {Gv | v ∈ V} for exposition. In the problem (14), we attempt to
find a point vG ∈ VG which attains the maximum Euclidean distance from the origin. In contrast, in
the problem (14), we consider a circle which includes VG and is centered at the origin, and attempt
to minimize the radius of such a circle. Then the minimum radius becomes equivalent to rmax.

In this paper we are particularly interested in dealing with the optimization problem in the form
of (14). It is difficult to solve the problem (14) directly, since it has an infinite number of constraint
conditions. Hence, we attempt to replace such an intractable constraint condition with a tractable
one which is guaranteed to be conservative. The basic idea with which we can address our tractable
and conservative reformulation is stated in the following proposition.

Proposition 3.3. Consider two conditions:

(a) :

[
x

1

]T

Qi

[
x

1

]
≥ 0 (i = 1, . . . ,m),

[
x

1

]T

Pj

[
x

1

]
= 0 (j = 1, . . . , k);

(b) :

[
x

1

]T

Q0

[
x

1

]
≥ 0.

The implication

(a) ⇒ (b)

holds if there exist τ1, . . . , τm and σ1, . . . , σk satisfying

Q0 �
m∑

i=1

τiQi +
k∑

j=1

σjPj ,

τ1, . . . , τm ≥ 0.

Observe that the conditions (a) and (b) in Proposition 3.3 are represented by some quadratic
inequalities. In the following proposition, we eliminate the uncertain parameters ζ from the condition
v ∈ V which appears in (14), and obtain a finite number of quadratic inequalities.
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Proposition 3.4. The set V defined in (12) can be represented by some quadratic inequalities of v.
That is, v ∈ V if and only if v satisfies

[
v

1

]T

Ψj

[
v

1

]
≥ 0, j = 1, . . . , `, (15)

[
v

1

]T

Θ

[
v

1

]
= 0, (16)

where Ψj (j = 1, . . . , `) and Θ are constant matrices defined by

Ψj = Diag(0, α2)−
[
ST

1

−f̃T

]
(TjF−1

0 )TTjF
−1
0

[
S1 −f̃

]
, j = 1, . . . , `,

Θ = −
[
ST

2

O

] [
S2 O

]
.

Proposition 3.4 implies that the condition v ∈ V can be rewritten as a finite number of quadratic
inequalities in terms of v. By applying Proposition 3.3, we construct a sufficient condition for the
constraint condition of the problem (14) in the following proposition.

Proposition 3.5. r ∈ R+ satisfies the condition

∀v ∈ V : r ≥ ‖Gv‖ (17)

if there exists a vector (w, s) ∈ R`+ × R satisfying
[
−GTG 0

0T r2

]
�
∑̀

j=1

wjΨj + sΘ. (18)

Proposition 3.5 presents a sufficient condition for the constraint condition of the problem (14).
This naturally leads us to construct the following problem which yields a conservative bound for
rmax.

Proposition 3.6. Define ρ∗ by

ρ∗ = min
ρ,w,s



ρ :

[
−GTG 0

0T ρ

]
−
∑̀

j=1

wjΨj − sΘ � O, w ≥ 0



 . (19)

Then r2
max ≤ ρ∗ holds for rmax defined in (7), i.e.

√
ρ∗ corresponds to an upper bound of |uq|.

Since (19) is an SDP problem [17] in the variables ρ ∈ R, w ∈ R`, and s ∈ R, we can obtain ρ∗

efficiently by using the primal-dual interior-point method.

3.2 Lower bound for modulus of displacement amplitude

In a manner similar to (7), the minimum value, rmin, of |uq| is defined by

rmin = min
f
{|uq(f)| : f ∈ F(α)} . (20)

Figure 3 depicts the definition of rmin. In contrast to the case of rmax investigated in section 3.1,
the following proposition shows that we can reformulate the problem (20) directly as a convex
optimization problem.
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Re uq

Im uq

rmin

Figure 3: A circle providing the minimum value of |uq|.

Proposition 3.7. Define t∗ by

t∗ = min
t,v,ζ

{
t : r ≥ ‖Gv‖, S1v = f̃ + F0ζ, S2v = 0, α ≥ ‖Tjζ‖ (j = 1, . . . , `)

}
. (21)

Then t∗ = rmin holds for rmin defined in (20), i.e. t∗ corresponds to the exact minimum value of
|uq|.

The proof appears in appendix A.2 in order to improve the readability.
It should be emphasized that the problem (21) is an SOCP problem [2] in the variables t ∈ R,

v ∈ R2d, and ζ ∈ Rk. Hence, we can compute the global optimal solution of (21) easily by using the
primal-dual interior-point method.

Remark 3.8. In a manner similar to Proposition 3.7, we can show that rmax is equal to the optimal
value of the following problem:

max
t,v,ζ

t

s.t. t ≤ ‖Gv‖,
S1v = f̃ + F0ζ,

S2v = 0,
α ≥ ‖Tjζ‖, j = 1, . . . , `.





(22)

In contrast to (21), the problem (22) is a nonconvex optimization because the constraint condition
t ≤ ‖Gv‖ is nonconvex. Consequently, standard nonlinear programming approaches are likely to
fail for finding the global optimal solution of (22): they converge to a local solution in general.
At least, standard nonlinear programming approaches cannot give a proof of the global optimality
if they are applied to (22). Certainly the objective value of (22) at a local solution, that is not
globally optimal, is smaller than rmax. It should be emphasized that, for the purpose of robustness
analysis, the proof of global optimality is strongly desired, because it guarantees that the modulus
of amplitude cannot be larger than the computed value. This motivates us to solve the convex
optimization problem (19): its global optimal solution can be computed easily by using an existing
algorithm, i.e. the primal-dual interior-point method, and it is guaranteed that |uq| cannot be larger
than the computed value of

√
ρ∗.

3.3 Bounds for phase angle

In this section, we consider the distribution of the phase angle of uq (q = 1, . . . , d).
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θmax
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Figure 4: A bounding line which provides an upper bound of Arguq.

In a manner similar to |uq|, we define the maximum value, θmax, and the minimum value, θmin,
of the phase angle of uq by

θmax := max
f
{Arg uq(f) : f ∈ F} , (23)

θmin := min
f
{Arg uq(f) : f ∈ F} . (24)

Throughout this section we assume that −π < θmin ≤ θmax < π.

Remark 3.9. The conditions −π < θmin and θmax < π are not always satisfied. For example, if
rmin = 0, then θmax = π, inff{Arg uq(f) : f ∈ F(α)} = −π, and θmin is not defined consistently in
(24). Such a case can be detected by solving (21), because it provides the exact value of rmin; see,
e.g., Figure 18 (i) in section 5.2 for an example of rmin = 0.

We first consider the case in which 0 < θmin ≤ θmax < π is satisfied. The results for the other
cases are summarized in Propositions 3.15 and 3.16 below.

In a manner similar to section 3.1, we reformulate the optimization problem (23) into a form of
the robust optimization [7]. A key observation is stated as follows: if uq ∈ C and a = (ai) ∈ R2

satisfy

[
a1 a2

] [Reuq
Imuq

]
= 0, (25)

then we obtain

tan Arg uq =
Imuq
Reuq

= −a1

a2
.

Here, we assume Reuq 6= 0 and a2 6= 0 for simplicity. Consequently, it is sufficient to find a bound
for a satisfying (25), instead of a bound for Arg uq.

In order to simplify the notation, let e1, e2 ∈ R2 denote

e1 =

[
1
0

]
, e2 =

[
0
1

]
.
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Proposition 3.10. Assume 0 < θmax < π. Then θmax defined in (23) satisfies

− 1
tan θmax

= min
a

{
eT

2 a : aTGv ≥ 0 (∀v ∈ V), eT
1 a = 1

}
. (26)

Note that all proofs in this section are collected in appendix A.3 for readability.
A geometrical interpretation of the problem (26) is given in Figure 4. Recall that VG = {Gv | v ∈

V} and Gv = (Reuq, Imuq)T. It is observed from Figure 4 that any vG ∈ VG satisfies aTvG ≥ 0, or,
equivalently, v ∈ V satisfies aTGv ≥ 0. Thus, the normal vector, a, of the line in Figure 4 satisfies
the constraint condition of the problem (26). It is also observed from Figure 4 that −a1/a2, the
incline of the line, satisfies −a1/a2 ≥ tan θmax, and hence it gives an upper bound of θmax. Since the
normal vector a is normalized by eT

1 a = a1 = 1 in the problem (26), the upper bound mentioned
above becomes more tight by minimizing a2.

The following proposition gives a sufficient condition for the constraint condition of (26).

Proposition 3.11. The condition

∀v ∈ V : aTGv ≥ 0 (27)

holds if there exists a vector (w, s) ∈ R`+ × R satisfying

[
O GTa

aTG 0

]
�
∑̀

j=1

wjΨj + sΘ. (28)

Based on the sufficient condition provided by Proposition 3.11, we formulate the following prob-
lem, which is a robust counterpart of (26), and gives a conservative bound for θmax.

Proposition 3.12. Assume 0 < θmax < π. Define ϕ∗ by

a∗2 = min
a,w,s



e

T
2 a :

[
O GTa

aTG 0

]
−
∑̀

j=1

wjΨj − sΘ � O, w ≥ 0, eT
1 a = 1



 , (29)

ϕ∗ =





Arctan(−1/a∗2), (a∗2 ≤ 0),

Arctan(−1/a∗2) + π, (a∗2 > 0).
(30)

Then θmax ≤ ϕ∗ holds for θmax defined in (23), i.e. ϕ∗ corresponds to an upper bound for Arg uq.

The proof appears in appendix A.3.3.
Note that (29) is an SDP problem in the variables a ∈ R2, w ∈ R`, and s ∈ R, and hence it can

be solved easily.
We next consider a lower bound for θmin. Analogous to Proposition 3.10, the definition, (24), of

θmin is rewritten into the form of robust optimization as

− 1
tan θmin

= max
a

{
eT

2 a : aTGv ≤ 0 (∀v ∈ V), eT
1 a = 1

}
. (31)

Figure 5 shows an example of a satisfying the constraint condition aTGv ≤ 0 (∀v ∈ V) in (31). A
sufficient condition for this constraint condition is given in the following proposition.
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a a  Gv=0T

−a2

1

VG

Re uq

Im uq

Figure 5: A bounding line which provides a lower bound of Arguq.

Proposition 3.13. The condition

∀v ∈ V : aTGv ≤ 0

holds if there exists a vector (w, s) ∈ R`+ × R satisfying
[

O −GTa

−aTG 0

]
�
∑̀

j=1

wjΨj + sΘ.

The proof is analogous to Proposition 3.11, and hence is omitted.
We construct a robust counterpart to the problem (31) by replacing the constraint condition

aTGv ≤ 0 (∀v ∈ V) with its sufficient condition provided by Proposition 3.13. Thus we obtain an
SDP problem which gives a lower bound of Arg uq as follows.

Proposition 3.14. Assume 0 < θmin < π. Put a∗2 as

a∗2 = max
a,w,s



e

T
2 a :

[
O −GTa

−aTG 0

]
−
∑̀

j=1

wjΨj − sΘ � O, w ≥ 0, eT
1 a = 1



 , (32)

and define ϕ∗ by (30). Then ϕ∗ ≤ θmin holds for θmin defined in (24), i.e. ϕ∗ corresponds to a lower
bound for Arg uq.

The proof is analogous to Proposition 3.12, and hence is omitted.
For the cases of −π < θmax < 0 and −π < θmin < 0, we show only results in the following two

propositions.

Proposition 3.15. Assume −π < θmax < 0. Define ϕ∗ by

a∗2 = min
a,w,s



e

T
2 a :

[
O −GTa

−aTG 0

]
−
∑̀

j=1

wjΨj − sΘ � O, eT
1 a = 1, w ≥ 0, eT

1 a = 1



 , (33)

ϕ∗ =





Arctan(−1/a∗2), (a∗2 ≤ 0),

Arctan(−1/a∗2)− π, (a∗2 > 0).
(34)

Then θmax ≤ ϕ∗ holds for θmax defined in (23), i.e. ϕ∗ corresponds to an upper bound for Arg uq.
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Proposition 3.16. Assume −π < θmin < 0. Put a∗2 as

a∗2 = max
a,w,s



e

T
2 a :

[
O GTa

aTG 0

]
−
∑̀

j=1

wjΨj − sΘ � O, eT
1 a = 1, w ≥ 0, eT

1 a = 1



 , (35)

and define ϕ∗ (34). Then ϕ∗ ≤ θmin holds for θmin defined in (24), i.e. ϕ∗ corresponds to a lower
bound for Arg uq.

Consequently, an upper bound for Arg uq can be obtained by solving either (29) or (33); a lower
bound for Arg uq can be obtained by solving either (32) or (35).

Remark 3.17. In this section 3 we have investigated the distribution of the amplitude of the displace-
ment, uq. For this purpose we define the constant matrix G by (13). Certainly the SDP and SOCP
formulations presented are irrespective to the definition of G, which implies that those formulations
are valid for computing bounds for any linear function of the displacement vector. For example,
the member stress of a truss is written as a linear function of the displacement vector, and hence
we can compute bounds for the amplitude of member stress by using the formulations presented in
section 3; see section 5.1.3 for numerical examples of bounds for member stresses.

4 Bounds for nodal oscillation

Consider a structure in the two-dimensional space. For the pth node we denote by upx ∈ C and upy ∈
C the nodal displacement in the x- and y-th directions, respectively. We have investigated bounds
for |upx| and Arg upx in section 3. In this section we consider the distribution of νp = (νpx, νpy) ∈ R2

defined by

νp =

[
|upx|
|upy|

]
.

More precisely, we propose optimization problems in order to find bounds for ‖νp‖ and νpy/νpx.

Remark 4.1. In this section we consider bounds for
√|upx|2 + |upy|2 and |upy|/|upx| in order to

estimate the distribution of νp = (|upx|, |upy|). Note that further information of the distribution
has been obtained from the results in sections 3.1 and 3.2, where we have investigated upper and
lower bounds for |uq|. Consequently, we can compute upper and lower bounds for

√|upx|2 + |upy|2,
|upy|/|upx|, |upx|, and |upy|. The vector (|upx|, |upy|) can exist in the intersection of those bounds;
see Figure 11 in section 5.1.2 for illustrative examples.

4.1 Bounds for norm of moduli

In this section we consider bounds for ‖νp‖. Recall that νp depends on f . We denote by rνmax and
rνmin the maximum and minimum values of ‖νp‖, which are defined by

rνmax = max
f
{‖νp(f)‖ : f ∈ F} , (36)

rνmin = min
f
{‖νp(f)‖ : f ∈ F} . (37)
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We can obtain bounds for ‖νp‖ in similar manners to sections 3.1 and 3.2. From the definition
of νp, we obtain

‖νp‖ =

∥∥∥∥∥

[
|upx|
|upy|

]∥∥∥∥∥ =

∥∥∥∥∥∥∥∥∥∥




Reupx
Imupx

Reupy
Imupy




∥∥∥∥∥∥∥∥∥∥

.

Let Ĝ ∈ R4×2d denote a constant matrix satisfying

Ĝv =




Reupx
Imupx

Reupy
Imupy



.

Then the problem (36) is reduced to

rνmax = max
v

{
‖Ĝv‖ : v ∈ V

}
,

which is mathematically equivalent to the problem investigated in section 3.1. Consequently, we
obtain an SDP problem giving an upper bound for rνmax from (19) in Proposition 3.6, by replacing G
with Ĝ. Similarly, an SOCP problem for computing rνmin can be obtained from (21) in Proposition 3.7
by replacing G with Ĝ. These observations are summarized in the following two propositions.

Proposition 4.2. Define ρ∗ by

ρ∗ = min
ρ,w,s



ρ :

[
−ĜTĜ 0

0T ρ

]
−
∑̀

j=1

wjΨj − sΘ � O, w ≥ 0



 . (38)

Then (rνmax)2 ≤ ρ∗ holds for rνmax defined in (36), i.e.
√
ρ∗ corresponds to an upper bound of ‖νp‖.

Proposition 4.3. rνmin defined in (37) satisfies

t∗ = min
t,v,ζ

{
t : r ≥ ‖Ĝv‖, S1v = f̃ + F0ζ, S2v = 0, α ≥ ‖Tjζ‖ (j = 1, . . . , `)

}
, (39)

i.e. the minimum value of ‖νp‖ can be obtained by solving the problem (39).

4.2 Bounds for ratio of moduli

We consider bounds for ratio νpy/νpx. For this purpose, we attempt to compute bounds for ν2
py/ν

2
px

instead of νpy/νpx. Introduce auxiliary variables µx = (Reupx)2 + (Imupx)2 = ν2
px and µy =

(Reupy)2 + (Imupy)2 = ν2
py, and we consider bounds for µy/µx. Note that µy ≥ 0 and µx ≥ 0. We

assume µx 6= 0.
The maximum value, tmax, of |upy|/|upx| is defined by

tmax = max
f
{νpy/νpx : νpx = |upx(f)|, νpy = |upy(f)|, f ∈ F} . (40)

We attempt to find an upper bound for tmax.
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Define Gpx, Gpy ∈ R2×2d as constant matrices satisfying

Gxv =

[
Reupx
Imupx

]
, Gyv =

[
Reupy
Imupy

]
.

By using V defined in (12), (40) is reduced to

tmax = max
v
{νy/νx : νx = ‖Gxv‖, νy = ‖Gyv‖, v ∈ V} . (41)

However, instead of solving this problem directly, we treat

(tmax)2 = max
v

{
µy/µx : µx = ‖Gxv‖2, µy = ‖Gyv‖2, v ∈ V

}
. (42)

In a manner similar to Proposition 3.10, we reformulate the problem (42) into the form of
robust optimization [7] as follows. Notice here that µx ≥ 0 and µy ≥ 0 are satisfied in (42), which
corresponds to the assumption in Proposition 3.10.

Proposition 4.4. tmax defined in (40) satisfies

− 1
(tmax)2

= min
a

{
eT

2 a : aTµ ≥ 0
(∀µ ∈ {(‖Gxv‖2, ‖Gyv‖2)T | v ∈ V}) , eT

1 a = 1
}
. (43)

The proof is analogous to Proposition 3.10, and hence is omitted.
Let Θ̂1, Θ̂2 ∈ S2d+3 be

Θ̂1 =




O O

[
1/2
0

]

O −GpxGT
px 0[

1/2 0
]

0T 0



, Θ̂2 =




O O

[
0

1/2

]

O −GpyGT
py 0[

0 1/2
]

0T 0



,

By using Ψj (j = 1, . . . , `) and Θ defined in Proposition 3.4, define Ψ̂1, . . . , Ψ̂` ∈ S2d+3 and Θ̂3 ∈
S2d+3 by

Ψ̂j =

[
O O

O Ψj

]
, j = 1, . . . , `,

Θ̂3 =

[
O O

O Θ

]
.

As a conservative approximation of the problem (43), we obtain the following SDP problem which
provides an upper bound for tmax.

Proposition 4.5. Define ϕ∗ by

a∗2 = min
a,w,s




eT

2 a :



O O a

O O 0
aT 0T 0


−

∑̀

j=1

wjΨ̂j −
3∑

i=1

siΘ̂i � O, w ≥ 0, eT
1 a = 1





(44)

and ϕ∗ =
√−1/a∗2. Then tmax ≤ ϕ∗ holds for tmax defined in (40), i.e. ϕ∗ corresponds to an upper

bound for µy/µx.
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The proof appears in appendix A.4.
We next consider the minimum value, tmin, of |upy|/|upx| which is defined by

tmin = min
f
{νpy/νpx : νpx = |upx(f)|, νpy = |upy(f)|, f ∈ F} . (45)

A robust optimization reformulation of (45) is obtained as

− 1
(tmin)2

= max
a

{
eT

2 a : aTµ ≤ 0
(∀µ ∈ {(‖Gpxv‖2, ‖Gpyv‖2)T | v ∈ V}) , eT

1 a = 1
}
. (46)

In a manner similar to Proposition 4.5, we can show that a lower bound for tmin is obtained by
solving the following SDP problem.

Proposition 4.6. Define ϕ∗ by

max
a,w,s




eT

2 a :



O O −a
O O 0
−aT 0T 0


−

∑̀

j=1

wjΨ̂j −
3∑

i=1

siΘ̂i � O, w ≥ 0, eT
1 a = 1





(47)

and ϕ∗ =
√−1/a∗2. Then ϕ∗ ≤ tmin holds for tmin defined in (45), i.e. ϕ∗ corresponds to a lower

bound for µy/µx.

5 Numerical experiments

Conservative bounds for dynamic responses under the load uncertainties are found for various struc-
tures by solving SDP problems and SOCP problems. Computation has been carried out on Core 2
Duo (1.2 GHz with 2.0 GB memory) with Matlab Ver. 7.5.0 [40]. We solve the SDP and SOCP
problems by using SeDuMi Ver. 1.05 [37], which implements the primal-dual interior-point method
for the linear programming problems over symmetric cones.

In the following examples, the elastic modulus is 200 GPa, and the mass density of members is
7.86 × 103 kg/m3. In (8), we assume the complex damping, or the linear hysteretic damping, i.e.
the damping matrix C is given as

ωC = 2βK,

where we put β = 0.02 in the following examples.

5.1 2-bar truss

Consider a two-bar truss illustrated in Figure 6. The nodes (b) and (c) are pin-supported at
(x, y) = (0, 100) and (0, 0) in cm, respectively, while the node (a) is free, i.e. d = 2. The initial
lengths of members (1) and (2) are 100 cm and 100

√
2 cm, respectively.

As the nominal load, f̃ , the external force 10 kN is applied in the positive direction of the xaxis
at the node (a). In accordance with (5), the uncertainty model of the load is defined as

f = f̃ +

[
ζ1

ζ2

]
, α ≥ ‖ζ‖, j = 1, 2, (48)

where we put F 0 = 1.0 (kN)× I2, ` = 1, and T1 = I2. Consequently, the uncertain load f is running
through the circle depicted with the dashed lines in Figure 6.
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Figure 6: A 2-bar truss.

5.1.1 Bounds for complex amplitude

The bounds obtained are illustrated in Figure 7. The complex amplitude corresponding to the
nominal load, f̃ , is

ũ =

[
ux

uy

]
=

[
0.141
0.033

]
+ i

[
−1.158
4.877

]
,

which is depicted in Figure 7 with ∗.
We first choose ω = ω0

1, where ω0
1 is the undamped fundamental natural circular frequency, and

put α = 1. For the displacement in the x-direction illustrated in Figure 7 (i), the upper bound of the
modulus of the complex amplitude is 1.665 cm, which is obtained by solving the SDP problem (19);
the minimum modulus is 0.672 cm, which is obtained by solving the SOCP problem (21); the upper
and lower bounds for the argument are −1.358 rad and −1.488 rad, respectively, which are obtained
by solving the SDP problems (33) and (35). Note that we solve (33) and (35) because ũx exists in
the forth quadrant. For the displacement in the y-direction (Figure 7 (ii)), upper and lower bounds
for the argument are 1.566 rad and 1.559 rad, respectively, which are obtained by solving the SDP
problems (29) and (32). In summary, we obtain the bounds for u = (ux, uy)T as

0.672 cm ≤ |ux| ≤ 1.665 cm, − 1.488 rad ≤ Arg ux ≤ −1.358 rad,

2.754 cm ≤ |uy| ≤ 7.000 cm, 1.559 rad ≤ Arg uy ≤ 1.566 rad.

The system is almost in the quadrature with the driving load, but ux and uy are in anti-phase with
each other, because Arg ux ' −π/2 and Arg uy ' π/2.

In order to verify these results, we randomly generate a number of loads, f , satisfying (48), and
compute the corresponding amplitudes. The obtained displacements are shown by a lot of points
in Figure 8 with the bounds obtained. It is observed in Figure 8 that all generated amplitudes
are included in the bounds, which confirms that the obtained bounds correspond to confidential,
or outer, approximations of the sets of complex amplitudes. In addition, we can also see that all
bounds are sufficiently tight.

We next investigate the dependence of the distribution of u on the system parameters. Figure 9
depicts the variation of |ux| and Arg ux with respect to the magnitude of uncertainty, α. In Figure 10,
we illustrate the bounds of ux and uy for various ω, as well as the samples generated randomly. From
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Figure 7: Bounds for the complex amplitudes of the displacements of the 2-bar truss (ω = ω0
1). ∗:

nominal values; (i) displacement in the x-direction; (ii) displacement in the y-direction.
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Figure 8: Bounds and randomly generated samples for the member stresses of the 2-bar truss
(ω = ω0

1). ‘—’: bounds found in Figure 7; ‘– –’: nominal values.

Figure 10 we can observe the resonant behavior at ω = ω0
2, where ux and uy are in the same phase.

In Figure 10 (iii) and Figure 10 (iv) we see that the system is in phase with the driving load, i.e.
Arg ux ' 0 and Arg uy ' 0.

5.1.2 Bounds for nodal oscillation

We next consider the distribution of the vector ν = (|ux|, |uy|)T, as is investigated in section 4. Upper
and lower bounds for

√|ux|2 + |uy|2 are obtained by solving (38) and (39), respectively; upper and
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of the 2-bar truss with respect to the magnitude of uncertainty α. (i) modulus of the amplitude;
(ii) phase angle. ‘· · · ’: nominal value; ‘—’: lower bounds; ‘– –’: upper bounds.

lower bounds for |uy|/|ux| are obtained by solving (44) and (47), respectively. The obtained bounds
are shown in Figure 11 for various ω. Here, the vector (|ux|, |uy|) exists in the intersection of the
two sets shown with the solid and dashed lines, as discussed in Remark 4.1. Note that we plot −|ux|
and |uy| in Figures 11 (i) and (ii), because we can see from Figure 7 and Figure 10 that ux is in
anti-phase with uy. In contrast, we plot |ux| and |uy| in Figures 11 (iii) and (iv).

The directions of two eigenmodes are also depicted in Figure 11. We can see the resonances in
Figure 11 (i) and (iv). From Figure 12 we can confirm that the bounds shown in Figure 11 are
confidential and sufficiently tight.

5.1.3 Bounds for member stress

As discussed in Remark 3.17, the distribution of (the complex amplitudes of) the member stresses
is investigated in Figure 13 and Figure 14 by using the SDP and SOCP formulations presented in
section 3. It is observed in Figure 13 that the stresses of both members are in anti-phase with the
driving load of ω = ω0

1. From Figure 14 we see that the stress of the member (2) is in phase with
the driving load of ω = 1.1ω0

1, while there exists a case in which the stress of the member (1) is in
anti-phase with the driving load, i.e. the phase angle of the member (1) has very large uncertainty.

5.2 29-bar truss

Next we consider a 29-bar truss shown in Figure 1. The lengths of members in the directions of the
x- and y-axes are 50 cm and 100 cm, respectively.

As the nominal load, f̃ , the external forces 12 kN and 8 kN are applied at the nodes (a) and (b),
respectively, in the negative direction of y-axis. The driving frequency is ω = ω0

1. The uncertainty
model of f , (5), is defined as discussed in Example 2.1 with f̄0 = 1 kN. Consequently, the external
forces are running through the circles depicted with the dotted lines in Figure 1. Note that uncertain
forces may possibly exist at all free nodes, and any two sets of the uncertain loads have no relation.
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Figure 10: Bounds and randomly generated samples for the complex amplitudes of the displacements
of the 2-bar truss.
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Figure 11: Bounds for the nodal oscillation of the 2-bar truss. ∗: nominal values; ‘—’: bounds
obtained by solving (38), (39), (44), and (47); ‘– –’: bounds obtained by solving (19) and (21); ‘· · · ’:
directions of eigenmodes without damping.

We investigate the displacement of the node (a), which is denoted by (ux, uy). We put α = 1.0
in (5). For the amplitudes in the x- and y-th directions, we obtain the bounds of the moduli and
phase angles, which are shown in Figure 15. The obtained bounds are confirmed in Figure 16 to be
conservative and sufficiently tight. Variations of |ux|, |uy|, Arg ux, and Arg uy with respect to the
magnitude of uncertainty, α, are depicted in Figure 17. Figure 18 illustrates the variations of |ux|
and |uy| with respect to the frequency of the driving load, ω, in the range of ω ∈ [ω0

1, ω
0
2], where

ω0
1 = 1.248 rad/s and ω0

2 = 1.872 rad/s. It is observed from Figure 18 (i) that the minimum value,
rmin, of |ux| is rmin = 0 for ω ∈ [1.76, ω0

2] as discussed in Remark 3.9.
For the node (a), Figure 19 depicts the bounds for the distribution of the vector (|ux|, |uy|), which

are confirmed in Figure 20. It is observed from Figure 19 (i) that the driving force with ω = ω0
1

yields the resonance, where the oscillation is in the direction of the first eigenmode. In contrast,
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Figure 12: Bounds and randomly generated samples for the nodal oscillation of the 2-bar truss.

in Figure 19 (iv) with ω = ω0
2, the uncertainty of the oscillation direction, |uy|/|ux|, is very large,

although there exists a case in which the oscillation is approximately in the direction of the second
eigenmode. It should be emphasized that in such a case the obtained bounds are very tight, which
can be seen in Figure 20 (iv). Figure 21 illustrates the variations of

√|ux|2 + |uy|2 with respect to
α and ω.

23



0 50 100 150 200
100

200

300

400

sample number

m
od

ul
us

 (
G

P
a)

0 50 100 150 200
−1.5

−1.45

−1.4

−1.35

sample number

ph
as

e 
an

gl
e 

(r
ad

)

−100 0 100

−300

−250

−200

−150

real

im
ag

in
ar

y

(i) member (1)

0 50 100 150 200
200

300

400

500

600

sample number

m
od

ul
us

 (
G

P
a)

0 50 100 150 200
1.48

1.5

1.52

1.54

1.56

sample number

ph
as

e 
an

gl
e 

(r
ad

)

−200 0 200
200

300

400

500

real

im
ag

in
ar

y

(ii) member (2)

Figure 13: Bounds and randomly generated samples for the member stresses of the 2-bar truss
(ω = ω0

1). ‘—’: bounds; ‘– –’: nominal values.
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Figure 14: Bounds and randomly generated samples for the member stresses of the 2-bar truss
(ω = 1.1ω0

1). ‘—’: bounds; ‘– –’: nominal values.
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Figure 15: Bounds for the complex amplitudes of the displacements of the 29-bar truss (ω = ω0
1).

∗: nominal values; (i) displacement in the x-direction; (ii) displacement in the y-direction.
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Figure 17: Variations of bounds for the complex amplitudes of the displacements in the x-direction
of the 29-bar truss with respect to the magnitude of uncertainty α. ‘· · · ’: nominal value; ‘—’: lower
bounds; ‘– –’: upper bounds.
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Figure 20: Bounds and randomly generated samples for the nodal oscillation of the 29-bar truss.
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Figure 21: Variations of bounds for the nodal oscillation of the 29-bar truss with respect to α and
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Figure 22: 29-bar truss under the uncertain load defined with a singular F0 in (5).

6 Further generalization of uncertainty model

6.1 Formulations for generalized uncertainty model

Recall that we have assumed in sections 3 and 4 that the matrix F0 ∈ Rd×k defining the uncertainty
set, (5), is nonsingular. In this section we consider formulations for confidence bounds without
this assumption. Note that the matrices Ψ1, . . . ,Ψ` defined in Proposition 3.4 includes F−1

0 , hence
formulations presented in sections 3.1, 3.3, 4.1, and 4.2 are not valid for a singular F0. In contrast,
the SOCP formulation in section 3.2 can be applied to a singular F0 in order to find a lower bound
for the modulus of the displacement amplitude.

As investigated in Example 2.1 and Example 2.2, if F0 is nonsingular, then uncertain forces can
exist at all free nodes. By using a singular F0, it is possible to consider the uncertainty model where
uncertain forces can exist only at specified nodes.

Example 6.1. Consider a plane truss illustrated in Figure 22. The nominal harmonic forces are
applied at the nodes (a)–(c). In contrast to Figure 1, suppose that uncertain forces can exist only
at the nodes (a)–(c). Such an uncertainty model can be represented as (5) by putting

F0 = f̄0

[
I6

O

]
∈ R20×6,

T1 =
[
I2 O O

]
, T2 =

[
O I2 O

]
, T3 =

[
O O I2

]
∈ R2×6,

where k = 6 and ` = 3. Thus we see that F0 is singular.
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Proposition 6.2. Suppose that F0 in (5) is singular. For V defined in (12), v ∈ V if and only if v
satisfies

[
v

1

]T

Ψ̌j

[
v

1

]
≥ 0, j = 1, . . . , `, (49)

[
v

1

]T

Θ̌

[
v

1

]
= 0, (50)

where Ψ̌j (j = 1, . . . , `) and Θ̌ are constant matrices defined by

Ψ̌j = Diag(0, α2)−
[
ST

1

−f̃T

]
(TjF

†
0 )TTjF

†
0

[
S1 −f̃

]
, j = 1, . . . , `,

Θ̌ = −
[

((F⊥0 )TS1)T ST
2

−((F⊥0 )Tf̃)T O

][
(F⊥0 )TS1 −(F⊥0 )Tf̃

S2 O

]
,

where F †0 ∈ Rk×d is the Moore–Penrose pseudoinverse of F0, F⊥0 ∈ Rd×(d−rankF0) the basis for the
left null space of F0, and rankF0 the row rank of F0.

The proof appears in appendix A.5.

Example 6.3. In the case of Example 6.1, the matrices in Proposition 6.2 are obtained as

F †0 =
1
f̄0

[
I6 O

]
∈ R6×20, F⊥0 =

[
O

I14

]
∈ R20×14.

where rankF0 = 6.

It follows from Proposition 6.2 that the SDP formulations presented in sections 3.1, 3.3, 4.1,
and 4.2 are generalized for a singular F0 by replacing Ψ1, . . . ,Ψ` and Θ with Ψ̌1, . . . , Ψ̌` and Θ̌,
respectively.

6.2 Numerical example for generalized uncertainty model

Consider a 29-bar truss shown in Figure 22. As the nominal load, f̃ , the external forces 7.5 kN,
5 kN and 2.5 kN are applied at the nodes (a), (b), and (c), respectively, in the negative direction
of y-axis. The uncertainty model of f , (5), is defined as discussed in Example 6.3 with f̄0 = 1 kN.
Consequently, the external forces are running through the circles depicted with the dotted lines in
Figure 22. Note that uncertain forces may possibly exist only at the nodes (a)–(c), and any two sets
of the uncertain loads have no relation.

We investigate the displacement of the node (a), which is denoted by (ux, uy). We put α = 1.0
in (5). For the amplitudes in the x- and y-th directions, we obtain the bounds of the moduli and
phase angles, which are shown in Figure 23 for various frequency of the driving load. Figure 24
depicts the bounds for the distribution of the vector (|ux|, |uy|). It is observed from Figure 23 and
Figure 25 that the obtained bounds are confirmed to be conservative and very tight.
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Figure 23: Bounds and random samples for the complex amplitudes of the displacements at the
node (a) of the model defined in Figure 22.

7 Conclusions

We have proposed tractable formulations for computing confidential bounds for the dynamic steady-
state behaviors of a structure subjected to uncertain driving loads. We considered non-stochastic
uncertainties of amplitudes of harmonic driving loads, and estimate conservative bounds for struc-
tural responses at the steady-state.

We have formulated the bound detection problems as optimization problems for finding the
minimal bounds of various characteristic amounts of dynamic response, including the modulus and
phase angle of the complex amplitude of the displacement and stress. By using the quadratic-
embedding of the uncertain parameters, and applying the S-lemma, we constructed a numerically
tractable problem which approximates the bound detection problem, and provides a conservative
bound for the dynamic response. The obtained conservative problems are shown to be either an
SDP (semidefinite programming) problem or an SOCP (second-order cone programming) problem,
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Figure 25: Random samples for the oscillation of the node (a) of the 29-bar truss defined in Figure 22.

both of which are convex optimization problems, and can be solved very effectively by using existing
well-developed software based on the primal-dual interior-point method.

In the numerical examples, it has been shown that confidence bounds for dynamic responses
can be obtained effectively by using the primal-dual interior-point method. We have also illustrated
through numerical examples that the bounds provided by the proposed SDP and SOCP problems
are sufficiently tight even for a moderately large magnitude of uncertainty.
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Appendix A. Proofs of technical results

A.1 For section 3.1

A.1.1 Proof of Proposition 3.1

By using G defined in (13), the problem (7) is equivalently rewritten as

rmax = max
v
{‖Gv‖ : v ∈ V} . (51)

Since we assume that F defined in (5) is bounded, V is also bounded. Hence, ‖Gv‖ is bounded
above, which implies that there exists an r′ ∈ R satisfying r′ ≥ ‖Gv‖ (∀v ∈ V). Here, r′ is regarded
as an upper bound of rmax in (51), and hence r′ ≥ rmax. Moreover, it is easy to see that rmax satisfies
rmax ≥ ‖Gv‖ (∀v ∈ V), i.e. rmax is a feasible solution of (14). Consequently, rmax is the minimum
value of r′ when r′ is an upper bound of ‖Gv‖ over V. This is (14).

A.1.2 Proof of Proposition 3.3

The following two lemmas are used for the proof of Proposition 3.3.

Lemma A.1. Let Q ∈ Sn, p ∈ R, γ ∈ R, and x ∈ Rn. Then the following two conditions are
equivalent:

(a) : ∀x ∈ Rn :

[
x

1

]T [
Q p

pT γ

]
Q

[
x

1

]
≥ 0;

(b) :

[
Q p

pT γ

]
� O.

Proof. The implication from (b) to (a) is trivial. We show that (a) implies (b) by the contradiction.
Suppose that (b) does not holds, i.e. we assume that there exist x′ ∈ Rn and ξ ∈ R satisfying

[
x′

ξ

]T [
Q p

pT γ

][
x′

ξ

]
< 0. (52)

If ξ 6= 0, then (52) is reduced to
[
x′/ξ

1

]T [
Q p

pT γ

][
x′/ξ

1

]
< 0,

which contradicts the condition (a). Alternatively, if ξ = 0, then (52) is reduced to

x′TQx′ < 0. (53)

Put x = ηx′, and the left-hand side of (a) is reduced to

(xTQx′)η2 + 2(pTx′)η + γ, (54)

which is regarded as a function of η. The condition (53) implies that (54) is not bounded below, from
which it follows that there exists η such that (54) becomes negative. Thus, we see the contradiction
to (a).
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Lemma A.2 (S-lemma). Let f0, f1, . . . , fm : Rn → R be quadratic functions. The implication

f1(x) ≥ 0, . . . , fm(x) ≥ 0 ⇒ f0(x) ≥ 0

holds if there exist a vector τ = (τi) ∈ Rm satisfying

∀x ∈ Rn : f0(x) ≥
m∑

i=1

τifi(x),

τ1, . . . , τm ≥ 0.

Proof. See Boyd et al. [8, section 2.6.3] and the references therein.

Proof of Proposition 3.3 For simplicity we write

qi(x) =

[
x

1

]T

Qi

[
x

1

]
, i = 0, 1, . . . ,m,

pj(x) =

[
x

1

]T

Pj

[
x

1

]
, j = 1, . . . , k.

Observe that the quadratic equation pj(x) = 0 in (a) is equivalent to quadratic inequalities

pj(x) ≥ 0, −pj(x) ≥ 0.

It follows from Lemma A.2 that the implication (a)⇒ (b) holds if there exist τ1, . . . , τm, ρ+
m+1, . . . , ρ

+
m+k,

and ρ−m+1, . . . , ρ
−
m+k satisfying

∀x ∈ Rn : q0(x) ≥
m∑

i=1

τiqi(x) +
k∑

j=1

ρ+
j pj(x) +

k∑

j=1

ρ−j (−pj(x)),

τ1, . . . , τm ≥ 0, ρ+
1 , . . . , ρ

+
k ≥ 0, ρ−1 , . . . , ρ

−
k ≥ 0.

By putting σj = ρ+
j − ρ−j (j = 1, . . . , k), this condition is equivalently rewritten as

∀x ∈ Rn : q0(x) ≥
m∑

i=1

τiqi(x) +
k∑

j=1

σjpj(x), (55)

τ1, . . . , τm ≥ 0.

The assertion of this proposition is obtained by applying Lemma A.1 to (55).

A.1.3 Proof of Proposition 3.4

It follows from (5) and (12) that v ∈ V if and only if

S1v = f̃ + F0ζ, α ≥ ‖Tjζ‖, j = 1, . . . , `, (56)

S2v = 0. (57)

Since F0 is regular, (56) is rewritten as

Tjζ = TjF
−1
0

(
S1v − f̃

)
, α ≥ ‖Tjζ‖, j = 1, . . . , `. (58)
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For each j = 1, . . . , `, we see that

α ≥ ‖Tjζ‖ ⇔ α2 − ‖Tjζ‖2 ≥ 0

holds. From this observation it follows that (58) is equivalent to the quadratic inequalities

α2 −
∥∥∥TjF−1

0 (S1v − f̃)
∥∥∥

2
≥ 0, j = 1, . . . , `,

which corresponds to (15). The equation (57) is equivalent to the quadratic equality

‖S2v‖2 = 0,

which corresponds to (16).

A.1.4 Proof of Proposition 3.5

We start with observing that the condition (17) is equivalent to the implication

v ∈ V ⇒ r ≥ ‖Gv‖. (59)

Here, the inequality on the right-hand side of (59) is reduced to
[
v

1

]T [−GTG 0
0T r2

][
v

1

]
≥ 0. (60)

Note that the right-hand side of (59) is equivalent to (60) and r ≥ 0.
Recall that, in Proposition 3.4, the left-hand side of (59) is reduced to quadratic inequalities.

Consequently, the implication (59) can be rewritten equivalently as the following implication:
[
v

1

]T

Ψj

[
v

1

]
≥ 0 (j = 1, . . . , `),

[
v

1

]T

Θ

[
v

1

]
= 0

⇒
[
v

1

]T [−GTG 0
0T r2

][
v

1

]
≥ 0,

where r ≥ 0. Then the assertion of Proposition 3.5 follows from Proposition 3.3.

A.1.5 Proof of Proposition 3.6

Recall Proposition 3.1, i.e. rmax is equivalent to the optimal value of the problem (14). Now we
observe that the problem (19) is obtained by replacing the constraint condition, (17), of the prob-
lem (14) with (18). Hence, the assertion of Proposition 3.6 follows immediately from Proposition 3.5.

A.2 For section 3.2

A.2.1 Proof of Proposition 3.7

By using G defined by (13), we see that (20) is equivalently rewritten as

rmin = min
v
{‖Gv‖ : v ∈ V} . (61)
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By introducing an auxiliary variable t which is equivalent to ‖Gv‖, and by substituting the definition
(12) of V, the problem (61) is reduced to

min
t,v,ζ

t

s.t. t = ‖Gv‖,
S1v = f̃ + F0ζ,

S2v = 0,
α ≥ ‖Tjζ‖, j = 1, . . . , `,





(62)

without changing the optimal value. Since the problem (62) is the minimization of t, we can replace
the constraint condition r = ‖Gv‖ with r ≥ ‖Gv‖, which results in (21).

A.3 For section 3.3

A.3.1 Proof of Proposition 3.10

Since 0 < θmax < π, we may restrict ourselves to uq satisfying Imuq 6= 0 without loss of generality.
It is easy to see that if a2 ∈ R and uq ∈ C satisfy

[
1 a2

] [Reuq
Imuq

]
= 0,

then the relation

a2 = −Reuq
Imuq

= − 1
tan Arg uq

holds. Hence, (23) is reduced to

− 1
tan θmax

= max
a

{
eT

2 a : aTGv = 0, v ∈ V, eT
1 a = 1

}
, (63)

Moreover, if a2 and uq satisfy

[
1 a2

] [Reuq
Imuq

]
≥ 0, (64)

then the inequality

a2 ≥ − 1
tan Arg uq

holds. Hence, (64) implies that a2 is an upper bound for −1/ tan Arg uq. From this observation it
follows that if a2 satisfies

[
1 a2

]
Gv ≥ 0, ∀v ∈ V,

then a2 corresponds to an upper bound for −1/ tan Arg uq(f) when f is running through F . Con-
sequently, in a manner similar to Proposition 3.1, the maximization problem (63) of −1/ tan Arg uq
is equivalently rewritten as the minimization problem of the upper bound for −1/ tan Arg uq, which
concludes the proof.
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A.3.2 Proof of Proposition 3.11

We first observe that the condition (27) is equivalent to the following implication:

v ∈ V ⇒ aTGv ≥ 0.

Recall that the condition v ∈ V has been embedded into some quadratic inequalities in Proposi-
tion 3.4. We easily see that

aTGv ≥ 0

is equivalent to
[
v

1

]T [
O GTa

aTG 0

][
v

1

]
≥ 0.

Then the assertion follows from Proposition 3.3.

A.3.3 Proof of Proposition 3.12

Recall Proposition 3.10, i.e. θmax is equivalent to the optimal value of the problem (26). Observe
that the problem (29) is constructed from the problem (26) by replacing the constraint condition
(27) with its sufficient condition (28) provided by Proposition 3.11. Let (a′,w′, s′) denote a feasible
solution of the problem (29). From the construction of (29) it follows that a′ satisfies (27). Hence,
by using Proposition 3.10, we obtain the inequality

− 1
tan θmax

≤ a∗2,

which concludes the proof.

A.4 For section 4.2

A.4.1 Proof of Proposition 4.5

We investigate the constraint condition

∀µ ∈ {(‖Gxv‖2, ‖Gyv‖2)T | v ∈ V} : aTµ ≥ 0 (65)

in the problem (43). It follows from Proposition 3.4 that the condition µ ∈ {(‖Gxv‖2, ‖Gyv‖2)T |
v ∈ V} in (65) can be reduced to quadratic inequalities in terms of u and µ as

[
v

1

]T

Ψj

[
v

1

]
≥ 0, j = 1, . . . , `,

[
v

1

]T

Θ

[
v

1

]
= 0,

µ2
x − ‖Gxv‖2 = 0, µ2

y − ‖Gyv‖2 = 0.
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which are rewritten as


µ

v

1




T

Ψ̂j



µ

v

1


 ≥ 0, j = 1, . . . , `, (66)



µ

v

1




T

Θ̂i



µ

v

1


 = 0, i = 1, 2, 3. (67)

The condition aTµ ≥ 0 in (65) is equivalently rewritten as



µ

v

1




T 

O O a

O O 0
aT 0T 0






µ

v

1


 ≥ 0. (68)

Consequently, the condition (65) is equivalent to the implication

(66) & (67) ⇒ (68). (69)

By applying Proposition 3.3 to (69), we see that the implication (69) holds if there exist w ∈ R`+
and s ∈ R3 satisfying



O O a

O O 0
aT 0T 0


 �

∑̀

j=1

wjΨ̂j +
3∑

i=1

siΘ̂i. (70)

Note that the problem (44) is obtained from the problem (43) by replacing the constraint condition
(65) with its sufficient condition (70). Hence, a∗2 defined in (44) satisfies a∗2 ≥ −1/(tmax)2, from
which we obtain Proposition 4.5.

A.5 For section 6.1

A.5.1 Proof of Proposition 6.2

From (5) and (12), and the definitions of F †0 and F⊥0 , we see that v ∈ V if and only if v satisfies

F †0 (S1v − f̃) = ζ, α ≥ ‖Tjζ‖, j = 1, . . . , `, (71)

(F⊥0 )T(S1v − f̃) = 0, (72)

S2v = 0. (73)

The condition (71) is reduced to

α ≥
∥∥∥TjF †0 (S1v − f̃)

∥∥∥ , j = 1, . . . , `,

which is rewritten equivalently as (49). Moreover, the linear equations (72) and (73) are equivalently
rewritten as (50), which concludes the proof.

38



Acknowledgments

This work is supported by a Grant-in-Aid for Scientific Research from the Ministry of Education,
Culture, Sports, Science and Technology of Japan.

References

[1] Alefeld, G. and Mayer, G., Interval analysis: theory and applications, Journal of Computational
and Applied Mathematics, 121 (2000) 421–464.

[2] Alizadeh, F. and Goldfarb, D., Second-order cone programming. Mathematical Programming,
B95 (2003) 3–51.

[3] Au, F.T.K., Cheng, Y.S., Tham, L.G., and Zheng, G.W., Robust design of structures using
convex models, Computers & Structures, 81 (2003) 2611–2619.

[4] Ben-Haim, Y., Information-gap Decision Theory: Decisions under Severe Uncertainty, (2nd
ed.), Academic Press, London, 2006.

[5] Ben-Haim, Y. and Elishakoff, I., Convex Models of Uncertainty in Applied Mechanics, Elsevier,
New York, 1990.

[6] Ben-Tal, A., El Ghaoui, L., and Nemirovski, A., Robustness, in: H. Wolkowicz, R. Saigal,
L. Vandenberghe (eds.), Handbook of Semidefinite Programming — Theory, Algorithms, and
Applications, Kluwer, Dordrecht, the Netherlands, 2000, pp. 139–162.

[7] Ben-Tal, A. and Nemirovski, A., Robust optimization — methodology and applications, Math-
ematical Programming, B92 (2002) 453–480.

[8] Boyd, S., El Ghaoui, L., Feron, E., and Balakrishnan, V., Linear Matrix Inequalities in System
and Control Theory, SIAM, Philadelphia, 1994.

[9] Calafiore, G. and El Ghaoui, L., Ellipsoidal bounds for uncertain linear equations and dynamical
systems, Automatica, 40 (2004) 773–787.

[10] Chen, S., Lian, H., and Yang, X., Interval eigenvalue analysis for structures with interval
parameters, Finite Elements in Analysis and Design, 39 (2003) 419–431.

[11] Chen, S., Qiu, Z., and Song, D., A new method for computing the upper and lower bounds on
frequencies of structures with interval parameters, Mechanics Research Communications, 22
(1995) 431–439.

[12] De Gersem, H., Moens, D., Desmet, W., and Vandepitte, D., Interval and fuzzy dynamic analysis
of finite element models with superelements, Computers & Structures, 85 (2007) 304–319.

[13] Dimarogonas, A.D., Interval analysis of vibrating systems, Journal of Sound and Vibration,
183 (1995) 739–749.

39



[14] Gao, W., Interval natural frequency and mode shape analysis for truss structures with interval
parameters, Finite Elements in Analysis and Design, 42 (2006) 471–477.

[15] El-Gebeily, M.A., Abu-Baker, Y., and Elginde, M.B., The generalized eigenvalue problem for
tridiagonal symmetric interval matrices, International Journal of Control, 72 (1999) 531–535.

[16] Guo, X., Bai, W., and Zhang, W., Extreme structural response analysis of truss structures under
material uncertainty via linear mixed 0–1 programming, International Journal for Numerical
Methods in Engineering, (2008) DOI: 10.1002/nme.2298.

[17] Helmberg, C., Semidefinite programming, European Journal of Operational Research, 137
(2002) 461–482.

[18] Kanno, Y. and Takewaki, I., Confidence ellipsoids for static response of trusses with load and
structural uncertainties, Computer Methods in Applied Mechanics and Engineering, 196 (2006)
393–403.

[19] Kanno, Y. and Takewaki, I., Robustness analysis of trusses with separable load and structural
uncertainties, International Journal of Solids and Structures, 43 (2006) 2646–2669.

[20] Kanno, Y. and Takewaki, I., Worst-case plastic limit analysis of trusses under uncertain loads
via mixed 0-1 programming, Journal of Mechanics of Materials and Structures, 2 (2007) 245–
273.

[21] Kanno, Y. and Takewaki, I., Ellipsoidal bounds for static response of framed structures against
interactive uncertainties, Interaction and Multiscale Mechanics: an International Journal, 1
(2007) 103–121.

[22] Kojima, M., Shindoh, S., and Hara, S., Interior-point methods for the monotone semidefinite
linear complementarity problem in symmetric matrices, SIAM Journal on Optimization, 7
(1997) 86–125.

[23] Leng, H. and He, Z., Computing eigenvalue bounds of structures with uncertain-but-non-
random parameters by a method based on perturbation theory, Communications in Numerical
Methods in Engineering, 23 (2007) 973–982.

[24] Matsuda, Y. and Kanno, Y., Robustness analysis of structures based on plastic limit analysis
with uncertain loads, Journal of Mechanics of Materials and Structures, 3 (2008) 213–242.

[25] Modares, M., Mullen, R.L., and Muhanna, R.L., Natural frequencies of a structure with
bounded uncertainty, Journal of Engineering Mechanics (ASCE), 132 (2006) 1363–1371.

[26] Moens, D. and Vandepitte, D., A fuzzy finite element procedure for the calculation of uncertain
frequency-response functions of damped structures: Part 1 — Procedure, Journal of Sound and
Vibration, 288 (2005) 431–462.

[27] Moens, D. and Vandepitte, D., A survey of non-probabilistic uncertainty treatment in finite
element analysis, Computer Methods in Applied Mechanics and Engineering, 194 (2005) 1257–
1555.

40



[28] Muhanna, R.L. and Mullen, R.L., Uncertainty in mechanics problems — interval-based ap-
proach, Journal of Engineering Mechanics (ASCE), 127 (2001) 557–566.

[29] Neumaier, A. and Pownuk, A., Linear systems with large uncertainties, with applications to
truss structures, Reliable Computing, 13 (2007) 149–172.

[30] Ohsaki, M., Fujisawa, K., Katoh, N., and Kanno, Y., Semi-definite programming for topol-
ogy optimization of truss under multiple eigenvalue constraints, Computer Methods in Applied
Mechanics and Engineering, 180 (1999) 203–217.

[31] Pantelides, C.P. and Ganzerli, S., Design of trusses under uncertain loads using convex models,
Journal of Structural Engineering (ASCE), 124 (1998) 318–329.

[32] Qiu, Z., Chen, S.H., and Elishakoff, I., Natural frequencies of structures with uncertain but
nonrandom parameters, Journal of Optimization Theory and Applications, 86 (1995) 669–683.

[33] Qiu, Z., Elishakoff, I., and Starnes, J.H., Jr., The bound set of possible eigenvalues of structures
with uncertain but non-random parameters, Chaos, Solitons & Fractals, 7 (1996) 1845–1857.

[34] Qiu, Z. and Wang, X., Comparison of dynamic response of structures with uncertain-but-
bounded parameters using non-probabilistic interval analysis method and probabilistic ap-
proach, International Journal of Solids and Structures, 40 (2003) 5423–5439.
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