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Hybrid Analysis of Nonlinear Time-Varying Circuits

Providing DAEs with Index at Most One

Satoru Iwata∗, Mizuyo Takamatsu†, and Caren Tischendorf‡

Abstract

Commercial packages for transient circuit simulation are often based on the modified
nodal analysis (MNA) which allows an automatic setup of model equations and requires a
nearly minimal number of variables. However, it may lead to differential-algebraic equa-
tions (DAEs) with higher index. Here, we present a hybrid analysis for nonlinear time-
varying circuits leading to DAEs with index at most one. This hybrid analysis is based
merely on the network topology, which possibly leads to an automatic setup of the hybrid
equations from netlists. Moreover, we prove that the minimum index of the DAE arising
from the hybrid analysis never exceeds the index from MNA. As a positive side effect, the
number of equations from the hybrid analysis is always no greater than that one from the
MNA. This suggests that the hybrid analysis is superior to MNA in numerical accuracy
and computational effort.

1 Introduction

When modelling electric circuits for transient simulation, one has to regard Kirchhoff’s laws for
the network and the constitutive equations for the different types of network elements. They
are originally based on the branch voltages and the branch currents existing in the network.
They form the basis for all modelling approaches as for instance the popular modified nodal
analysis (MNA).

Concerning the huge number of variables involved (all branch voltages and branch currents),
one is interested in a reduced system reflecting the complete circuit behaviour that can be
generated automatically. Whereas MNA focuses on a description depending mainly on nodal
potentials, the hybrid analysis approach [1] here employs certain branch voltages and branch
currents obtained from a construction of a particular normal tree.

A normal tree is a tree containing all independent voltage sources, no independent cur-
rent sources, a maximal number of capacitive branches, and a minimal number of inductive
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branches. Normal trees have already been used in [2] for state approaches for linear RLC net-
works. The results have been extended in [3] for linear circuits containing ideal transformers,
nullors, independent/dependent sources, resistors, inductors, capacitors, and, under a topolog-
ical restriction, gyrators.

The hybrid analysis is a common generalization of the loop analysis and the cutset analysis,
which are classical circuit analysis methods. Kron [4] proposed the hybrid analysis in 1939,
and Amari [5] and Branin [6] developed it further in 1960s. In contrast to MNA, the hybrid
analysis retains flexibility in the selection of a normal tree, which can be exploited to find a
model description that reduces the numerical difficulties.

The differential-algebraic equations (DAEs) arising from the hybrid analysis are called the
hybrid equations. Recently, the analysis of the index of the hybrid equations has been developed.
For linear time-invariant electric circuits which are composed of resistors, inductors, capacitors,
independent voltage/current sources, and dependent voltage/current sources, an algorithm for
finding an optimal hybrid analysis which minimizes the index of the hybrid equations was
proposed in [7]. For linear time-invariant RLC circuits, it is shown in [8] that the index of
the hybrid equations never exceeds one, while MNA often results in a DAE with index two.
Moreover, [8] gives a structural characterization of circuits with index zero.

For nonlinear time-varying circuits, this paper shows that the index of the hybrid equations
is at most one, and gives a structural characterization for the index being zero, which is an
extension of the results in [8]. By this structural characterization, we prove that the minimum
index of the hybrid equations does not exceed the index of the DAE arising from MNA (cf.
[9, 10, 11, 12]). Here, we follow the hybrid analysis approach in [7] but use projection techniques
(cf. [11]) in order to prove the index results for general nonlinear time-varying circuit systems.

The organization of this paper is as follows. In Section 2, we describe nonlinear time-varying
circuits. We present the procedure of the hybrid analysis in Section 3. Section 4 is devoted
to the definition of the tractability index of DAEs. We analyze the hybrid equation system in
Section 5, and characterize its index in Section 6. In Section 7, we make comparisons between
the hybrid analysis and MNA. Finally, Section 8 concludes this paper.

2 Nonlinear Time-Varying Circuits

Here, we consider nonlinear time-varying circuits composed of resistors, conductors, inductors,
capacitors, and voltage/current sources.

We denote the vector of currents through all branches of the circuit by i, and the vector
of voltages across all branches by u. Let V , J , C, L, R, G, SV , and SJ denote the sets
of independent voltage sources, independent current sources, capacitors, inductors, resistors,
conductors, controlled voltage sources, and controlled current sources, respectively. The vec-
tor of currents through independent voltage sources, independent current sources, capacitors,
inductors, resistors, conductors, controlled voltage sources, and controlled current sources are
denoted by iV , iJ , iC , iL, iR, iG, iSV

, and iSJ
. The vector of voltages across independent

voltage sources, independent current sources, capacitors, inductors, resistors, conductors, con-
trolled voltage sources, and controlled current sources are denoted by uV , uJ , uC , uL, uR,
uG, uSV

, and uSJ
. The physical characteristics of elements determine constitutive equations.
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Independent voltage and current sources simply read as

uV = vs(t) and iJ = js(t). (1)

We assume that the constitutive equations of capacitors and inductors are described by

iC =
d
dt

q(uC , t) and uL =
d
dt

φ(iL, t). (2)

Moreover, we assume that conductors and resistors are described by

iG = g(uG, t) and uR = r(iR, t).

Finally, let the controlled sources be given in the form of

iSJ
= γ(iSV

, uSJ
, t) and uSV

= ρ(iSV
,uSJ

, t).

A square matrix U is called positive definite if x>Ux > 0 for all x 6= 0. In this paper, we
assume the following conditions.

Assumption 2.1. The capacitance matrix C, the conductance matrix G, the resistance matrix
R, the inductance matrix L, and the controlled source matrix S given by

C =
∂q

∂uC
, G =

∂g

∂uG
, R =

∂r

∂iR
, L =

∂φ

∂iL
, and S =




∂ρ

∂iSV

∂ρ

∂uSJ

∂γ

∂iSV

∂γ

∂uSJ




are all positive definite.1

Introducing

uY :=

(
uG

uSJ

)
, uZ :=

(
uR

uSV

)
, iY :=

(
iG

iSJ

)
, iZ :=

(
iR

iSV

)

and

f(iZ ,uY , t) :=

(
g(uG, t)

γ(iSV
, uSJ

, t)

)
, h(iZ , uY , t) :=

(
r(iR, t)

ρ(iSV
,uSJ

, t)

)
,

we find
iY = f(iZ , uY , t), uZ = h(iZ , uY , t) (3)

and




∂h

∂iZ

∂h

∂uY

∂f

∂iZ

∂f

∂uY


 =




∂r

∂iR
0 0 0

0
∂ρ

∂iSV

0
∂ρ

∂uSJ

0 0
∂g

∂uG
0

0
∂γ

∂iSV

0
∂γ

∂uSJ




. (4)

1Assuming the controlled source matrix S to be positive definite is very restrictive and usually not fulfilled

when controlled sources are considered alone. However, controlled sources are often used to describe certain

transistor behaviour. Considering the whole static behavior of a transistor (e.g. including bulk resistances) as a

controlled source may lead to a positive definite matrix S.
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Let Γ = (W,E) be the network graph with vertex set W and edge set E. An edge in
Γ corresponds to a branch that contains one element in the circuit. For a consistent model
description, Γ contains no cycles consisting of independent voltage sources only and no cutsets
consisting of independent current sources only. We split E into Ey and Ez, i.e., Ey ∪ Ez = E

and Ey ∩ Ez = ∅. A partition (Ey, Ez) is called an admissible partition, if Ey includes all the
independent voltage sources, all the capacitors, all the conductors as well as all the controlled
current sources, and Ez includes all the independent current sources, all the inductors, all the
resistors as well as all the controlled voltage sources.

We call a spanning tree T of Γ a reference tree if T contains all the edges of the independent
voltage sources, no edges of the independent current sources, and as many edges in Ey as
possible. Note that a reference tree T may contain some edges in Ez. A reference tree is called
normal if it contains as many edges corresponding to capacitors and as few edges corresponding
to inductors as possible. The cotree of T is denoted by T = E \ T . The hybrid equations are
determined by an admissible partition (Ey, Ez) and a reference tree T , which is not necessarily
normal. For the sake of simplicity, we adopt a normal reference tree throughout this paper.

With respect to a normal reference tree T , we further split i and u into

i = (iV , iτ
C , iτ

Y , iτ
Z , iτ

L, iλ
C , iλ

Y , iλ
Z , iλ

L, iJ)>

and
u = (uV , uτ

C , uτ
Y , uτ

Z , uτ
L, uλ

C , uλ
Y , uλ

Z , uλ
L, uJ)>,

where the superscripts τ and λ designate the tree T and the cotree T . With respect to a normal
reference tree T , the vector valued function f is also split into f τ and fλ. Similarly, we split
h, q, and φ. The matrix C and L are written in the form of

(
Cτ

τ Cτ
λ

Cλ
τ Cλ

λ

)
and

(
Lτ

τ Lτ
λ

Lλ
τ Lλ

λ

)
,

where

Cτ
τ =

∂qτ

∂uτ
C

, Cτ
λ =

∂qτ

∂uλ
C

, Cλ
τ =

∂qλ

∂uτ
C

, Cλ
λ =

∂qλ

∂uλ
C

,

Lτ
τ =

∂φτ

∂iτ
L

, Lτ
λ =

∂φτ

∂iλ
L

, Lλ
τ =

∂φλ

∂iτ
L

, Lλ
λ =

∂φλ

∂iλ
L

.

Let us define

Z =

(
Zτ

τ Zτ
λ

Zλ
τ Zλ

λ

)
, H =

(
Hτ

τ Hτ
λ

Hλ
τ Hλ

λ

)
, F =

(
F τ

τ F τ
λ

F λ
τ F λ

λ

)
, Y =

(
Y τ

τ Y τ
λ

Y λ
τ Y λ

λ

)
,
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where

Zτ
τ =

∂hτ

∂iτ
Z

, Zτ
λ =

∂hτ

∂iλ
Z

, Zλ
τ =

∂hλ

∂iτ
Z

, Zλ
λ =

∂hλ

∂iλ
Z

,

Hτ
τ =

∂hτ

∂uτ
Y

, Hτ
λ =

∂hτ

∂uλ
Y

, Hλ
τ =

∂hλ

∂uτ
Y

, Hλ
λ =

∂hλ

∂uλ
Y

,

F τ
τ =

∂f τ

∂iτ
Z

, F τ
λ =

∂f τ

∂iλ
Z

, F λ
τ =

∂fλ

∂iτ
Z

, F λ
λ =

∂fλ

∂iλ
Z

,

Y τ
τ =

∂f τ

∂uτ
Y

, Y τ
λ =

∂f τ

∂uλ
Y

, Y λ
τ =

∂fλ

∂uτ
Y

, Y λ
λ =

∂fλ

∂uλ
Y

.

Then




∂h

∂iZ

∂h

∂uY

∂f

∂iZ

∂f

∂uY


 is written in the form of

(
Z H

F Y

)
, which is positive definite by Assump-

tion 2.1 and (4).
By the definition of a normal reference tree, the fundamental cutset matrix K is given by

K =




iV iτ
C iτ

Y iτ
Z iτ

L iλ
C iλ

Y iλ
Z iλ

L iJ

I 0 0 0 0 AV C AV Y AV Z AV L AV J

0 I 0 0 0 ACC ACY ACZ ACL ACJ

0 0 I 0 0 0 AY Y AY Z AY L AY J

0 0 0 I 0 0 0 AZZ AZL AZJ

0 0 0 0 I 0 0 0 ALL ALJ




.

Then Kirchhoff’s current law (KCL), which states that the sum of currents entering each node
is equal to zero, may be written as

Ki = 0.

This is rewritten as

iV = −AV Ciλ
C −AV Y iλ

Y −AV Ziλ
Z −AV Liλ

L −AV JiJ , (5)

iτ
C + ACCiλ

C + ACY iλ
Y + ACZiλ

Z + ACLiλ
L + ACJiJ = 0, (6)

iτ
Y + AY Y iλ

Y + AY Ziλ
Z + AY Liλ

L + AY JiJ = 0, (7)

iτ
Z = −AZZiλ

Z −AZLiλ
L −AZJiJ , (8)

iτ
L = −ALLiλ

L −ALJiJ . (9)

Kirchhoff’s voltage law (KVL), which states that the sum of voltages in each loop of the network
is equal to zero, provides

K⊥u = 0

with K⊥ being the fundamental loop matrix

K⊥ =




uV uτ
C uτ

Y uτ
Z uτ

L uλ
C uλ

Y uλ
Z uλ

L uJ

−A>V C −A>CC 0 0 0 I 0 0 0 0
−A>V Y −A>CY −A>Y Y 0 0 0 I 0 0 0
−A>V Z −A>CZ −A>Y Z −A>ZZ 0 0 0 I 0 0
−A>V L −A>CL −A>Y L −A>ZL −A>LL 0 0 0 I 0
−A>V J −A>CJ −A>Y J −A>ZJ −A>LJ 0 0 0 0 I




.
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This is rewritten as

uλ
C = A>V CuV + A>CCuτ

C , (10)

uλ
Y = A>V Y uV + A>CY uτ

C + A>Y Y uτ
Y , (11)

uλ
Z −A>V ZuV −A>CZuτ

C −A>Y Zuτ
Y −A>ZZuτ

Z = 0, (12)

uλ
L −A>V LuV −A>CLuτ

C −A>Y Luτ
Y −A>ZLuτ

Z −A>LLuτ
L = 0, (13)

uJ = A>V JuV + A>CJuτ
C + A>Y Juτ

Y + A>ZJuτ
Z + A>LJuτ

L. (14)

3 Hybrid Analysis

In this section, we describe the procedure of the hybrid analysis. The idea is to use all consti-
tutive equations such that the equations Ki = 0 and K⊥u = 0 provide a system depending on
uτ

C , uτ
Y , iλ

Z , and iλ
L only. The second and third line of Ki = 0 as well as the third and fourth

line of K⊥u = 0 provide us the hybrid equations (or hybrid equation system)

−A>CZuτ
C −A>Y Zuτ

Y −A>ZZhτ + hλ = A>V Zvs(t),

−A>CLuτ
C −A>Y Luτ

Y −A>ZLhτ −A>LL

d
dt

φτ +
d
dt

φλ = A>V Lvs(t),

ACY fλ + ACZiλ
Z + ACLiλ

L +
d
dt

qτ + ACC
d
dt

qλ = −ACJjs(t),

f τ + AY Y fλ + AY Ziλ
Z + AY Liλ

L = −AY Jjs(t),

where

qτ = qτ (uτ
C , A>V Cvs(t) + A>CCuτ

C , t),

qλ = qλ(uτ
C , A>V Cvs(t) + A>CCuτ

C , t),

f τ = f τ (−AZZiλ
Z −AZLiλ

L −AZJjs(t), iλ
Z , uτ

Y , A>V Y vs(t) + A>CY uτ
C + A>Y Y uτ

Y , t),

fλ = fλ(−AZZiλ
Z −AZLiλ

L −AZJjs(t), iλ
Z ,uτ

Y , A>V Y vs(t) + A>CY uτ
C + A>Y Y uτ

Y , t),

hτ = hτ (−AZZiλ
Z −AZLiλ

L −AZJjs(t), iλ
Z ,uτ

Y , A>V Y vs(t) + A>CY uτ
C + A>Y Y uτ

Y , t),

hλ = hλ(−AZZiλ
Z −AZLiλ

L −AZJjs(t), iλ
Z ,uτ

Y , A>V Y vs(t) + A>CY uτ
C + A>Y Y uτ

Y , t),

φτ = φτ (−ALLiλ
L −ALJjs(t), iλ

L, t),

φλ = φλ(−ALLiλ
L −ALJjs(t), iλ

L, t).

The derivation of the hybrid equations is given in Appendix A. The procedure of the hybrid
analysis is as follows.

1. The values of uV and iJ are obvious from (1).

2. Compute the values of iλ
Z , iλ

L and uτ
C , uτ

Y by solving the hybrid equations.

3. Compute the values of iτ
Z , iτ

L from (8) and (9), and uλ
C , uλ

Y from (10) and (11).

4. Compute the values of uτ
Z , uλ

Z , uτ
L, uλ

L, and iτ
C , iλ

C , iτ
Y , iλ

Y by substituting the values
obtained in Steps 1–3 into (2) and (3).
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5. Compute the values of iV and uJ by substituting the values obtained in Steps 1–4 into
(5) and (14).

In the case of Ey = ∅, the above procedure is called the loop analysis or the tieset analysis.
In the case of Ez = ∅, it is called the cutset analysis.

All operations in Steps 3–5 are substitutions and differentiations of the obtained solutions.
Consequently, the numerical difficulty is determined by the index of the hybrid equation system.
This hybrid equation system depends on the branch voltages uτ

C of capacitors in the tree T ,
the branch voltages uτ

Y of conductors and controlled current sources in T , the branch currents
iλ
L of inductors in the cotree T , and the branch currents iλ

Z of resistors and controlled voltage
sources in T . Higher index variables as known from MNA do not appear in the hybrid equation
system. In this paper, we prove that the hybrid equation system has index at most one. The
proof relies on the tractability index concept with the use of projector based analysis.

4 DAEs with Properly Stated Leading Term

Consider a DAE in the form of

A
d
dt

d(x(t), t) + b(x(t), t) = 0. (15)

Let A be an m× n matrix. We define

D(x, t) :=
∂d(x, t)

∂x
, B(x, t) :=

∂b(x, t)
∂x

, and M(x, t) := AD(x, t).

A matrix P satisfying P 2 = P is called a projector. Moreover, a projector P is called a projector
onto a subspace Σ if imP = Σ.

Definition 4.1 ([13, Definition 2.1]). The equation (15) is a DAE with properly stated leading
term if the size of D(x, t) is n×m,

kerA⊕ imD(x, t) = Rn (16)

holds for all x and t from the definition domain, and there is an n× n projector function P (t)
continuously differentiable with respect to t such that kerP (t) = kerA, im P (t) = imD(x, t),
and d(x, t) = P (t)d(x, t).

A DAE with properly stated leading term (15) arises in circuit simulation via circuit analysis
methods such as MNA [14]. A DAE with properly stated leading term was first introduced in
[15]. The analysis of such DAEs has been developed in [14, 16, 17, 18, 19].

Lemma 4.2 ([14, Lemma A.1]). Let A be an m × n matrix and D(x, t) be an n ×m matrix.
Then, the relation kerA⊕ im D(x, t) = Rn is equivalent to the following three conditions:

im M(x, t) = imA, kerM(x, t) = kerD(x, t), kerA ∩ im D(x, t) = {0},

where M(x, t) = AD(x, t).
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Obviously, the DAE (15) represents a regular ODE if and only if the matrix M(x, t) is
nonsingular for all x and t of the definition domain. In this case we say that the DAE (15)
has index 0. In the case of a singular matrix M(x, t) for all x and t, the DAE (15) contains
algebraic equations. Furthermore, one may have to differentiate certain part of the system to
get a solution. A simple criteria for the absence of this problem is given by the tractability
index 1 condition (see [13], Theorem 4.3).

Definition 4.3 ([13, Definition 3.3]). The DAE (15) is regular with index 1 on their definition
domain if M(x, t) is singular and

kerD(x, t) ∩ {z ∈ Rm| B(x, t)z ∈ im M(x, t)} = {0}

for all (x, t) of the definition domain.

Remark 4.4 ([20, Remark 4.6]). A DAE (15) is regular with index 1 if and only if the matrix
M(x, t)+B(x, t)Q(x, t) is nonsingular for all x and t with a projector Q(x, t) onto kerM(x, t).

We now adduce a useful lemma.

Lemma 4.5 ([10, Lemma 3]). Let U be a µ × µ positive definite matrix and N be a k × µ

rectangular matrix. Then kerNUN> = kerN> and imNUN> = imN hold.

5 Hybrid Equations with Properly Stated Leading Term

In this section, we rewrite the hybrid equation system as a DAE with properly stated leading
term. We first define a reflexive generalized inverse.

Definition 5.1. A reflexive generalized inverse of a matrix A is a matrix A− which satisfies
AA−A = A and A−AA− = A−.

A reflexive generalized inverse A− satisfies

dim imA−A = dim imA. (17)

We now define

A =




0 0 0 0
−A>LL I 0 0

0 0 I ACC

0 0 0 0


 , d(x, t) = A−A




φτ (−ALLiλ
L −ALJjs(t), iλ

L, t)
φλ(−ALLiλ

L −ALJjs(t), iλ
L, t)

qτ (uτ
C , A>V Cvs(t) + A>CCuτ

C , t)
qλ(uτ

C , A>V Cvs(t) + A>CCuτ
C , t)


 ,

x(t) =




iλ
Z

iλ
L

uτ
C

uτ
Y


 , b(x, t) =




−A>V Zvs(t)−A>CZuτ
C −A>Y Zuτ

Y −A>ZZhτ + hλ

−A>V Lvs(t)−A>CLuτ
C −A>Y Luτ

Y −A>ZLhτ

ACY fλ + ACZiλ
Z + ACLiλ

L + ACJjs(t)
f τ + AY Y fλ + AY Ziλ

Z + AY Liλ
L + AY Jjs(t)


 .
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By A = AA−A, this gives the hybrid equation system in the form of (15). The Jacobian
matrices D(x, t) and B(x, t) are given by

D(x, t) = A−A




0 −Lτ
τALL + Lτ

λ 0 0
0 −Lλ

τ ALL + Lλ
λ 0 0

0 0 Cτ
τ + Cτ

λA>CC 0
0 0 Cλ

τ + Cλ
λA>CC 0




and

B(x, t) =

0
BBB@

BZ(x, t) A>ZZZτ
τ AZL−Zλ

τ AZL −A>CZ −A>Y Z + BH(x, t)

A>ZLZτ
τ AZZ −A>ZLZτ

λ A>ZLZτ
τ AZL −A>CL −A>Y L−A>ZLHτ

τ−A>ZLHτ
λA>Y Y

ACZ−ACY F λ
τ AZZ+ACY F λ

λ ACL ACY Y λ
λ A>CY ACY Y λ

τ + ACY Y λ
λ A>Y Y

AY Z + BF (x, t) AY L Y τ
λ A>CY+AY Y Y λ

λ A>CY BY (x, t)

1
CCCA ,

where

BZ(x, t) = A>ZZZτ
τ AZZ −A>ZZZτ

λ − Zλ
τ AZZ + Zλ

λ ,

BH(x, t) = −A>ZZHτ
τ −A>ZZHτ

λA>Y Y + Hλ
τ + Hλ

λA>Y Y ,

BY (x, t) = Y τ
τ + Y τ

λ A>Y Y + AY Y Y λ
τ + AY Y Y λ

λ A>Y Y ,

BF (x, t) = −F τ
τ AZZ + F τ

λ −AY Y F λ
τ AZZ + AY Y F λ

λ .

Then these matrices have the following property.

Lemma 5.2. If

(
Z H

F Y

)
is positive definite, then

(
BZ(x, t) BH(x, t)
BF (x, t) BY (x, t)

)
is positive definite.

Proof. Using AZ =
(
−A>ZZ I

)
and AY =

(
I AY Y

)
, we have

(
BZ(x, t) BH(x, t)
BF (x, t) BY (x, t)

)
=

(
AZ 0
0 AY

)(
Z H

F Y

)(
AZ 0
0 AY

)>
.

Since

(
Z H

F Y

)
is positive definite and AY and AZ are of full row rank,

(
BZ(x, t) BH(x, t)
BF (x, t) BY (x, t)

)

is also positive definite.

Let us define

Ω(x, t) =




Lτ
τ Lτ

λ 0 0
Lλ

τ Lλ
λ 0 0

0 0 Cτ
τ Cτ

λ

0 0 Cλ
τ Cλ

λ


 .

Now we have

D(x, t) = A−A




Lτ
τ Lτ

λ 0 0
Lλ

τ Lλ
λ 0 0

0 0 Cτ
τ Cτ

λ

0 0 Cλ
τ Cλ

λ







0 −ALL 0 0
0 I 0 0
0 0 I 0
0 0 A>CC 0


 = A−AΩ(x, t)A>.

Hence M(x, t) = AA−AΩ(x, t)A> = AΩ(x, t)A> holds. By using this equation, we obtain the
following two lemmas.
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Lemma 5.3. Suppose that Ω(x, t) is positive definite. Then im M(x, t) = imA and kerM(x, t) =
kerD(x, t) hold.

Proof. Since Ω(x, t) is positive definite, it follows from Lemma 4.5 that kerM(x, t) = kerA>

and imM(x, t) = imA. We now have

kerD(x, t) = kerA−AΩ(x, t)A> ⊇ kerA>.

Let z be an element in kerD(x, t). Then, by D(x, t)z = 0, we have z>AA−AΩ(x, t)A>z = 0,
which is z>AΩ(x, t)A>z = 0. Since Ω(x, t) is positive definite, we have A>z = 0. Hence
z ∈ kerA> holds. Thus we obtain kerD(x, t) = kerA> = kerM(x, t).

Lemma 5.4. Suppose that Ω(x, t) is positive definite. Then kerA ∩ imD(x, t) = {0} holds.

Proof. Let z be an element in kerA ∩ im D(x, t). Then we have Az = 0 and z = D(x, t)y
for some y. Hence AD(x, t)y = 0 holds, which implies that y ∈ kerAD(x, t) = kerD(x, t) by
Lemma 5.3. Thus we obtain z = D(x, t)y = 0.

With the use of a reflexive generalized inverse, we define a constant projector P = A−A.
Then the projector P has the following property.

Lemma 5.5. Suppose that Ω(x, t) is positive definite. For a projector P = A−A, we have
kerP = kerA and im P = im D(x, t).

Proof. We first prove kerP = kerA. It clearly holds that kerP = kerA−A ⊇ kerA. For any
z ∈ kerP , we have A−Az = 0. Hence AA−Az = 0 holds, which implies z ∈ kerA. Thus we
obtain kerP ⊆ kerA.

Secondly, we prove imP = im D(x, t). It clearly holds that imD(x, t) = imA−AΩ(x, t)A> ⊆
im P . By the proof of Lemma 5.3, kerD(x, t) = kerA> holds. Hence we have

dim imD(x, t) = m− dimkerD(x, t) = m− dim kerA> = dim imA>.

It follows from (17) that

dim imA> = dim imA = dim imA−A,

which implies dim imD(x, t) = dim imP . Thus we obtain imP = im D(x, t).

By Lemmas 5.3–5.5, we obtain the following proposition.

Proposition 5.6. Suppose that Ω(x, t) is positive definite. Then the hybrid equation system
in the form of (15) is a DAE with properly stated leading term.

Proof. We obtain (16) by Lemmas 4.2, 5.3, and 5.4. Moreover, Pd(x, t) = A−Ad(x, t) = d(x, t)
holds. Thus, by Lemma 5.5, P is a projector satisfying Definition 4.1.

Let us define

Q =




I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 I


 .

In fact, Q is a projector satisfying the condition in Remark 4.4 as follows.
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Lemma 5.7. Suppose that Ω(x, t) is positive definite. Then im Q = kerM(x, t) holds.

Proof. Since Ω(x, t) is positive definite, it follows from Lemma 4.5 that kerM(x, t) = kerA>.
Hence we obtain

kerM(x, t) = {z | A>z = 0} = imQ

by the definition of A.

6 Index of Hybrid Equations

In this section, we prove that the index of the hybrid equations is at most one, and give a
structural criteria for hybrid equations with index zero.

We now introduce the Resistor-Acyclic condition for admissible partition (Ey, Ez), which
is proved in Theorem 6.2 to be a necessary and sufficient condition for hybrid equations with
index zero.

[Resistor-Acyclic condition]

• Each conductor and controlled current source in Ey belongs to a cycle consisting of
independent voltage sources, capacitors, and itself.

• Each resistor and controlled voltage source in Ez belongs to a cutset consisting of
inductors, independent current sources, and itself.

The Resistor-Acyclic condition can be expressed as follows.

Lemma 6.1. An admissible partition (Ey, Ez) satisfies the Resistor-Acyclic condition if and
only if there exists a normal reference tree T such that Y ⊆ T and Z ⊆ T .

We obtain the following theorem concerning the index.

Theorem 6.2. Under Assumption 2.1, the index of the hybrid equations is at most one for
any admissible partition (Ey, Ez) and normal reference tree T . Moreover, the index is zero if
and only if an admissible partition (Ey, Ez) satisfies the Resistor-Acyclic condition.

Proof. The index of the hybrid equations is zero if and only if M(x, t) = AΩ(x, t)A> is non-
singular. Since Ω(x, t) is positive definite, this is equivalent to the condition that A is full row
rank, which means that we have no variables iλ

Z and uτ
Y . In other words, Y ⊆ T and Z ⊆ T

hold. This is the Resistor-Acyclic condition by Lemma 6.1.
In order to prove that the index of the hybrid equations is at most one, we show that

M(x, t) + B(x, t)Q is nonsingular. Now we have

M(x, t) + B(x, t)Q = M(x, t) +




BZ(x, t) 0 0 −A>Y Z + BH(x, t)
A>ZLZτ

τ AZZ −A>ZLZτ
λ 0 0 −A>Y L−A>ZLHτ

τ−A>ZLHτ
λA>Y Y

ACZ−ACY F λ
τ AZZ+ACY F λ

λ 0 0 ACY Y λ
τ + ACY Y λ

λ A>Y Y

AY Z + BF (x, t) 0 0 BY (x, t)




=




BZ(x, t) 0 0 −A>Y Z + BH(x, t)
A>ZLZτ

τ AZZ −A>ZLZτ
λ ML(x, t) 0 −A>Y L−A>ZLHτ

τ−A>ZLHτ
λA>Y Y

ACZ−ACY F λ
τ AZZ+ACY F λ

λ 0 MC(x, t) ACY Y λ
τ + ACY Y λ

λ A>Y Y

AY Z + BF (x, t) 0 0 BY (x, t)


 ,

11



where

ML(x, t) = A>LLLτ
τALL −A>LLLτ

λ − Lλ
τ ALL + Lλ

λ,

MC(x, t) = Cτ
τ + Cτ

λA>CC + ACCCλ
τ + ACCCλ

λA>CC .

Then ML(x, t) and MC(x, t) are nonsingular, because these are expressed by

ML(x, t) =
(
−A>LL I

)(
Lτ

τ Lτ
λ

Lλ
τ Lλ

λ

)(
−ALL

I

)
,

MC(x, t) =
(

I ACC

)(
Cτ

τ Cτ
λ

Cλ
τ Cλ

λ

)(
I

A>CC

)
.

Finally, we prove that the determinant of M(x, t) + B(x, t)Q is nonzero. The determinant is
given by

det(M(x, t) + B(x, t)Q) =

detML(x, t) · det MC(x, t) · det

(
BZ(x, t) −A>Y Z + BH(x, t)

AY Z + BF (x, t) BY (x, t)

)
.

We now have
(

BZ(x, t) −A>Y Z + BH(x, t)
AY Z + BF (x, t) BY (x, t)

)
=

(
0 −A>Y Z

AY Z 0

)
+

(
BZ(x, t) BH(x, t)
BF (x, t) BY (x, t)

)
,

which is the sum of a positive semidefinite matrix and a positive definite matrix by Lemma 5.2.
Hence this matrix is positive definite, which implies that its determinant is nonzero. Since
detML(x, t) 6= 0 and detMC(x, t) 6= 0, we obtain det(M(x, t) + B(x, t)Q) 6= 0.

Remark 6.3. For nonlinear time-varying circuits composed of resistors (all modelled as con-
ductances), inductors, capacitors, and voltage/current sources, the dimension of the hybrid
equation system is no greater than that one for the MNA system. This is because dim(uτ

C , uτ
Y ) <

n for n being the number of nodes of the circuit, dim iλ
L is not greater than the number of in-

ductors in the system, and dim iλ
Z is not greater than the number of (controlled) voltage sources

of the system.

7 Comparison of Hybrid Analysis with MNA

We consider nonlinear time-varying circuits without controlled voltage/current sources. Let us
assume that the constitutive equations of resistors can be rewritten as those of conductors, and
vice versa.2 Then we can choose an admissible partition among the multitude of possibilities
and so do the hybrid equations. In this section, we prove that the index of a DAE arising from
the optimal hybrid analysis does not exceed that from MNA.

2For example, the function r of a resistor described by Ohm’s law is a linear time-invariant function, and

r of a diode is an exponential function with respect to its voltage variable. Thus we can regard resistors as

conductors, and vice versa.
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MNA is the most commonly used analysis method. We call the DAE arising from MNA
the MNA equations. The index of the MNA equations is characterized by the circuit structure.
We now define an L-I cutset and a C-V loop.

Definition 7.1. An L-I cutset is a cutset consisting of inductors only, or a cutset consisting of
inductors and current sources only. A C-V loop is a cycle consisting of capacitors and voltage
sources only.

Note that a cycle consisting of capacitors only is not a C-V loop. For nonlinear time-varying
circuits, the index has the following property.

Theorem 7.2 ([11, Theorem 4.1],[21, Theorem 1.5]). For nonlinear time-varying circuits com-
posed of resistors, inductors, capacitors, and independent voltage/current sources, MNA leads
to a DAE with index at most one if and only if the network contains neither L-I cutsets nor
C-V loops. Otherwise, MNA leads to a DAE with index two.

This theorem is generalized for nonlinear time-varying electric circuits containing controlled
sources which satisfy certain conditions [11]. Moreover, the following theorem gives a necessary
and sufficient condition for the index being zero.

Theorem 7.3 ([21, Theorem 1.5],[12, Theorem 2]). For nonlinear time-varying circuits com-
posed of resistors, inductors, capacitors, and independent voltage/current sources, the index
of the MNA equations is zero if and only if the network does not contain independent voltage
sources and has a spanning tree consisting of capacitors only.

Theorems 6.2 and 7.3 imply that the minimum index of the hybrid equations does not
exceed that of the MNA equations as follows.

Corollary 7.4. For nonlinear time-varying circuits composed of resistors, conductors, induc-
tors, capacitors, and independent voltage/current sources, the minimum index of the hybrid
equations never exceeds the index of the MNA equations.

Proof. Let (Ey, Ez) be an admissible partition such that Ez includes no resistors. We prove
that the index of the hybrid equations with this admissible partition does not exceed the index
of the MNA equations, which completes the proof.

By Theorem 6.2, the index of the hybrid equations is at most one. This implies that if
the index of the MNA equations is more than zero, then that of the hybrid equations does not
exceed it. Therefore, it suffices to prove that if the index of the MNA equations is zero, then
that of the hybrid equations is also zero. Let us assume that the index of the MNA equations
is zero. Then, the network has a spanning tree consisting of capacitors only by Theorem 7.3.
Hence, each conductor in Ey belongs to a cycle consisting of capacitors and itself. Since Ez

includes no resistors, (Ey, Ez) satisfies the Resistor-Acyclic condition. Therefore, it follows
from Theorem 6.2 that the index of the hybrid equations is zero with admissible partition
(Ey, Ez) such that Ez includes no resistors.
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8 Conclusion

For nonlinear time-varying circuits composed of resistors, conductors, inductors, capacitors,
independent voltage/current sources, and controlled voltage/current sources, we have proved
that the index of the hybrid equations never exceeds one, and given a structural characterization
of circuits with index zero under the assumption that the capacitance matrix, the conductance
matrix, the resistance matrix, the inductance matrix, and the controlled source matrix are all
positive definite. The proof relies on the tractability index concept with the use of projector
based analysis. Moreover, for nonlinear time-varying circuits without controlled sources, we
have shown that the minimum index of hybrid equations does not exceed the index of MNA
equations, which suggests that the hybrid analysis is superior to MNA in numerical accuracy.

The case of nonlinear time-varying circuits which may contain a wide class of controlled
sources is under current research but seems to have no limit of the approach when certain
topological criteria are satisfied.
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A Derivation of Hybrid Equations

Briefly expressed, we derive the hybrid equations by reducing the network equations to the
cutset equations (6), (7) and the loop equations (12), (13) depending on the tree variables uτ

C ,
uτ

Y and the cotree variables iλ
Z , iλ

L only. For ease in notation, we omit the time argument t.
First, we transform the cutset equation (6) for capacitive tree branches. Using the consti-

tutive equations (2) and (3), we may substitute iC as well as iY and we obtain

d
dt

qτ (uτ
C , uλ

C) + ACC
d
dt

qλ(uτ
C , uλ

C) + ACY fλ(iτ
Z , iλ

Z ,uτ
Y , uλ

Y ) + ACZiλ
Z + ACLiλ

L + ACJiJ = 0.

The cutset equations (8) for resistive tree branches, the loop equations (10) for capacitive cotree
branches, and the loop equations (11) for conductive cotree branches provide substitutions for
iτ
Z , uλ

C , and uλ
Y . Hence, the cutset equations (6) for capacitive tree branches result in

d
dt

qτ (uτ
C , A>V CuV + A>CCuτ

C) + ACC
d
dt

qλ(uτ
C , A>V CuV + A>CCuτ

C)

+ ACY fλ(−AZZiλ
Z −AZLiλ

L −AZJiJ , iλ
Z , uτ

Y , A>V Y uV + A>CY uτ
C + A>Y Y uτ

Y )

+ ACZiλ
Z + ACLiλ

L + ACJiJ = 0.

Regarding the constitutive equations (1) for independent sources, we obtain

d
dt

qτ (uτ
C , A>V Cvs(t) + A>CCuτ

C) + ACC
d
dt

qλ(uτ
C , A>V Cvs(t) + A>CCuτ

C)

+ ACY fλ(−AZZiλ
Z −AZLiλ

L −AZJjs(t), iλ
Z , uτ

Y , A>V Y vs(t) + A>CY uτ
C + A>Y Y uτ

Y )

+ ACZiλ
Z + ACLiλ

L + ACJjs(t) = 0. (18)

In a similar way, we can transform the cutset equations (7) for conductive tree branches to
obtain

f τ (−AZZiλ
Z −AZLiλ

L −AZJjs(t), iλ
Z , uτ

Y , A>V Y vs(t) + A>CY uτ
C + A>Y Y uτ

Y )

+ AY Y fλ(−AZZiλ
Z −AZLiλ

L −AZJjs(t), iλ
Z , uτ

Y , A>V Y vs(t) + A>CY uτ
C + A>Y Y uτ

Y )

+ AY Ziλ
Z + AY Liλ

L + AY Jjs(t) = 0. (19)

Next, we transform the loop equations (13) for inductive cotree branches. Applying the
constitutive equations (2) and (3), we may substitute uL as well as uZ and we obtain

−A>V LuV −A>CLuτ
C −A>Y Luτ

Y −A>ZLhτ (iτ
Z , iλ

Z , uτ
Y , uλ

Y )−A>LL

d
dt

φτ (iτ
L, iλ

L)+
d
dt

φλ(iτ
L, iλ

L) = 0.

The cutset equations (8) for resistive tree branches, the cutset equations (9) for inductive tree
branches, and the loop equations (11) for conductive cotree branches provide substitutions for
iτ
Z , iτ

L and uλ
Y . Hence, the loop equations (13) for inductive cotree branches result in

−A>V LuV −A>CLuτ
C −A>Y Luτ

Y

−A>ZLhτ (−AZZiλ
Z −AZLiλ

L −AZJiJ , iλ
Z ,uτ

Y , A>V Y uV + A>CY uτ
C + A>Y Y uτ

Y )

−A>LL

d
dt

φτ (−ALLiλ
L −ALJiJ , iλ

L) +
d
dt

φλ(−ALLiλ
L −ALJiJ , iλ

L) = 0.
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Regarding the constitutive equations (1) for independent sources, we obtain

−A>V Lvs(t)−A>CLuτ
C −A>Y Luτ

Y

−A>ZLhτ (−AZZiλ
Z −AZLiλ

L −AZJjs(t), iλ
Z , uτ

Y , A>V Y vs(t) + A>CY uτ
C + A>Y Y uτ

Y )

−A>LL

d
dt

φτ (−ALLiλ
L −ALJjs(t), iλ

L) +
d
dt

φλ(−ALLiλ
L −ALJjs(t), iλ

L) = 0. (20)

Finally, we transform (12) similarly and get

−A>V Zvs(t)−A>CZuτ
C −A>Y Zuτ

Y

−A>ZZhτ (−AZZiλ
Z −AZLiλ

L −AZJjs(t), iλ
Z , uτ

Y , A>V Y vs(t) + A>CY uτ
C + A>Y Y uτ

Y )

+ hλ(−AZZiλ
Z −AZLiλ

L −AZJjs(t), iλ
Z , uτ

Y , A>V Y vs(t) + A>CY uτ
C + A>Y Y uτ

Y ) = 0. (21)

Thus, by (18)–(21), we obtain the hybrid equations

−A>V Zvs(t)−A>CZuτ
C −A>Y Zuτ

Y −A>ZZhτ + hλ = 0,

−A>V Lvs(t)−A>CLuτ
C −A>Y Luτ

Y −A>ZLhτ −A>LL

d
dt

φτ +
d
dt

φλ = 0,

d
dt

qτ + ACC
d
dt

qλ + ACY fλ + ACZiλ
Z + ACLiλ

L + ACJjs(t) = 0,

f τ + AY Y fλ + AY Ziλ
Z + AY Liλ

L + AY Jjs(t) = 0,

where

qτ = qτ (uτ
C , A>V Cvs(t) + A>CCuτ

C , t),

qλ = qλ(uτ
C , A>V Cvs(t) + A>CCuτ

C , t),

f τ = f τ (−AZZiλ
Z −AZLiλ

L −AZJjs(t), iλ
Z , uτ

Y , A>V Y vs(t) + A>CY uτ
C + A>Y Y uτ

Y , t),

fλ = fλ(−AZZiλ
Z −AZLiλ

L −AZJjs(t), iλ
Z , uτ

Y , A>V Y vs(t) + A>CY uτ
C + A>Y Y uτ

Y , t),

hτ = hτ (−AZZiλ
Z −AZLiλ

L −AZJjs(t), iλ
Z , uτ

Y , A>V Y vs(t) + A>CY uτ
C + A>Y Y uτ

Y , t),

hλ = hλ(−AZZiλ
Z −AZLiλ

L −AZJjs(t), iλ
Z ,uτ

Y , A>V Y vs(t) + A>CY uτ
C + A>Y Y uτ

Y , t),

φτ = φτ (−ALLiλ
L −ALJjs(t), iλ

L, t),

φλ = φλ(−ALLiλ
L −ALJjs(t), iλ

L, t).
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