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Abstract

The concept of M-convexity for functions in integer variables, intro-
duced by Murota (1995), plays a primary role in the theory of discrete
convex analysis. In this paper, we consider the problem of minimizing
an M-convex function, which is a natural generalization of the separa-
ble convex resource allocation problem under a submodular constraint
and contains some classes of nonseparable convex function minimiza-
tion on integer lattice points. We propose a new approach for M-convex
function minimization based on continuous relaxation. We show prox-
imity theorems for M-convex function minimization and its continuous
relaxation, and develop a new algorithm based on continuous relax-
ation by using the proximity theorems. The practical performance of
the proposed algorithm is evaluated by computational experiments.
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1 Introduction

The concept of M-convexity for functions in integer variables, introduced by
Murota [11, 12], plays a primary role in the theory of discrete convex analysis
[13]. M-convex functions enjoy various nice properties as “discrete convex-
ity” such as a local characterization for global minimality, extensibility to
ordinary convex functions, conjugacy, duality, etc. We consider the prob-
lem of minimizing an M-convex function, which is fundamental in discrete
optimization. For this problem, various approaches have been proposed to
develop efficient algorithms [9, 20, 21, 22]. In this paper, we propose a new
approach for M-convex function minimization based on continuous relax-
ation.

M-convex Function Minimization Let n be a positive integer and N =
{1, 2, . . . , n}. A function g : Zn → R ∪ {+∞} in integer variables is said to
be M-convex if it satisfies (M-EXC[Z]):

(M-EXC[Z])
∀x, y ∈ domZ g, ∀i ∈ supp+(x − y), ∃j ∈ supp−(x − y):

g(x) + g(y) ≥ g(x − χi + χj) + g(y + χi − χj),

where the effective domain of g is given by domZ g = {x ∈ Zn | g(x) < +∞},
supp+(x) = {i ∈ N | x(i) > 0}, supp−(x) = {i ∈ N | x(i) < 0}, and
χi ∈ {0, 1}n (i ∈ N) denotes the characteristic vector of i ∈ N , i.e., χi(i) = 1
and χi(j) = 0 for j ∈ N \ {i}. By definition, the effective domain domZ g
lies on a hyperplane {x ∈ Zn | x(N) = r} for some integer r.

Minimization of an M-convex function g : Zn → R∪{+∞} is formulated
as

(MC) Minimize g(x) subject to x ∈ domZ g.

Below we give some important special cases of the problem (MC).

Example 1.1 (Resource Allocation Problem under a Submodular
Constraint). Let fi : R → R (i ∈ N) be a family of univariate convex
functions. Also, let ρ : 2N → Z ∪ {+∞} be a submodular function, i.e., ρ
satisfies ρ(X) + ρ(Y ) ≥ ρ(X ∩ Y ) + ρ(X ∪ Y ) for every X,Y ∈ 2N . We
assume ρ(∅) = 0, ρ(Y ) ≥ 0 (∀Y ⊆ N), and ρ(N) < +∞. The (separable
convex) resource allocation problem under a submodular constraint [1, 6, 7]
is formulated as follows:

(SC) Minimize

n
∑

i=1

fi(x(i))

subject to x(N) = ρ(N), x(Y ) ≤ ρ(Y ) (Y ∈ 2N ),
x ≥ 0, x ∈ Zn,
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where x(Y ) =
∑

i∈Y x(i) for Y ⊆ N and 0 = (0, 0, . . . , 0) ∈ Zn. One of
the simplest special cases of (SC) is the simple (separable convex) resource
allocation problem [1, 6, 7]:

(SIMPLE) Minimize

n
∑

i=1

fi(x(i))

subject to x(N) = K, 0 ≤ x ≤ u, x ∈ Zn,

where K ∈ Z+ and u ∈ (Z+ ∪ {+∞})n. See [1, 6, 7] for comprehensive
review of (SC) and [2, 3, 4, 5, 10] for efficient algorithms.

The problem (SC) is a special case of (MC) since the function gSC :
Zn → R ∪ {+∞} defined by

gSC(x) =











n
∑

i=1

fi(x(i))
(if x ∈ Zn satisfies x(N) = ρ(N),

x(Y ) ≤ ρ(Y ) (Y ∈ 2N ), x ≥ 0),

+∞ (otherwise)

satisfies (M-EXC[Z]) (see [12, Example 2.2], [13, Section 6.3]).

Example 1.2 (Extension of Resource Allocation Problem under a
Tree Constraint). Let F ⊆ 2N be a laminar family, i.e., for every X,Y ∈ F
either of X ⊆ Y , X ⊇ Y , and X ∩ Y = ∅ holds. The resource allocation
problem under a tree constraint [6, 7] is formulated as

Minimize

n
∑

i=1

fi(x(i))

subject to x(N) = K, x(Y ) ≤ uX (Y ∈ F),
x ≥ 0, x ∈ Zn,

where fi : R → R is a univariate convex function for i ∈ N , K ∈ Z+,
and uX ∈ Z+ for X ∈ F . We consider an extension of this problem with
a nonseparable convex objective function, which we call the laminar convex
resource allocation problem:

(LC) Minimize

n
∑

Y ∈F

fY (x(Y ))

subject to x(N) = K, x(Y ) ≤ uX (Y ∈ F),
x ≥ 0, x ∈ Zn,

where fX : R → R is a univariate convex function for X ∈ F . The problem
(LC) is a special case of (MC) since the function gLC : Zn → R ∪ {+∞}
defined by

gLC(x) =











∑

Y ∈F

fY (x(Y ))
(x ∈ Zn satisfies x(N) = K,

x(Y ) ≤ uY (Y ∈ F), x ≥ 0),

+∞ (otherwise)

satisfies (M-EXC[Z]) (see [9, Example 2.3], [13, Section 6.3]).
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Continuous Relaxation Continuous relaxations of (SC) and (LC) can
be naturally obtained by replacing the integrality constraint “x ∈ Zn” with
“x ∈ Rn.” This motivates us to consider continuous relaxation of the prob-
lem (MC). Our continuous relaxation of (MC) is associated with the con-
cept of M-convex function in real variables, which is introduced by Murota–
Shioura [17] as an extension of M-convex function in integer variables. A
function f : Rn → R∪{+∞} in continuous variables is said to be M-convex
if it is convex and satisfies (M-EXC[R]):

(M-EXC[R])
∀x, y ∈ domR f , ∀i ∈ supp+(x−y), ∃j ∈ supp−(x−y), ∃α0 > 0:

f(x)+f(y) ≥ f(x−α(χi−χj))+f(y+α(χi−χj)) (∀α∈[0, α0]),

where domR f = {x ∈ Rn | f(x) < +∞}. M-convex functions in continuous
variables constitute a subclass of convex functions with additional combi-
natorial properties such as supermodularity and local polyhedral structure
(see, e.g., [13, 16, 17, 18, 19]). Fundamental properties of M-convex functions
are investigated in [18], such as equivalent axioms, subgradients, directional
derivatives, etc.

The following relationship holds between the two kinds of M-convex func-
tions. An M-convex function is said to be closed proper M-convex if it is
closed proper convex, in addition (the definition of closed proper convex
functions is given at the end of this section).

Theorem 1.3 (cf. [13, Section 6.11]). For any M-convex function g :
Zn → R ∪ {+∞} in integer variables, there exists some closed proper M-
convex function f : Rn → R ∪ {+∞} in continuous variables such that
f(x) = g(x) (x ∈ Zn).

Based on this fact, we consider in this paper the following continuous relax-
ation of (MC):

(MC) Minimize f(x) subject to x ∈ domR f ,

where f : Rn → R ∪ {+∞} is a closed proper M-convex function satisfying
the condition f(x) = g(x) (x ∈ Zn). We note that continuous relaxations of
(SC) and (LC) can be also formulated in the form (MC) by using functions
fSC : Rn → R ∪ {+∞} and fLC : Rn → R ∪ {+∞} which are defined in
a similar way as gSC and gLC in Examples 1.1 and 1.2, where “x ∈ Zn”
is replaced with “x ∈ Rn.” It should be mentioned that fSC and fLC are
M-convex functions in continuous variables satisfying fSC(x) = gSC(x) and
fLC(x) = gLC(x) for x ∈ Zn.
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Our Results An optimal solution of an optimization problem is expected
to be close to an optimal solution of its continuous relaxation. Therefore,
an optimal solution of the continuous relaxation can be used as a good
initial solution of algorithms for the optimization problem. Efficiency of
algorithms based on continuous relaxation depends on the distance between
optimal solutions of the optimization problem and its continuous relaxation,
and so-called “proximity theorem” provides a theoretical guarantee for the
closeness of these two kinds of optimal solutions. For example, an algorithm
based on continuous relaxation is proposed for (SIMPLE), where a proximity
theorem in terms of the L1 distance is used (see [6, Section 4.6]; see also
Remark 5.1). Continuous relaxation is also used in [5] to show the strongly
polynomial-time solvability of several special cases of (SC) with quadratic
objective function (see Remark 5.3).

The main result in this paper is to show proximity theorems for the
problem (MC), stating that the L∞ distance between optimal solutions of
(MC) and its continuous relaxation is bounded by n−1 (see Corollary 2.2 and
Theorem 2.3). Since the problem (SC) is a special case of (MC), the bound
n− 1 also applies to (SC), which slightly improves the previous bound n for
(SC) shown in [4] (see Remark 5.3). We also give an example to show that
the bound n− 1 is the best possible, even for the special case of (SIMPLE).

We then apply the proximity theorems to develop an efficient algorithm
for (MC). It is known that (MC) can be solved by a greedy-type algorithm in
pseudo-polynomial time [13, 14]. We propose a new algorithm by combining
the greedy-type algorithm with continuous relaxation. It is shown by using
the proximity theorems that our algorithm terminates in O(n2) iterations.
Therefore, our algorithm can be faster than the existing polynomial-time
algorithms [20, 21, 22] if continuous relaxation can be solved quickly.

To evaluate the practical performance of our algorithm, we implement
our algorithm and some existing algorithms and perform computational ex-
periments with randomly generated instances of (MC). It is observed from
the experimental results that our algorithm is much faster than the existing
algorithms for the tested instances.

The organization of this paper is as follows. Proximity theorems for
(MC) are presented in Section 2, while the proofs are given later in Section
4. In Section 3, we apply the proximity theorems to develop an efficient
algorithm for (MC), and show the results of computational experiments.
Finally, we give some concluding remarks in Section 5.

Definitions and Notation We denote by R+ (resp., by Z+) the sets
of nonnegative real numbers (resp., nonnegative integers). Inequalities and
equalities for vectors x, y ∈ Rn mean component-wise inequalities and equal-
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ities; for example, x ≤ y reads x(i) ≤ y(i) (i ∈ N). We also define

||x||∞ = max
i∈N

|x(i)|, ||x||1 =
∑

i∈N

|x(i)|.

Let f : Rn → R ∪ {+∞} be a function. A function f is said to be
convex if its epigraph {(x, α) ∈ Rn × R | α ≥ f(x)} is a convex set. A
convex function f is said to be proper if the effective domain domR f is
nonempty, and closed if its epigraph is a closed set.

2 Proximity Theorems

We show proximity theorems for M-convex function minimization (MC) and
its continuous relaxation. More precisely, we mainly consider the following
problem instead of (MC):

Minimize f(x) subject to x ∈ domR f ∩ Zn, (2.1)

where f : Rn → R ∪ {+∞} is a closed proper M-convex function. We see
from Theorem 1.3 that this problem is more general than (MC) (see also
Remark 2.4).

Theorem 2.1. Let f : Rn → R ∪ {+∞} be a closed proper M-convex
function. Suppose that y∗ ∈ domR f satisfies

f(y∗ − χi + χj) ≥ f(y∗) (∀i, j ∈ N). (2.2)

Then, arg min f 6= ∅ and there exists some x∗ ∈ arg min f such that

||x∗ − y∗||∞ < n − 1.

Proof. Proof is given in Section 4.1.

For a function f : Rn → R ∪ {+∞}, we define the discretization fZ :
Zn → R ∪ {+∞} of f by

fZ(x) =

{

f(x) (x ∈ Zn),
+∞ (otherwise).

For the discretization fZ of f , any y∗ ∈ arg min fZ satisfies the condition
(2.2). Hence, we obtain the following corollary.

Corollary 2.2. Let f : Rn → R ∪ {+∞} be a closed proper M-convex
function and fZ : Zn → R ∪ {+∞} the discretization of f . For every
y∗ ∈ arg min fZ, there exists some x∗ ∈ arg min f such that

||x∗ − y∗||∞ < n − 1.

In particular, arg min fZ 6= ∅ implies arg min f 6= ∅.
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Theorem 2.3. Let f : Rn → R ∪ {+∞} be a closed proper M-convex
function, and fZ : Zn → R ∪ {+∞} the discretization of f . For every
x∗ ∈ arg min f , there exists some y∗ ∈ arg min fZ such that

||y∗ − x∗||∞ < n − 1.

In particular, arg min f 6= ∅ implies arg min fZ 6= ∅.

Proof. Proof is given in Section 4.2.

It should be mentioned that the proximity theorems above do not assume
(M-EXC[Z]) for the discretization fZ.

Remark 2.4. As mentioned at the beginning of this section, the problem
(2.1) is more general than the problem (MC). To illustrate that the problem
(2.1) properly contains (MC), we show an example of M-convex function
in continuous variables for which the discretization does not satisfy (M-
EXC[Z]).

Let S ⊆ R4 be a set defined by

S = {
2

∑

i=1

4
∑

j=3

αij(χi − χj) | 0 ≤ αij ≤ 1/2 (i = 1, 2, j = 3, 4)}.

We consider a function f : R4 → R ∪ {+∞} such that domR f = S and
f(x) = 0 (∀x ∈ domR f), which is an M-convex function in continuous
variables. The discretization fZ : Z4 → R ∪ {+∞} of f is a function
such that domZ fZ = S ∩ Z4 = {(0, 0, 0, 0), (1, 1,−1,−1)} and fZ(x) = 0
(∀x ∈ domZ fZ), which does not satisfy (M-EXC[Z]).

Remark 2.5. Minimizers of a closed proper M-convex function f : Rn →
R ∪ {+∞} can be characterized by the condition f ′(x; i, j) ≥ 0 (∀i, j ∈ N)
(see [13, 18]), where for x ∈ domR f and i, j ∈ N the directional derivative
f ′(x; i, j) is defined by

f ′(x; i, j) = lim
α↓0

f(x + α(χi − χj)) − f(x)

α
.

Hence, the statement of Theorem 2.3 can be rewritten as follows (cf. Theo-
rem 2.1):

Let f : Rn → R ∪ {+∞} be a closed proper M-convex function,
and fZ : Zn → R ∪ {+∞} the discretization of f . Suppose
that x∗ ∈ domR f satisfies f ′(x; i, j) ≥ 0 (∀i, j ∈ N). Then,
arg min fZ 6= ∅ and there exists some y∗ ∈ arg min fZ such that
||y∗ − x∗||∞ < n − 1.
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The following examples show that the bound n − 1 in Corollary 2.2
and Theorem 2.3 is tight, even for the special case of the simple resource
allocation problem (SIMPLE).

Example 2.6. For an arbitrarily chosen small positive number δ, we con-
sider the problem (SIMPLE), where K = n − 1, u(i) = +∞ (i ∈ N), and
convex functions fi : R → R (i ∈ N) are given as

f1(α) = α (α ∈ R),

fi(α) = max

{

0,

(

1 +
1

δ

)

α − 1 − δ2

δ

}

(α ∈ R, i = 2, 3, . . . , n).

It is noted that fi(α) = 0 for α ∈ [0, 1 − δ] and fi(1) − fi(0) = 1 + δ > 1
for i = 2, 3, . . . , n. Hence, optimal solutions y∗ ∈ Zn and x∗ ∈ Rn of the
problem (SIMPLE) and its continuous relaxation, respectively, are uniquely
given as

y∗ = (n − 1, 0, . . . , 0), x∗ = ((n − 1)δ, 1 − δ, . . . , 1 − δ).

It is easy to see that ||y∗ − x∗||∞ = (n − 1)(1 − δ), which can be arbitrarily
close to n − 1.

Example 2.7. Let δ be an arbitrarily chosen small positive number and
put η = 3δ(1 − δ) − δ. We again consider the problem (SIMPLE), where
K = n − 1, u(i) = +∞ (i ∈ N), and convex functions fi : R → R (i ∈ N)
are given as

f1(α) = 2δα (α ∈ R),

fi(α) = max
{

−η

δ
(α − δ), 3δ(α − δ)

}

(α ∈ R, i = 2, 3, . . . , n).

It is noted that fi(1) − fi(0) = δ for i = 2, 3, . . . , n. Hence, optimal so-
lutions y∗ ∈ Zn and x∗ ∈ Rn of (SIMPLE) and its continuous relaxation,
respectively, are uniquely given as

y∗ = (0, 1, . . . , 1), x∗ = ((n − 1)(1 − δ), δ, . . . , δ).

It is easy to see that ||y∗ − x∗||∞ = (n − 1)(1 − δ), which can be arbitrarily
close to n − 1.

Remark 2.8. The following proximity theorem is known for M-convex func-
tions in integer variables (see, e.g., [13, Theorem 6.37]), although it is not
useful in proving the proximity theorems in this paper.

Theorem 2.9. Let g : Zn → R∪{+∞} be an M-convex function in integer
variables and α a positive integer. Suppose that yα ∈ domZ g satisfies

g(yα − αχi + αχj) ≥ g(yα) (∀i, j ∈ N).

Then, arg min g 6= ∅ and there exists some y∗ ∈ arg min g such that

||y∗ − yα||∞ ≤ (n − 1)(α − 1).
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Remark 2.10. For any closed proper M-convex function f : Rn → R ∪
{+∞} and α > 0, we define a function fα : Rn → R ∪ {+∞} by

fα(x) = f(αx) (x ∈ Rn).

Then, fα is a closed proper M-convex function as well [13, Theorem 6.49
(2)]. Corollary 2.2 and Theorem 2.3 applied to fα can be restated in terms
of f as follows, which are seemingly more general but equivalent.

Corollary 2.11. Let f : Rn → R ∪ {+∞} be a closed proper M-convex
function. Also, let α > 0 and fαZ : Zn → R ∪ {+∞} be a function defined
by

fαZ(x) =

{

f(αx) (x ∈ Zn),
+∞ (otherwise),

(i) For every y∗ ∈ arg min fαZ, there exists some x∗ ∈ arg min f such that

||x∗ − αy∗||∞ < α(n − 1).

(ii) For every x∗ ∈ arg min f , there exists some y∗ ∈ arg min fαZ such that

||αy∗ − x∗||∞ < α(n − 1).

(iii) We have arg min f 6= ∅ if and only if arg min fαZ 6= ∅.

3 New Algorithm Based on Continuous Relaxation

In this section, we propose a new algorithm for the problem (MC) using
continuous relaxation.

3.1 Greedy Algorithm

Our algorithm uses the following greedy-type algorithm called “modified
steepest descent algorithm” [9] (also called “greedy algorithm” in [21]) as a
subroutine. The main idea of the modified steepest descent algorithm is to
iteratively reduce a set containing a minimizer of an M-convex function by
using the following property:

Theorem 3.1 ([20, Theorem 2.2]). Let g : Zn → R ∪ {+∞} be an M-
convex function with arg min g 6= ∅. For x ∈ domZ g and i ∈ N , suppose
that j ∈ N satisfies the condition

g(x + χj − χi) = min
h∈N

g(x + χh − χi).

Then, there exists x∗ ∈ arg min g such that x∗(j) ≥ x(j) + 1 − χi(j).

9



Below we describe a slightly modified version of the modified steepest
descent algorithm. The vector ` ∈ (R ∪ {−∞})n is used to represent a set
{x ∈ Zn | x ≥ `} containing a minimizer. We assume that an initial vector
x◦ ∈ domZ g and a bound L ∈ Z+ satisfying

arg min g ∩ {x ∈ domZ g | ||x − x◦||∞ ≤ L} 6= ∅

are given in advance. For example, we can use L = max{||x − y||∞ | x, y ∈
domZ g} if domZ g is bounded.

Modified Steepest Descent Algorithm:
Step 0: Put x := x◦ and `(i) := x◦(i) − L for all i ∈ N .
Step 1: If x = `, then return x (x is a minimizer of g).
Step 2: Choose any i ∈ N with x(i) > `(i).
Step 3: Find j ∈ N that minimizes g(x + χj − χi).
Step 4: Set `(j) := x(j) + 1 − χi(j) and x := x + χj − χi. Go to Step 1.

It is shown that the modified steepest descent algorithm finds a mini-
mizer of an M-convex function in a pseudo-polynomial number of iterations.

Theorem 3.2 ([21]). Let g : Zn → R ∪ {+∞} be an M-convex function.
Then, the modified steepest descent algorithm finds a minimizer x∗ of g in
O(nL) iterations.

3.2 Proposed Algorithm

We consider speed-up of the modified steepest descent algorithm by using an
optimal solution of continuous relaxation. In the following, we assume that
a closed proper M-convex function f : Rn → R ∪ {+∞} with f(x) = g(x)
(x ∈ Zn) is readily available and satisfies the following conditions:

(A1): Minimization of f can be solved efficiently.
(A2): domR f coincides with the convex closure of domZ g.

For example, the problems (SC) and (LC) with quadratic convex objective
functions satisfy the conditions above. Our algorithm is described as follows.

Continuous Relaxation Algorithm:
Step 1: Compute a minimizer x∗ ∈ domR f of the function f .
Step 2: Compute an integral vector y ∈ domZ g with ||y − x∗||∞ ≤ n.
Step 3: Apply the modified steepest descent algorithm to the M-convex

function g with the initial vector x◦ = y and L = 2n − 1.

We see from Theorem 2.3 that there exists some y∗ ∈ arg min g such that
||y∗ − x∗||∞ < n − 1. Hence, the vector y computed in Step 2 satisfies

||y∗ − y||∞ ≤ ||y∗ − x∗||∞ + ||x∗ − y||∞ ≤ L.
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This together with Theorem 3.2 implies that the modified steepest descent
algorithm with x◦ = y and L = 2n − 1 terminates in O(n2) iterations.
We denote by T1 the time required by Step 1, i.e., the time to compute a
minimizer of f , by T2 the time required by Step 2, and by F the time to
evaluate the function value of g.

Theorem 3.3. The continuous relaxation algorithm finds a minimizer of
an M-convex function g : Zn → R ∪ {+∞} in O(T1 + T2 + n3F ) time.

The time complexity O(T1 + T2 + n3F ) for the continuous relaxation algo-
rithm is better than that for the original modified steepest descent algorithm
if T1 and T2 are not so big.

Step 2 can be done in (weakly) polynomial time by using a similar tech-
nique as in [20, Theorem 2.5] since domR f is an integral base polyhedron
under the assumption (A2). In some special cases of (MC), Step 2 can be
done more easily and efficiently; indeed, for the problem (LC), any feasible
solution x ∈ Rn of the continuous relaxation can be rounded to a feasible
solution y ∈ Zn of (LC) with ||y − x||∞ < 1 in O(n) time.

3.3 Computational Experiments

We compare the performance of our continuous relaxation algorithm with
those of the previously proposed algorithms by computational experiments.
We implemented the following four algorithms for the problem (MC) in the
C language:

symbol algorithm

SD steepest descent algorithm [14]
SD2 modified steepest descent algorithm

SCALING steepest descent scaling algorithm [9], [13, Sec. 10.1.2]
RELAX our continuous relaxation algorithm

We use the following libraries:

• “L-BFGS” by Nocedal1 with its C++ wrapper by Kudo2, which is an
implementation of quasi-Newton method for unconstrained nonlinear
function optimization [8]. As the routine requires the gradient of the
objective function, we use a finite-difference approximation by n + 1
times of the function evaluation. This is only used in RELAX.

• pseudo-random number generator “SIMD-oriented Fast Mersenne Twister”
by Saito and Matsumoto3. This is used to generate test instances.

1http://www.ece.northwestern.edu/~nocedal/lbfgs.html
2http://chasen.org/~taku/software/misc/lbfgs/
3http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/
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Figure 1: The number of function value evaluations and CPU time

We consider a special case of the problem (LC) as test instances for
the problem (MC). More precisely, we consider an M-convex function g :
Zn+1 → R ∪ {+∞} given as

g(x(0), x(1), . . . , x(n)) =











∑

Y ∈F

{aY x(Y )2 + bY x(Y ) + cY } (if

n
∑

i=0

x(i) = 0),

+∞ (otherwise),

where F is a laminar family of subsets of {1, 2, . . . , n}. For each n, we
generate ten instances with randomly chosen rational numbers 0 < aX ≤
1000, −1000 ≤ bX , cX ≤ 1000 (X ∈ F). In addition, initial vectors x◦ ∈
domZ g used in the algorithms SD, SD2, and SCALING are also randomly
generated under the condition ||x◦||∞ ≤ 10n.

Our computational environment is described as follows:

HP dx5150 SF/CT, AMD Athlon 64 3200+ processor (2.0GHz,
512KB L2 cache), 4GB memory, Vine Linux 4.1 (kernel 2.6.16),
gcc 3.3.6.
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We measure the number of function value evaluations and CPU time
for each instance. Our experimental results are summarized in Figure 1,
where the graph on the top (resp., on the bottom) shows the relationship
between the number C of function value evaluations (resp., CPU time T ) and
dimension n. It is easy to observe that in all of the implemented algorithms,
it holds that C = O(nh) for some h and T = O(nk) for some k. Actual
numbers h and k for each algorithm are summarized below:

algorithm SD SD2 SCALING RELAX

function value evaluations C n3.9 n2.8 n2.5 n1.8

CPU time T n4.5 n3.8 n3.8 n3.0

These computational experiments show that our continuous relaxation
algorithm is faster than the previously proposed algorithms, at least for the
tested instances.

4 Proofs

Proofs of Theorems 2.1 and 2.3 use the following property, stating that the
projection of a closed proper M-convex function along an arbitrarily chosen
coordinate axis i ∈ N is a supermodular function.

Theorem 4.1 ([17, Proposition 3.12]). Let f : Rn → R ∪ {+∞} be a
closed proper M-convex function. For every x, y ∈ Rn and i ∈ N , we have
f(x) + f(y) ≤ f(x̂) + f(y̌), where x̂ and y̌ are given as

x̂(j) =







min{x(j), y(j)} (j ∈ N \ {i}),
x(N) −

∑

k∈N\{i}

min{x(k), y(k)} (j = i),

y̌(j) =







max{x(j), y(j)} (j ∈ N \ {i}),
y(N) −

∑

k∈N\{i}

max{x(k), y(k)} (j = i).

4.1 Proof of Theorem 2.1

Recall that f : Rn → R ∪ {+∞} is a closed proper M-convex function and
the vector y∗ ∈ domR f satisfies

f(y∗ − χi + χj) ≥ f(y∗) (∀i, j ∈ N). (4.1)

To prove Theorem 2.1, it suffices to show the following property:

(P1) for every x′ ∈ domR f , there exists some x ∈ domR f such
that f(x) ≤ f(x′) and ||x − y∗||∞ < n − 1.

13



Since f is closed proper convex and the set {x ∈ domR f | ||x−y∗||∞ < n−1}
is bounded, the property (P1) implies that there exists a minimizer of f such
that ||x−y∗||∞ ≤ n−1. This shows that arg min f 6= ∅, in particular. Hence,
(P1) immediately implies that there exists some x∗ ∈ arg min f such that
||x∗ − y∗||∞ < n − 1.

We now prove the property (P1). Let x′ ∈ domR f be any vector. Also,
let x̂ ∈ domR f be a vector satisfying f(x̂) ≤ f(x′), and suppose that x̂
minimizes the L1 distance ||x̂ − y∗||1 from the vector y∗ among all such
vectors. We show that for every k ∈ N it holds that

|x̂(k) − y∗(k)| < n − 1. (4.2)

In the following, we fix k ∈ N and assume, without loss of generality, that
x̂(k) > y∗(k) since the case x̂(k) < y∗(k) can be dealt with in a similar way
and the case x̂(k) = y∗(k) immediately implies (4.2).

By the choice of x̂, we have

f(x̂ − ε(χk − χj)) > f(x̂)
(∀j ∈ supp−(x̂ − y∗), 0 < ∀ε ≤ min(x̂(k) − y∗(k), y∗(j) − x̂(j))).

(4.3)
Let supp−(x̂ − y∗) = {j1, j2, · · · , jt}, where t = |supp−(x̂ − y∗)| (≤ n − 1).
Put y0 = y∗, and we iteratively define λh ∈ R+ and yh ∈ Rn for each
h = 1, 2, · · · , t by

λh = sup{λ | yh−1 + λ(χk − χjh
) ∈ domR f,

λ ≤ min(x̂(k) − yh−1(k), yh−1(jh) − x̂(jh)),

f(yh−1 + λ′(χk − χjh
)) is strictly decreasing in λ′ ∈ [0, λ]}

and yh = yh−1 + λh(χk − χjh
). By the definition of yh and closed convexity

of f , we have

f(yh) < f(yh−1) if λh > 0, (4.4)

f(yh + λ(χk − χjh
)) ≥ f(yh) (∀λ > 0)

if x̂(k) > yh(k) and yh(jh) > x̂(jh). (4.5)

Claim 1:
∑t

h=1
λh = x̂(k) − y0(k).

[Proof of Claim 1] Assume, to the contrary, that
∑t

h=1
λh < x̂(k)− y0(k).

Since k ∈ supp+(x̂−yt), (M-EXC[R]) implies that there exist jh ∈ supp−(x̂−
yt) ⊆ supp−(x̂ − y0) and a sufficiently small λ > 0 such that

f(x̂) + f(yt) ≥ f(x̂ − λ(χk − χjh
)) + f(yt + λ(χk − χjh

)).

By Theorem 4.1, we obtain

f(yh + λ(χk − χjh
)) + f(yt) ≤ f(yt + λ(χk − χjh

)) + f(yh).
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Combining the two inequalities, we have

f(yh + λ(χk − χjh
)) − f(yh) ≤ f(x̂) − f(x̂ − λ(χk − χjh

)) < 0,

where the last inequality is by (4.3). This, however, contradicts (4.5).
[End of Claim 1]

Claim 2: For h = 1, 2, . . . , t, if λh > 0 then f(y∗ + λh(χk − χjh
)) < f(y∗).

[Proof of Claim 2] Let h be any integer in {1, 2, . . . , t} with λh > 0. By
Theorem 4.1, we have

f(y∗ + λh(χk − χjh
)) + f(yh−1) ≤ f(yh) + f(y∗),

which implies

f(y∗ + λh(χk − χjh
)) − f(y∗) ≤ f(yh) − f(yh−1) < 0,

where the last inequality is by (4.4). [End of Claim 2]

By the inequality (4.1) and convexity of f , we have

f(y∗ + β(χk − χj)) ≥ f(y∗) (∀β ≥ 1, ∀j ∈ N).

Therefore, it follows from Claim 2 that λh < 1 for all h = 1, 2, . . . , t, which,
together with Claim 1, implies the desired inequality (4.2) as follows:

x̂(k) − y∗(k) = x̂(k) − y0(k) =

t
∑

h=1

λh < t ≤ n − 1.

This concludes the proof of Theorem 2.1.

Remark 4.2. The proof of Theorem 2.1 above essentially shows the follow-
ing properties:

Theorem 4.3. Let f : Rn → R ∪ {+∞} be a closed proper M-convex
function.
(i) Suppose that y∗ ∈ domR f and k ∈ N satisfy the condition f(y∗ + χk −
χj) ≥ f(y∗) (∀j ∈ N). Then, for every x′ ∈ domR f there exists some
x ∈ domR f such that f(x) ≤ f(x′) and x(k) < y∗(k)+(n−1). In particular,
it holds that

inf{f(x) | x ∈ domR f, x(k) < y∗(k) + (n − 1)} = inf f.

(ii) Suppose that y∗ ∈ domR f and k ∈ N satisfy the condition f(y∗ −
χk + χj) ≥ f(y∗) (∀j ∈ N). Then, for every x′ ∈ domR f there exists some
x ∈ domR f such that f(x) ≤ f(x′) and x(k) > y∗(k)+(n−1). In particular,
it holds that

inf{f(x) | x ∈ domR f, x(k) > y∗(k) − (n − 1)} = inf f.
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4.2 Proof of Theorem 2.3

The proof of Theorem 2.3 given below is similar to that for Theorem 2.1.
Recall that f : Rn → R ∪ {+∞} is a closed proper M-convex function,
fZ : Zn → R ∪ {+∞} is the discretization of f , and x∗ ∈ arg min f . To
prove Theorem 2.3, we will show the following property holds:

(P2) for every y′ ∈ domZ fZ, there exists some y ∈ domZ fZ

such that fZ(y) ≤ fZ(y′) and ||y − x∗||∞ < n − 1.

Since {y ∈ domZ fZ | ||y − x∗||∞ < n − 1} is a finite set, the property
(P2) immediately implies that there exists some y∗ ∈ arg min fZ such that
||y∗ − x∗||∞ < n − 1.

We now prove the property (P2). Let y ′ ∈ domZ fZ be any vector. Also,
let ŷ ∈ domZ fZ be a vector satisfying fZ(ŷ) ≤ fZ(y′), and suppose that ŷ
minimizes ||ŷ − x∗||1 among all such vectors. We show that for every k ∈ N
it holds that

|ŷ(k) − x∗(k)| < n − 1. (4.6)

In the following, we fix k ∈ N and assume, without loss of generality, that
ŷ(k) > x∗(k) since the case ŷ(k) < x∗(k) can be dealt with in a similar way
and the case ŷ(k) = x∗(k) immediately implies (4.6).

By the choice of ŷ, we have

f(ŷ − χk + χj) > f(ŷ). (∀j ∈ supp−(ŷ − x∗)). (4.7)

Let supp−(ŷ − x∗) = {j1, j2, · · · , jt}, where t = |supp−(ŷ − x∗)| (≤ n − 1).
Put y0 = ŷ, and for each h = 1, 2, · · · , t, we iteratively define λh ∈ R+ and
yh ∈ Rn by

λh = sup{λ | yh−1 − λ(χk − χjh
) ∈ domR f,

λ ≤ min(yh−1(k) − x∗(k), x∗(jh) − yh−1(jh)),

f(yh−1 − λ(χk − χjh
)) ≤ f(yh−1)}

and yh = yh−1 − λh(χk − χjh
). By the definition of yh and closed convexity

of f , we have

f(yh) ≤ f(yh−1) (h = 1, 2, . . . , t), (4.8)

f(yh − λ(χk − χjh
)) > f(yh) (∀λ > 0)

if x∗(k) > yh(k) and yh(jh) > x∗(jh). (4.9)

Claim 1:
∑t

h=1
λh = y0(k) − x∗(k).

[Proof of Claim 1] Assume, to the contrary, that
∑t

h=1 λh < y0(k)−x∗(k).
Since k ∈ supp+(yt − x∗), there exist jh ∈ supp−(yt − x∗) ⊆ supp−(y0 − x∗)
and a sufficiently small λ > 0 such that

f(yt) + f(x∗) ≥ f(yt − λ(χk − χjh
)) + f(x∗ + λ(χk − χjh

)).
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By Theorem 4.1, we obtain

f(yh − λ(χk − χjh
)) + f(yt) ≤ f(yt − λ(χk − χjh

)) + f(yh).

Combining the two inequalities, we have

f(yh − λ(χk − χjh
)) − f(yh) ≤ f(x∗) − f(x∗ + λ(χk − χjh

)) ≤ 0,

where the last inequality follows from x∗ ∈ arg min f . This, however, con-
tradicts (4.9). [End of Claim
1]

Claim 2: For h = 1, 2, . . . , t, we have f(ŷ − λh(χk − χjh
)) ≤ f(ŷ).

[Proof of Claim 2] Let h ∈ {1, 2, . . . , t}. By Theorem 4.1, we have

f(ŷ − λh(χk − χjh
)) + f(yh−1) ≤ f(yh) + f(ŷ),

which implies

f(ŷ − λh(χk − χjh
)) − f(ŷ) ≤ f(yh) − f(yh−1) ≤ 0,

where the last inequality is by (4.8). [End of Claim 2]

By the convexity and Claim 2, it holds that

f(ŷ − λ(χk − χjh
)) ≤ f(ŷ) (∀λ ∈ [0, λh], ∀h = 1, 2, . . . , t).

Hence, it follows from (4.7) that λh < 1 for all h = 1, 2, . . . , t, which, together
with Claim 1, implies the desired inequality (4.6) as follows:

ŷ(k) − x∗(k) = y0(k) − x∗(k) =

t
∑

h=1

λh < t ≤ n − 1.

This concludes the proof of Theorem 2.3.

Remark 4.4. The proof of Theorem 2.3 above essentially shows the follow-
ing properties:

Theorem 4.5. Let f : Rn → R ∪ {+∞} be a closed proper M-convex
function and fZ : Zn → R ∪ {+∞} the discretization of f .
(i) Suppose that x∗ ∈ domR f and k ∈ N satisfy the condition f ′(x∗; k, j) ≥ 0
(∀j ∈ N). Then, it holds that

inf{fZ(y) | y ∈ domZ fZ, y(k) < x∗(k) + (n − 1)} = inf fZ.

(ii) Suppose that x∗ ∈ domR f and k ∈ N satisfy the condition f ′(x∗; j, k) ≥
0 (∀j ∈ N). Then, it holds that

inf{fZ(y) | y ∈ domZ fZ, y(k) > y∗(k) − (n − 1)} = inf fZ.
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5 Concluding Remarks

Remark 5.1. We consider the following statements for M-convex function
minimization (MC) and its continuous relaxation (MC).

(i) for every optimal solution x∗ ∈ Rn of (MC), there exists some
optimal solution y∗ ∈ Zn of (MC) such that y∗ ≤ dx∗e,
(ii) for every optimal solution x∗ ∈ Rn of (MC), there exists
some optimal solution y∗ ∈ Zn of (MC) such that y∗ ≥ bx∗c,

where vectors dx∗e, bx∗c ∈ Zn are given by (dx∗e)(i) = dx∗(i)e, (bx∗c)(i) =
bx∗(i)c (i ∈ N). Examples 2.6 and 2.7 show that neither of these two
statements hold, even for the simple resource allocation problem (SIMPLE)
(see also Remark 5.3).

On the other hand, (SIMPLE) and its continuous relaxation (SIMPLE)
satisfies the following weaker statement (see, e.g., [6, Section 4.6] for a proof):

(iii) for every optimal solution x∗ ∈ Rn of (SIMPLE), there
exists some optimal solution y∗ ∈ Zn of (SIMPLE) satisfying
either y∗ ≤ dx∗e or y∗ ≥ bx∗c (or both).

Remark 5.2. Let f : Rn → R∪{+∞} be a closed proper convex function
and fZ : Zn → R∪{+∞} the discretization of f . Corollary 2.2 and Theorem
2.3 show that for any M-convex f , we have arg min f 6= ∅ if and only if
arg min fZ 6= ∅. In the general case where f is not necessarily M-convex,
however, the properties arg min f 6= ∅ and arg min fZ 6= ∅ are independent
of each other, as shown in the following two examples.

Let f0 : R2 → R ∪ {+∞} be a function defined by

f0(x1, x2) =







−1 (if (x1, x2) = (0, 0.5)),
1/(x1 + 1) (if x1 ∈ Z+, x2 = 0),
+∞ (otherwise).

Let f : R2 → R ∪ {+∞} be the convex closure of f0 (see, e.g., [13] for the
definition of the convex closure) and fZ : Z2 → R∪{+∞} the discretization
of f . By definition, the function f is a closed proper convex function such
that domR f = {(x1, x2) ∈ R2 | x1 ≥ 0, 0 ≤ x2 ≤ 0.5}. We have f(x1, x2) =
f0(x1, x2) for every (x1, x2) ∈ domR f0, and the function f is linear on the
convex hull of the set {(1/n, 0), (1/(n + 1), 0), (0, 0.5)} for each n ∈ Z+.
Moreover, we have f(x1, x2) = 0 if x1 > 0 and x2 = 0.5. Hence, arg min f =
{(0, 0.5)} 6= ∅ holds. On the other hand, inf fZ = inf{1/(x1 + 1) | x1 ∈
Z+} = 0 and arg min fZ = ∅.

We then consider a closed proper convex function h : R2 → R ∪ {+∞}
defined by

h(x1, x2) =

{

1/(x1 + 1) (if x1 ≥ 0, x2 =
√

x1),
+∞ (otherwise).
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Let hZ : Z2 → R ∪ {+∞} be the discretization of h. Then, domZ hZ =
arg minhZ = {(0, 0)} and minhZ = 1. On the other hand, inf h = infx1≥0 1/(x1+
1) = 0 and there exists no (x1, x2) ∈ domR h with h(x1, x2) = inf h, i.e.,
arg minh = ∅.

Remark 5.3. In Hochbaum [4], the following “proximity theorem” is pre-
sented for the problem (SC) and its continuous relaxation (SC), where
1 = (1, 1, . . . , 1) ∈ Zn:

Statement A (Corollary 4.3 in [4])
(i) For every optimal solution y∗ ∈ Zn of (SC), there exists some
optimal solution x∗ ∈ Rn of (SC) such that

y∗ − 1 < x∗ < y∗ + n1.

(ii) For every optimal solution x∗ ∈ Rn of (SC), there exists
some optimal solution y∗ ∈ Zn of (SC) such that

y∗ − 1 < x∗ < y∗ + n1.

This statement, however, is incorrect; indeed, Examples 2.6 and 2.7 show
that Statement A does not hold even for the simple resource allocation
problems (see Remark 5.1). Moreover, Example 5.4 below shows that State-
ment A does not hold even for the simple resource allocation problem with
quadratic objective function.

Statement A is used in the paper [5] to show the strongly polynomial-
time solvability of several special cases of (SC) with quadratic objective
function. In particular, from Statement A follows the bound O(n) for the
L1 distance between optimal solutions of (SC) and (SC), which is used in
the paper [5] to analyze the time complexity of the proposed algorithms.
We can still show the results of strongly polynomial-time solvability in [5]
by using Theorem 2.3 instead of Statement A since Theorem 2.3 implies
the bound O(n2) for the L1 distance between optimal solutions of (SC) and
(SC). It is not clear, however, whether the time complexity results in [5]
still hold true without Statement A since our bound O(n2) is worse than
O(n) used in [5].

Example 5.4. For a sufficiently small positive number δ, we consider the
problem (SIMPLE), where K = n − 1, u(i) = +∞ (i ∈ N), and convex
functions fi : R → R (i ∈ N) are given as

f1(α) = δα (α ∈ R),

fi(α) = (α − 0.5 + δ)2 (α ∈ R, i = 2, 3, . . . , n).

It is noted that fi(1) − fi(0) = 2δ for i = 2, 3, . . . , n. Then, the optimal
solutions y∗ ∈ Zn and x∗ ∈ Rn of the problem (SIMPLE) and its continuous
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relaxation, respectively, are uniquely given as follows:

y∗ = (n − 1, 0, . . . , 0), x∗ =

(

(n − 1)(1 + δ)

2
,
1 − δ

2
,
1 − δ

2
, . . . ,

1 − δ

2

)

.

Since δ is a sufficiently small positive number, we have

y∗(1) − x∗(1) = (n − 1) − (n − 1)(1 + δ)

2
=

(n − 1)(1 − δ)

2
> 1.

This shows that y∗ − 1 < x∗ does not hold.
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