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An Implicit Formulation of Robust Structural Optimization

under Load Uncertainties

Yoshihiro Kanno †

Department of Mathematical Informatics,
University of Tokyo, Tokyo 113-8656, Japan

Abstract

This paper discusses an implicit reformulation of the MPEC (mathematical program with
complementarity constraints) problem in order to solve a robust structural optimization
with a non-probabilistic uncertainty model of the static load. We first show the relation
among the robust constraint satisfaction, worst scenario detection, and robust structural
optimization, and derive the MPEC formulation of the robust structural optimization.
Since MPEC does not satisfy a standard constraint qualification, we propose a refor-
mulation based on the smoothed Fischer–Burmeister function, in which the smoothing
parameter is treated as an independent variable. Numerical examples of robust truss de-
sign are presented in order to demonstrate that the presented formulation can be solved
by using a standard nonlinear programming approach without any difficulty.

Keywords

Robust optimization; Structural optimization; Mathematical program with equilibrium
constraints; Complementarity condition; Fischer–Burmeister function.

1 Introduction

Recently, methodologies as well as numerical techniques for robust structural design have received
increasing attention in structural and mechanical design. Since structures built in the real-world
always have various uncertainties caused by manufacture errors, limitation of knowledge of input
disturbance, observation errors, etc., the notion of robust structural design is required naturally
in which structures should always satisfy the given constraints on mechanical performance under
various uncertainties [2, 5, 8, 11, 21, 26, 29, 33, 34, 39].

There exist two different frameworks with which we consider the uncertain property of a struc-
tural system. The one is probabilistic uncertainty modeling and the other non-probabilistic un-
certainty modeling. Based on the probabilistic uncertainty model, various methods have been
well-developed for reliability-based optimization (see, e.g., [8, 33, 39], and the references therein).
Probabilistic robust design approaches require information on stochastic variation of the uncertain
†Address: Department of Mathematical Informatics, Graduate School of Information Science and Technology,
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parameters, e.g. parameters of the probability density function as well as an appropriate model of
the probability density function itself. However, it is often difficult to estimate those parameters
accurately, especially when the number of samples of the uncertain parameters is limited.

In contrast to probabilistic approaches, the non-probabilistic uncertainty framework treats the
uncertain parameters as the so-called unknown-but-bounded parameters, and hence it is not necessary
to estimate the probability distribution of the uncertain parameters. One of well-known approaches
with a non-probabilistic uncertainty model is the so-called convex model method [4]; based on this
method, numerical algorithms were suggested for robust structural optimization [2, 29]. Note that
these convex model approaches are valid only if the magnitude of uncertainty is small enough, be-
cause the convex model method is essentially based on the first-order approximation of the response
of a structure with respect to the uncertain parameters. Lee and Park [26] also presented a robust
structural optimization based on the first-order approximation.

There exist two closely related methodologies with which we can address arbitrary large magni-
tude of uncertainty in a structural system. The one is the notion of robust counterpart of optimization
problem proposed by Ben-Tal and Nemirovski [6, 7], and another the info-gap decision theory pro-
posed by Ben-Haim [3]. A unified methodology of robust counterpart was presented for a broader
class of convex optimization problems [7], in which the given data of an optimization problem pos-
sess non-probabilistic uncertainty. This methodology was applied to the compliance minimization
problem of a truss considering load uncertainty [5]. A min-max formulation of a robust compliance
design was presented for continua [11]. Kočvara et al. [24] performed a free-material design under
multiple loadings by using a cascading technique.

In the info-gap decision theory, the robustness function plays a key role which represents the
greatest level of uncertainty at which any failure cannot occur [3]. By using the robustness function,
Kanno and Takewaki [21] proposed a robustness maximization problem of a truss subjected to the
stress constraints considering the load uncertainty.

In this paper, we consider a non-probabilistic uncertainty of static external load in the context
of structural optimization. In accordance with the notion of robust constraint satisfaction which are
shared by the robust optimization methodology [7] and the info-gap theory [3], we present a robust
structural optimization, in which any constraint of mechanical performance cannot be violated at
the given magnitude of uncertainty. As the first contribution of the paper, we clarify the relation
among the robust constraint satisfaction, worst scenario detection problem, and robust structural
optimization problem (see section 2).

It is shown that the robust structural optimization problem can be reformulated as an MPEC
(mathematical program with complementarity constraints) problem. Since the MPEC problem does
not satisfy any standard constraint qualification [25], standard nonlinear programming approaches
are likely to fail for this problem. This motivates us to propose an implicit reformulation scheme of
MPEC by using the smoothed Fischer–Burmeister function [16, 23], which is the second contribution
of this paper (see section 4).

It is known that various problems in structural engineering can be formulated as MPECs [1, 14,
20, 36, 37]. Numerous smoothing methods, as well as regularization schemes, were also proposed
for MPEC [10, 12, 13, 16, 18–20, 32, 36, 38]. An MPEC problem includes the complementarity
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conditions

gi(x) ≥ 0, hi(x) ≥ 0, gi(x)hi(x) = 0, i = 1, . . . ,M (1)

as its constraint conditions, where gi, hi : RN → R (i = 1, . . . ,M). In a typical regularization
scheme for MPEC, the complementarity constraints, (1), are relaxed as [32]

gi(x) ≥ 0, hi(x) ≥ 0, gi(x)hi(x) ≤ ε, i = 1, . . . ,M, (2)

where ε > 0 is a constant. Then a sequence of the relaxed optimization problem with (2) is solved by
using a standard nonlinear programming approach, e.g. the SQP method, by gradually decreasing
ε ↘ 0. In contrast, in a smoothing method for MPEC, the complementarity constraints (1) are
replaced with [16, 36]

ψ(gi(x), hi(x); ε) = 0, i = 1, . . . ,M, (3)

where ε > 0 is a constant, and ψ( · ; 0) : R2 → R is a complementarity function, i.e. ψ(a, b; 0) = 0
holds if and only if a ≥ 0, b ≥ 0, and ab = 0. In a manner similar to the relaxation method, the
smooth optimization problem with (3) is solved sequentially by decreasing ε.

It seems that there exists neither guideline for the choice of an initial value for ε nor decreasing
strategy of ε. Note that the convergence of algorithms can be proved theoretically irrelevant to
the initial value of ε and the decreasing strategy. However, the computational efficiency certainly
depends on those choices; too rapid reduction of ε is not adequate in order to avoid the nonsmooth
property of the complementarity function, but unnecessary iterations might be spent if we decrease
ε too slowly; see Remark 4.4 for details.

This observation motivates us to propose a new reformulation of MPEC in which the smoothing
parameter ε is automatically adjusted. Then the presented formulation is solved by using a standard
nonlinear optimization method. In our formulation, we treat ε in (3) as an independent variable
which approximately represents the residual of complementarity conditions. As the residual of the
complementarity constraints becomes smaller, the smoothing parameter ε becomes smaller. At the
convergent solution, it is guaranteed that ε vanishes automatically, and hence the complementarity
constraints are satisfied exactly; see section 4 for details.

This paper is organized as follows. Section 2 describes the notions of the robust structural
optimization and the worst-case detection as well as their relations. In section 3, the robust structural
optimization problem is reformulated as an MPEC. We present an implicit reformulation of the
MPEC in section 4. Numerical results are shown in section 5; truss optimization problems with stress
constraints are in sections 5.1 and 5.2 and moderately large problem with displacement constraints
in section 5.3. Finally, conclusions are drawn in section 6.

A few words regarding our notation: all vectors are assumed to be column vectors. The (m+n)-
dimensional column vector (uT,vT)T consisting of u ∈ Rm and v ∈ Rn is often written simply as
(u,v). We denote by Sn ⊂ Rn×n the set of all n×n real symmetric matrices. For two sets A ⊆ Rm
and B ⊆ Rn, their Cartesian product is defined by A × B = {(aT, bT)T ∈ Rm+n | a ∈ A, b ∈ B}.
Particularly, we write Rm+n = Rm × Rn. For a vector p = (pi) ∈ Rn, we denote by ‖p‖∞ the
`∞-norm of p defined by ‖p‖∞ = maxi∈{1,...,n} |pi|. We write p ≥ 0 if pi ≥ 0 (i = 1, . . . , n). We
denote by I and 1 the n× n identity matrix and the vector (1, . . . , 1)T ∈ Rn, respectively, without
specifying n, unless it is not clear from the context.
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2 Robust structural optimization

Consider a finite-dimensional linear elastic structure subjected to the nodal loads f ∈ Rd, where d
is the number of degrees of freedom of displacements. Small displacements and small strains are
assumed. Let x ∈ Rm denote the vector of design variables, where m denotes the number of design
variables. For example, we may choose x as the cross-sectional areas of a truss, the thickness of
a plate discretized into finite elements, etc. We denote by K(x) ∈ Sd the stiffness matrix, which
is a (matrix-valued) function of x. The displacements vector u ∈ Rd is found from the system of
equilibrium equations

K(x)u = f , (4)

where f is assumed to be independent of x.

2.1 Structural optimization without uncertainty

We recall the conventional structural optimization problem before discussing the robust optimiza-
tion.

Consider the mechanical performance of structures that can be expressed by the constraints in
terms of the displacements. In this paper, we restrict ourselves to the linear constraints written as

aT
j u ≤ bj , j = 1, . . . , nc, (5)

where aj ∈ Rd and bj ∈ R (j = 1, . . . , nc) are constant, nc is the number of constraints, and u
satisfies (4).

Let v : x 7→ v(x) denote the function which gives the structural volume. We denote by X ⊆ Rm
the set of the admissible design variables, e.g. the lower and upper bound constraints for x is
represented as x ∈ X . Consider the conventional structural optimization problem which attempts
to minimize the structural volume v(x) over the constraints (5). This problem is formulated as

min
x∈X ,u

v(x)

s.t. K(x)u = f ,

aT
j u ≤ bj , j = 1, . . . , nc,





(6)

where x and u are the variables.

2.2 Non-stochastic model of uncertainty

We define a non-probabilistic uncertainty model of the external load.
Suppose that the external load f in (4) is not known precisely, or is uncertain. Throughout

the paper we assume that the uncertainty exists only in f , and that the other parameters in a
structural system are known precisely. Let f̃ ∈ Rd denote the nominal value, or the best estimate,
of the external load f . We describe the uncertainty of f = (fj) ∈ Rd by using unknown parameters
ζ = (ζp) ∈ Rk, where k ≤ d. Assume that f depend on ζ affinely as

f ∈ F(α) :=
{
f | f = f̃ + F0ζ, α ≥ ‖ζ‖∞

}
, (7)
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where F0 ∈ Rd×k is a constant matrix.
Note that the matrix F0 represents the magnitude of the uncertainty of fj and the relationship

of the uncertainties among f1, . . . , fd. Throughout the paper we assume that rank(F0) = k ≤ d for
simplicity.

2.3 Robust structural optimization

When the external load f takes any value in the uncertainty set F(α) defined in (7), the displace-
ments vector u is running through the set {u | K(x)u = f , f ∈ F(α)}. Now, it is natural to require
that the constraints on the mechanical performance, (5), should be satisfied by all realizations of u.
Thus the robust counterparts to the constraints (5) are introduced as

∀u ∈ {u : K(x)u = f , f ∈ F(α)} : aT
j u ≤ bj , j = 1, . . . , nc. (8)

By eliminating u, the robust constraints, (8), are reduced to

∀f ∈ F(α) : aT
j K(x)−1f ≤ bj , j = 1, . . . , nc. (9)

Recall the optimization problem (6), and a robust structural optimization problem is defined by
replacing the constraint condition (5) with its robust counterpart (9) as

[SemiInf] :

min
x∈X

v(x)

s.t. aT
j K(x)−1f ≤ bj (∀f ∈ F(α)), j = 1, . . . , nc.



 (10)

The essential difficulty of the robust structural optimization is captured clearly in (10): the prob-
lem (10) has a finite number of variables and an infinite number of inequality constraints, and hence
it is called a semi-infinite programming problem.

For the fixed x ∈ X , consider the optimization problem

[WorstCase] :

max
u,f

aT
j u

s.t. K(x)u = f ,

f ∈ F(α),





(11)

where u and f are the variables. We denote by (uwc,fwc) an optimal solution of the problem (11).
From the definition, we see that the robust satisfaction of the jth constraint of (8) becomes most
critical at uwc. Hence, we call fwc and uwc the worst case (or the worst scenario) load and dis-
placement, respectively, for the jth constraint condition. The problem (11) is called the worst-case
detection problem [17, 22], or the anti-optimization problem [27, 30]. It is obvious that the worst
scenario depends on x.

In other words, the robust constraint (8) requires that the performance constraint (5) should be
satisfied even in the worst case. Namely, (8) is equivalent to

aT
j u

wc ≤ bj , j = 1, . . . , nc.
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Recalling the problem defining uwc, (11), we see that the problem (10) is reduced to

min
x∈X

v(x)

s.t. max
u,ζ

{
aT
j u : K(x)u = f , f ∈ F(α)

}
≤ bj , j = 1, . . . , nc.



 (12)

By substituting (7), the problem (12) is equivalently rewritten as

[BiLevel] :

min
x∈X

v(x)

s.t. max
u,ζ

{
aT
j u : K(x)u = f̃ + F0ζ, ζ ∈ Z(α)

}
≤ bj , j = 1, . . . , nc.



 (13)

The problem (13) includes the optimizations in its constraints, and hence it is called the bi-level
optimization problem.

3 MPEC formulation

We investigate the optimality condition of the lower-level problem in the constraints of the bi-level
problem (13):

max
u,ζ

{
aT
j u : K(x)u = f̃ + F0ζ, α ≥ ‖ζ‖∞

}
, (14)

where u and ζ are the variables.

Proposition 3.1. Assume that there exists a vector u satisfies K(x)u = f̃ . Then (u∗, ζ∗) is
an optimal solution of the problem (14) if and only if there exists a Lagrange multipliers vector
(µ∗,λ∗, τ ∗) satisfying

K(x)u∗ = f̃ + F0ζ
∗,

aj +K(x)µ∗ = 0,

FT
0 µ
∗ + λ∗ − τ ∗ = 0,

α− ζ∗p ≥ 0, λ∗p ≥ 0, λ∗p(α− ζ∗p ) = 0, p = 1, . . . , k,

α+ ζ∗p ≥ 0, τ∗p ≥ 0, τ∗p (α+ ζ∗p) = 0, p = 1, . . . , k.

Proof. Observe that, for the fixed x, the problem (14) is a linear programming (LP) problem in
the variables u and ζ. The assumption of the proposition implies that the problem (14) has a
feasible solution. Then the assertion of the proposition follows from the standard result of the
Karush–Kuhn–Tucker conditions of LP (see, e.g., [9]).
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It follows from Proposition 3.1 that the problem (13) is equivalently rewritten as

[MPEC] :

min v(x)
s.t. x ∈ X ,

∀j = 1, . . . , nc :





K(x)uj − f̃ − F0ζj = 0,
aj +K(x)µj = 0,
aT
j uj ≤ bj ,
FT

0 µj + λj − τ j = 0,
α− ζpj ≥ 0, λpj ≥ 0, λpj(α− ζpj) = 0, p = 1, . . . , k,
α+ ζp ≥ 0, τpj ≥ 0, τpj(α+ ζpj) = 0, p = 1, . . . , k,





(15)

where x ∈ Rm, uj ∈ Rd, ζj = (ζpj) ∈ Rk, µj ∈ Rd, λj = (λpj) ∈ Rk, and τ j = (τpj) ∈ Rk
(j = 1, . . . , nc) are the variables.

The problem (15) has complementarity conditions in its constraints, and hence it is called the
mathematical program with complementarity constraints, or mathematical program with equilibrium
constraints (MPEC) [25]. Note that (15) is a single-level optimization problem with a finite number
of constraint conditions, while the problem (10) has infinitely many constraints, and the problem (13)
is a bi-level optimization problem.

Remark 3.2. The problem (15) has auxiliary variables u∗j and ζ∗j (j = 1, . . . , nc). It is of interest
to note that these variables have physical interpretations. At the optimal solution, u∗j and ζ∗j
correspond to the worst scenario for the jth constraint condition defined in (11): the worst load is
obtained as fwc = f̃+F0ζ

∗
j , and u∗j is the displacements vector corresponding to fwc. Note that the

worst load depends on the constraint condition, i.e. ζ∗j1 6= ζ∗j2 and u∗j1 6= u∗j2 (j1 6= j2) in general. We
say that the jth constraint condition aT

j u ≤ bj is active if aT
j u
∗
j = bj holds. For robust structural

optimization, optimal solutions often have some worst cases in which their corresponding constraints
become active. Section 5 illustrates some examples of robust optimal designs with multiple active
worst cases.

Remark 3.3. It is known that there exists the worst scenario load fwc, defined in (11), at an extreme
point of F(α) [17, 28]. Hence, for the problem (15) there exists an optimal solution satisfying

ζ∗pj ∈ {−1, 1}, p = 1, . . . , k; j = 1, . . . , nc,

This explains the combinatorial property of the robust structural optimization, i.e. the problem (10)
is solved if we consider the constraints at all extreme points of F(α). Obviously, it is not acceptable
to enumerate the constraints at extreme points from the practical point of view, because there exist
2n

ck extreme points. This is the reason why we attempt to solve the MPEC formulation (15).

Unfortunately, it is still difficult to solve the problem (15), because any feasible solution of (15)
does not satisfy a standard constraint qualification, e.g. linear independence constraint qualification
(LICQ), Mangasarian–Fromovitz constraint qualification, etc, and hence standard nonlinear pro-
gramming approaches are likely to fail for this problem (see, e.g., [25]). Hence, in section 4, we
propose a reformulation which satisfies the LICQ at almost all feasible solutions.
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4 Implicit reformulation of MPEC

In order to reformulate the MPEC problem (15) into a tractable form, we introduce a function
φ : R3 → R defined by

φ(y, z, ρ) = y + z −
√
y2 + z2 + 2ρ2, (16)

which is the smoothed Fischer–Burmeister function proposed by [23] for solving linear complemen-
tarity problems. Subsequently, smooth nonlinear programming approaches for MPEC were proposed
by using the function (16) [16, 18, 19, 36].

Let e denote Euler’s constant. The following proposition plays a crucial role in our reformulation.

Proposition 4.1. y = (yi) ∈ Rn, z = (zi) ∈ Rn, and ρ satisfy

y ≥ 0, z ≥ 0, yTz = 0, ρ = 0 (17)

if and only if the conditions

φ(yi, zi, ρ) = 0, i = 1, . . . , n, (18)

yTz = n(eρ − 1) (19)

are satisfied.

Proof. Observe that, for each i = 1, . . . , n, the equation

φ(yi, zi, ρ) = 0

holds if and only if yi, zi, and ρ satisfy

yi ≥ 0, zi ≥ 0, ρ2 = yizi.

Hence, the ‘only if’ part can be shown easily.
If ρ = 0 in (19), then yTz = 0. Hence, it remains to show that (18) and (19) imply ρ = 0. Since

ρ2 = yizi (i = 1, . . . , n) hold if (18) is satisfied, we see that (18) implies

nρ2 =
n∑

i=1

yizi = yTz. (20)

Substitution of (20) into (19) yields

ρ2 = eρ − 1,

which holds if and only if ρ = 0.

It follows from Proposition 4.1 that the MPEC problem (15) is equivalently rewritten as the
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following implicit formulation:

[NLP] :

min v(x)
s.t. x ∈ X ,

∀j = 1, . . . , nc :





K(x)uj − f̃ − F0ζj = 0,
aj +K(x)µj = 0,
aT
j uj ≤ bj ,
FT

0 µj + λj − τ j = 0,
φ(α− ζpj , λpj , ρ) = 0, p = 1, . . . , k,
φ(α+ ζp, τpj , ρ) = 0, p = 1, . . . , k,

nc∑

j=1

k∑

p=1

[(α− ζpj)λpj + (α+ ζp)τpj ] + (2nck)(1− eρ) = 0,





(21)

where x, ρ, uj , ζj , µj , λj , and τ j (j = 1, . . . , nc) are the variables. The problem (21) is regarded
as a conventional nonlinear programming (NLP) problem in the sense that it has no complemen-
tarity conditions in its constraint conditions. We call (21) an implicit reformulation of the MPEC
problem (15), because the smoothing parameter ρ is included as one of the variables in (21) and
is updated simultaneously with the other variables at each iteration of the optimization algorithm,
e.g. the SQP method.

Remark 4.2. In the problem (21), the complementarity conditions in the problem (15) are rewritten
by using the smoothed Fischer–Burmeister functions and the additional equation in the form of (19).
We may understand more clearly the role of the subsidiary variable ρ by rewriting (19) as

log
(

1
n
yTz + 1

)
= ρ. (22)

A key observation in (22) is that ρ can be regarded as a measure of residual of the complementarity
conditions, yTz = 0. An alternative candidate for a measure of the residual may be

1
n
yTz = ρ, (23)

which seems to be simpler than (22), but the function (23) does not give an implicit reformulation.
Indeed, the system of equations (18) and (23) is not equivalent to (17). More precisely, (17) is not
a necessary condition for (18) and (23). Thus, in order to obtain the result of Proposition 4.1, we
choose the logarithm function (22) as a measure of the residual.

Remark 4.2 also suggests an appropriate choice of the initial value ρ(0) for the variable ρ: let
y(0) and z(0) be the initial values of y and z satisfying 0 6= yT

(0)z(0) > −1/n, then it is certainly
reasonable to put ρ(0) := log[(yT

(0)z(0)/n) + 1], where y and z correspond to y = (α1− ζ1, . . . , α1−
ζk, α1 + ζ1, . . . , α1 + ζk) and z = (λ1, . . . ,λk, τ 1, . . . , τ k), respectively, in the problem (21).

Remark 4.3. For understanding the role which the smoothing parameter ρ plays, it is interesting to
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compare the proposed formulation, (21), with the following problem:

min c(x)
s.t. x ∈ X ,

∀j = 1, . . . , nc :





K(x)uj − f̃ − F0ζj = 0,
aj +K(x)µj = 0,
aT
j uj ≤ bj ,
FT

0 µj + λj − τ j = 0,
φ(α− ζpj , λpj , 0) = 0, p = 1, . . . , k,
φ(α+ ζp, τpj , 0) = 0, p = 1, . . . , k,





(24)

which is also equivalent to the MPEC problem (15). Our numerical experiments demonstrates
that the SQP method cannot converge to a solution of (24); see section 5.3. This is due to the
nonsmooth property of φ(α − ζpj , λpj , 0) and φ(α + ζp, τpj , 0) in the constraint conditions of (24).
In contrast, in (21), we overcome the nonsmooth property of constraint conditions by introducing
the smoothing variable, ρ. As discussed in Remark 4.2, ρ in (21) corresponds to the residual of the
complementarity conditions, and it is usual that the complementarity constraints are not satisfied
exactly during the optimization procedure before it converges. Hence, it is reasonable to expect that
ρ 6= 0 holds at intermediate solutions of the optimization procedure. If this assumption is satisfied,
then the constraint conditions of (21) are differentiable at intermediate solutions, which explains the
advantage of the proposed formulation (21) over (24).

Remark 4.4. The idea of regarding a smoothing parameter ρ as an independent variable can also
be found in Jian [18], Jiang and Ralph [19]. Their formulations are different from ours from in the
following point. The methods of [18, 19] utilizes the fact that the complementarity conditions (17)
in Proposition 4.1 are equivalent to

φ(yi, zi, ρ) = 0, i = 1, . . . , n, (25)

eρ = 1. (26)

Then the smooth SQP method was applied to the implicit formulation including (25) and (26) in
its constraints, instead of the complementarity conditions. Thus, the amount of the smoothing
parameter ρ is irrelevant to the variables y and z in the methods of [18, 19], whereas in ours we
attempt to adjust ρ to the residual of the complementarity constraints, yTz = 0, as discussed in
Remark 4.2. In other words, we expect that ρ becomes larger in the earlier stage of the optimization
procedure, and ρ can be smaller as the residual of the other constraints is reduced considerably. In
contrast, in the method using (25) and (26), there may possibly exist two disadvantageous situations:
(i) ρ is almost equal to 0 even if the residual of complementarity conditions is still relatively large,
then the smoothing effect of the Fischer–Burmeister function might not work properly, which may
cause the divergence of the optimization algorithm (see Remark 4.3); (ii) ρ is still far from 0 when
the residual of complementarity conditions is sufficiently small, then unnecessary iterations might
be spent in order to reduce the residual of (26).

Recall that the difficulty of the MPEC formulation (15) arises from the fact that MPEC fails
to satisfy any standard constraint qualification such as LICQ. We next investigate the constraint
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qualification of the implicit reformulation (21). For simplicity, we denote by ξ the variables vector
of the problem (21), i.e.

ξ =
(
x, ρ,

(
(uj , ζj ,µj ,λj , τ j) | j = 1, . . . , nc

))
.

Under the assumption that the MPEC problem (15) satisfies MPEC-LICQ [25], the following propo-
sition investigates LICQ of the problem (21).

Proposition 4.5. Let ξ̄ denote a feasible solution of the problem (15) satisfying the strict comple-
mentarity, i.e.

(α− ζ̄pj) + λ̄pj > 0, (α+ ζ̄p) + τ̄pj > 0, p = 1, . . . , k; j = 1, . . . , nc.

If the problem (15) satisfies MPEC-LICQ at ξ̄, then the problem (21) satisfies LICQ at ξ̄.

Proof. For simplicity, we consider the complementarity conditions

R2 3 y ≥ 0, R2 3 z ≥ 0, yTz = 0, (27)

i.e. we put n = 2 in Proposition 4.1. Define φ̂1, φ̂2, δ : R5 → R by

φ̂i(y,z, ρ) = φ(yi, zi, ρ), i = 1, 2,

δ(y,z, ρ) = yTz − 2(eρ + 1).

Then Proposition 4.1 implies that (y, z, ρ) satisfies (27) and ρ = 0 if and only if

φ̂1(y, z, ρ) = φ̂2(y, z, ρ) = δ(y, z, ρ) = 0. (28)

Suppose that (ȳ, z̄, ρ̄) satisfies (28) and the strict complementarity. Particularly, we assume

ȳ1 > 0, z̄2 > 0, ȳ2 = z̄1 = ρ̄ = 0.

Without loss of generality, it suffices to show that ∇φ̂1(ȳ, z̄, ρ̄), ∇φ̂2(ȳ, z̄, ρ̄), and ∇δ(ȳ, z̄, ρ̄) are
linearly independent. Simple calculation yields

∇φ̂1(ȳ, z̄, ρ̄) =




1− ȳ1/|ȳ1|
0
1
0
0



, ∇φ̂2(ȳ, z̄, ρ̄) =




0
1
0

1− z̄2/|z̄2|
0



, ∇δ(ȳ, z̄, ρ̄) =




0
z̄2

ȳ1

0
−2



,

which are linearly independent. The proof in more general case described in the assertion of this
proposition can be obtained similarly, but is omitted for simple presentation.

Proposition 4.5 guarantees that the implicit problem (21) satisfies LICQ, which allows to solve
(21) by using a standard nonlinear optimization approach. In contrast, the constraint conditions
are not continuously differentiable at a feasible solution which does not satisfy the strict comple-
mentarity. However, as discussed in Remark 4.3, we may expect that ρ 6= 0 at any intermediate
solution of the optimization procedure. If this assumption is satisfied, then the constraint conditions
are differentiable at any intermediate solution, and are not continuously differentiable only at the
convergent solution. Throughout numerical experiments, it is confirmed that a standard smooth
nonlinear optimization approach can solve the problem (21) without any difficulty arising from the
nonsmooth property of the constraint conditions of (21); see section 5 for details.
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5 Numerical experiments

The robust optimal designs under the load uncertainties are found for various structures by solving
the problem (21). Computation has been carried out on Core 2 Duo (1.2 GHz with 2.0 GB memory)
with Matlab Ver. 7.5.0 [35]. We solve the problem (21) by using the Matlab built-in function
fmincon, which implements the sequential quadratic programming (SQP) method for nonlinearly
constrained optimization. The gradients of the objective and constraint functions are provided as
the user-defined functions.

It is known that fmincon is not superior to other available nonlinear programming solvers. In
fact, some nonlinear programming solvers can solve a large class of MPECs [15], while fmincon

usually fails in our preliminary numerical experiments. However, this drawback is adequate for our
purpose, because we attempt to confirm that our implicit reformulation enhances the robustness of
a standard nonlinear programming solver when it is applied to MPECs [32].

In the following examples, the elastic modulus is 200 GPa. The design variables vector x ∈ Rm
in the problem (21) is chosen as the vector of member cross-sectional areas of a truss, where m
is the number of members. The set X in (21) represents the nonnegative constraints of x, i.e.
X = {x ∈ Rm | xi ≥ 0 (i = 1, . . . ,m)}.

5.1 2-bar truss

Consider a two-bar truss illustrated in Figure 1. The nodes (b) and (c) are pin-supported at
(x, y) = (0, 1000) and (0, 0) in mm, respectively, while the node (a) is free, i.e. d = 2. The initial
lengths of members (1) and (2) are 1000 mm and 1000

√
2 mm, respectively.

As the nominal load f̃ , the external force f̃ = (10.0, 0) kN is applied at the node (a). In
accordance with (7), the uncertainty model of the load is defined as

f = f̃ +

[
ζ1

ζ2

]
, α ≥ |ζj |, j = 1, 2, (29)

where we put F 0 = 1.0 (kN)× I and k = 2. Consequently, the uncertain load f is running through
the square depicted with the dashed lines in Figure 1.

As the constraints on the mechanical performance, (5), consider the stress constraint of each
member which is written as

|σi| ≤ σc, i = 1, . . . ,m, (30)

where m = 2. The upper bound of the stress is given as σc = 10.0 MPa.
The robust optimization problem (21) is solved for α = 1.0. The obtained optimal cross-sectional

areas are x∗ = (1200.0, 200.0) mm2. If we do not consider any uncertainty, i.e. α = 0, then
the robust structural optimization (21) coincides with the conventional optimization over stress
constraints at the nominal load. The optimal solution without uncertainty is x′ = (1000.0, 0.0) mm2,
which corresponds to the so-called fully-stressed design. Note that the robust optimal design is
kinematically (and statically) determinate, while the fully-stressed design without uncertainty is
kinematically indeterminate.

We next randomly generate a number of loads f satisfying (29) with α = 1.0, and compute
the corresponding stresses of the robust optimal design. Figure 2 depicts the obtained member

12
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Figure 1: A 2-bar truss.
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1
 / σc

σ 2 / 
σc

Figure 2: Stress states of the robust optimal design of the 2-bar truss. ‘◦’: obtained worst cases;
‘ · ’: computed from randomly generated loads.

stresses (σ1/σ
c, σ2/σ

c). It is observed from Figure 2 that the stress constraints, (30), are satisfied
for all randomly generated loads. By solving the problem (21), we also obtain the worst scenarios
ζj as the optimal solution; see Remark 3.2. The stress states corresponding to the obtained worst
scenarios are shown in Figure 2 by the open circles. Note that the stress constraints (30) for the
two members are rewritten as the four linear inequalities, and hence there exist four extremal cases
regarding stresses, i.e. the maximum and minimum stresses of members (1) and (2). It is observed
from Figure 2 that the obtained worst scenarios correspond to the extremal cases of the randomly
generated loads, and the stress constraints are satisfied in those worst scenarios.

5.2 10-bar truss

Next we consider a 2× 1 plane truss shown in Figure 3. The nodes (a) and (b) are pin-supported,
and the truss has 10 members, i.e. d = 8 and m = 10. The lengths of members in the directions of
the x- and y-axes are 1000 mm and 600 mm, respectively.
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x

y

(8)(7)

(10)

(c)

Figure 3: A 10-bar truss.

Figure 4: Robust optimal solution of the 10-bar truss.

Figure 5: Optimal solution of the 10-bar truss without uncertain loads.

As the nominal load f̃ , the external force 2.5 kN is applied at the node (c) in the negative
direction of the y-axis. The uncertainty of the load is modeled in (7), where we choose F0 =
1.0 (kN) × I and k = d = 8. Consequently, the external forces are running through the squares
depicted with the dotted lines in Figure 3. Note that uncertain forces may possible exist at all nodes,
and any two components of the uncertain load have no relation. For each member, we consider the
stress constraint in the form of (30), where σc = 10.0 MPa and m = 10.

The robust optimization problem (21) is solved for α = 0.3. The robust optimal solution obtained
is shown in Figure 4, where the width of each member is proportional to its cross-sectional area. In
contrast, Figure 5 depicts the optimal solution without considering uncertainty, which is obtained
by solving the conventional optimization problem (6). Note that the optimal solution without
uncertainty in Figure 5 is the so-called fully-stressed design corresponding to the nominal load f̃ .
The structural volume of the robust optimal solution (Figure 4) is 4.433×106 mm3, while that of the
optimal solution without uncertainty (Figure 5) is 2.988×106 mm3; the optimal volume increases by
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Figure 6: Member stresses of the robust optimal design of the 10-bar truss. ‘◦’: worst cases obtained
by solving (21); ‘ · ’: computed from randomly generated loads.

48.3% by considering uncertainty. Note that the robust optimal design is kinematically determinate,
whereas the fully-stressed design without uncertainty possesses an infinitesimal mechanism.

We next randomly generate a number of loads f satisfying (7) with α = 0.3, and compute
the corresponding stresses of the robust optimal design. Figure 6 depicts the obtained member
stresses divided by the specified upper bound, i.e. σi/σ

c. The stress states corresponding to the
worst loading scenarios, which are obtained by solving (21), are also shown in Figure 6 by the open
circles. It is observed from Figure 6 that the obtained worst cases correspond to the extremal cases
of the randomly generated loads, and the stress constraints, (30), are satisfied even for those worst
cases. This supports that a robust design is obtained successfully. Moreover, the stress constraints
of members (3)–(10) become active at their worst cases. Note that the optimal cross-sectional areas
of members (1) and (2) are very small; at the exact optimal solution it is expected that there exist
worst cases in which the stress constraints of members (1) and (2) also become active, and hence the
exact optimal solution may have smaller cross-sectional areas for those members. It is very difficult
for the SQP method to find such a solution because of the numerical instability. Note again that
members (1) and (2) have already very small cross-sectional areas at the current solution shown in
Figure 4, and hence we regard that an approximate optimal solution has been obtained successfully.
It is also observed in Figure 6 that it is not easy to detect the worst loading scenario by generating
a large number of samples randomly. For example, for members (7) and (9) it is seen that estimates
of the worst cases obtained from random samples are too optimistic.

For the fully-stressed design in Figure 5, the stress constraints of all members become active at
the nominal load f̃ . In contrast, for the robust optimal design in Figure 4, there exists the worst case
in which the stress constraint of each member becomes active, but the worst cases for the different
members are not common in general. Indeed, the worst scenario loadings for members (3)–(10) are
collected in Figure 7 and Figure 8. Thus, in the robust structural optimization, it is necessary to
consider the worst scenarios for all constraint conditions, and the worst scenario itself is the function
of the design variables. This is the essential difficulty in the robust structural optimization compared
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(i) member (5) (ii) member (6)

(iii) member (9) (iv) member (10)

Figure 7: Uncertain external loads in the worst scenarios for the robust optimal solution of the
10-bar truss: the cases in which stress constraints of members (5), (6), (9), and (10) become active
in tensile states.

(3) (4)

(7) (8)

Figure 8: Uncertain external loads in the worst scenarios for the robust optimal solution of the
10-bar truss: the cases in which stress constraints of members (3), (4), (7), and (8) become active
in compressive states.

with the conventional structural optimization.

5.3 Grid truss under displacement constraints

As a moderately large example, consider a 4× 3 plane truss shown in Figure 9. The nodes (a)–(d)
are pin-supported, and the ground structure has 70 members, i.e. d = 32 and m = 70. The lengths
of members both in the directions of the x- and y-axes are 1000 mm.

As the nominal load f̃ , the vertical force of 150.0 kN, 300.0 kN, 450.0 kN, and 600.0 kN are
applied at the nodes (e), (f), (g), and (h), respectively, in the negative direction of the y-axis. The
uncertainty model of the load is defined in (7), where we choose k = 24 and

F0 = 1.0 (kN)×
[
I

O

]
∈ R32×24.
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Figure 9: A 4× 3 grid truss.

Consequently, the external forces are running through the squares depicted with the dotted lines in
Figure 9. Note that no uncertain loads are applied at the nodes (i)–(l).

As the constraints on the mechanical performance, (5), we consider the displacement constraints
written as

uj ≥ uc, j = 1, . . . , nc (31)

for the vertical displacements of the nodes (g) and (h), i.e. nc = 2. The lower bound uc of the
displacement is −30 mm for the node (g) and −40 mm for the node (h).

The robust optimization problem (21) is solved for α = 0.25, and the obtained robust optimal
solution is shown in Figure 10. At this robust optimal solution there exists the worst case corre-
sponding to each of (31), i.e. the constraints on both nodes can happen to be active as a result
of robust optimization. The uncertainty loads F0ζ

∗
j in the two worst scenarios are illustrated in

Figure 11.
For comparison, the conventional optimal solution without considering uncertainty is illustrated

in Figure 12, which is obtained by solving the problem (6). The structural volume of the robust
optimal solution (Figure 10) is 3.0857 × 107 mm3, while that of the optimal solution without un-
certainty (Figure 12) is 2.2666 × 107 mm3; the optimal volume increases by 36.1% by considering
uncertainty.

It is of interest to note that we also apply the SQP method to the formulation (24) in Remark 4.3
with various values of α, then the algorithm diverges and cannot find solutions. This supports that
the smoothed scheme proposed in (21) is necessary and effective to avoid the numerical instability
arising from the nonsmooth property of Fischer–Burmeister function.
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Figure 10: Robust optimal solution of the grid truss.

(i) (ii)

Figure 11: Uncertain external loads in the worst scenarios for the robust optimal solution of the
grid truss: (i) the displacement constraint of the node (g) is active; (ii) the displacement constraint
of the node (h) is active.

Figure 12: Optimal solution of the grid truss without uncertainty.
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6 Conclusions

In this paper we have considered some formulations of robust optimization of structures under
the non-probabilistic uncertainty of static load. Particularly, it has been shown that the robust
structural optimization problem is formulated as an MPEC (mathematical program with comple-
mentarity constraints) problem. For applying a standard nonlinear programming approach such as
the SQP method, we have proposed an implicit reformulation of the MPEC based on the smoothed
Fischer–Burmeister function. In our implicit formulation the parameter ρ for smoothing the Fischer–
Burmeister function is treated as an independent variable, and we add an equality constraint with
which ρ vanishes at the optimal solution automatically. Consequently, ρ decreases automatically as
the optimization algorithm approaches to convergence.

Through the numerical experiments it has been shown that the presented implicit formulation
of the robust structural optimization can be solved without any difficulties by using a standard
SQP algorithm. The characteristics of the obtained robust optimal designs have been discussed by
comparing the conventional optimal designs without considering uncertainty.
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