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On connectivity of fibers with positive marginals in
multiple logistic regression

Hisayuki Hara∗, Akimichi Takemura†‡ and Ruriko Yoshida§

October 2008

Abstract

In this paper we consider exact tests of a multiple logistic regression, where the
levels of covariates are equally spaced, via Markov beses. In usual application of
multiple logistic regression, the sample size is positive for each combination of levels
of the covariates. In this case we do not need a whole Markov basis, which guarantees
connectivity of all fibers. We first give an explicit Markov basis for multiple Poisson
regression. By the Lawrence lifting of this basis, in the case of bivariate logistic
regression, we show a simple subset of the Markov basis which connects all fibers
with a positive sample size for each combination of levels of covariates.

Keywords : contingency tables, exact test, Lawrence lifting, Markov bases, MCMC, Segre
product

1 Introduction

Diaconis and Sturmfels [1998] developed an algorithm for sampling from conditional dis-
tributions for a statistical model of discrete exponential families, based on the algebraic
theory of toric ideals. This algorithm is applied to categorical data analysis through the
notion of Markov bases. However, often Markov bases are large and difficult to compute.
One reason for their large size is that they guarantee connectivity of all fibers (conditional
sample spaces). With a given particular data set, on the other hand, we are naturally in-
terested in the connectivity of a particular fiber. However obtaining a subset of a Markov
basis for connecting a particular fiber is also a difficult problem in general [Chen et al.,
2008]. This problem was already discussed in Section 3 of Diaconis and Sturmfels [1998]
concerning “corner minors”. In Aoki and Takemura [2005] the case of two-way incomplete
tables was studied.

∗Department of Technology Management for Innovation, University of Tokyo
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‡CREST, JST
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In most applications of the logistic regression model, for each combination of covari-
ates, the number of successes and the number of failures are observed. The number of
trials (i.e. the sum of numbers of successes and failures) for each combination of covariates
is usually fixed by a sampling scheme and positive. We call this marginal the response
variable marginal. Therefore we are usually interested in the connectivity of fibers with
positive response variable marginals rather than all the fibers. First, in this paper, we
show an explicit form of a Markov basis for multiple Poisson regression. Then, extending
the result of Chen et al. [2005], we show an explicit form of a subset of Markov basis, which
guarantees the connectivity of every fiber with positive response variable marginals for
bivariate logistic regression. We conjecture that a similar subset of Markov basis connects
fibers with positive response variable marginals for a general multiple logistic regression.
However, it seems difficult to prove this conjecture.

The logistic regression can be understood as the Lawrence lifting of a Poisson regres-
sion. Let A denote a configuration defining a toric ideal and let Λ(A) denote its Lawrence
lifting. Let IA and IΛ(A) denote the respective toric ideals. It is known [Sturmfels, 1996,
Theorem 7.1] that the unique minimal Markov basis of IΛ(A) coincides with the Graver
basis of IA. Therefore the whole Graver basis of IA is needed to guarantee the connectivity
of all fibers of Λ(A). However many of the elements of the Graver basis of IA seem to be
needed to cope with the case of zero response variable marginal frequencies. In Section
4, for the case of bivariate logistic regression, we prove that a smaller Markov basis for
the Poisson regression extended to the logistic regression guarantees the connectivity of
fibers with positive response variable marginals.

This paper is organized as follows. In Section 2 we summarize results on Markov basis
of univariate Poisson regression and results on the connectivity for fibers with positive
response variable marginals of univariate logistic regression. In Section 3 we prove a
theorem on Markov bases of Segre product of configurations and apply it to multiple
Poisson regression. In Section 4 we prove the connectivity of fibers with positive response
variable marginals in the case of bivariate logistic regression. Some numerical examples
are given in Section 5. We conclude this paper with some discussions in Section 6. Some
detailed proofs are in Appendix.

2 Univariate Poisson and logistic regressions

In this section we summarize results on Markov basis of univariate Poisson regression and
the connectivity results for fibers with positive response variable marginals of univariate
logistic regression. We provide exact statements and detailed proofs of these results,
because they are not explicitly given in literature and similar arguments will be repeatedly
applied to prove our main theorem in Section 4.

Consider univariate Poisson regression [Diaconis et al., 1998] with the set of levels
{1, . . . , J} of a covariate. The mean µj of independent Poisson random variables Xj,
j = 1, . . . , J , is modeled as

log µj = α + βj, j = 1, . . . , J.
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The sufficient statistic for the models is (
∑J

j=1 Xj,
∑J

j=1 jXj). The first component is the

total sample size n =
∑J

j=1 Xj. The configuration A, i.e. the matrix giving the relation
between the observation vector and the sufficient statistic, for this model is given by

A =

(
1 1 . . . 1
1 2 . . . J

)
. (1)

Now we show the minimum-fiber Markov basis [Takemura and Aoki, 2005] for the uni-
variate Poisson regression. The minimum-fiber Markov basis is the union of all minimal
Markov bases.

Proposition 1. Let ej denote the contingency table with just 1 frequency in the j-th cell.
The set of moves

B = {±(ej1 + ej4 − ej2 − ej3) | 1 ≤ j1 < j2 ≤ j3 < j4 ≤ J, j2 − j1 = j4 − j3} (2)

forms the minimum-fiber Markov basis for the univariate Poisson regression.

Proof. We employ the distance reducing argument of Takemura and Aoki [2005]. Let
x = (x1, . . . , xJ) and y = (y1, . . . , yJ), x 6= y, be two data sets in the same fiber. Let
j1 = min{k | xk 6= yk}. Consider the case xj1 > yj1 . The case xj1 < yj1 can be handled by
interchanging the roles of x and y. Because the total sample size n is the same in x and
y (i.e. n =

∑J
k=1 xk =

∑J
k=1 yk), there exists some j2 > j1 such that xj2 < yj2 . Choose

the smallest such j2. Now suppose that xk ≤ yk for all k ≥ j2. Then

0 =
J∑

k=1

k(yk − xk) ≥
J∑

k=j2

j2(yk − xk) −
j2−1∑
k=1

(j2 − 1)(xk − yk)

= j2

J∑
k=1

(yk − xk) +

j2−1∑
k=1

(xk − yk) =

j2−1∑
k=1

(xk − yk) > 0,

which is a contradiction. Therefore there exists some j4 > j2, such that xj4 > yj4 . Define
j3 := j1 + j4 − j2. Then ej1 +ej4 −ej2 −ej3 can be subtracted from x and the L1 distance
to y becomes smaller. This proves that B forms a Markov basis.

Now consider a fiber F2,c with sample size n = 2 and a particular value of c =∑k
k=1 kxk. This fiber is written as

F2,c = {ej + e′
j | 1 ≤ j ≤ j′ ≤ J, j + j′ = c}

and B consists of all the differences of two elements of these fibers. Since B forms a Markov
basis, every minimal Markov basis needs to connect only these fibers. This proves that B
is the minimum-fiber Markov basis

We now consider univariate logistic regression [Chen et al., 2005]. Let {1, . . . , J} be
the set levels of a covariate and let X1j and X2j, j = 1, . . . , J , be the numbers of successes
and failures, respectively. The probability for success pj is modeled as

logit(pj) = log
pj

1 − pj

= α + βj, j = 1, . . . , J.
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The sufficient statistics for the model is (X1+, X+1, . . . , X+J ,
∑J

j=1 jX+j). Hence moves
z = (zij) for the model satisfy (z1+, z+1, . . . , z+J) = 0 and

J∑
j=1

jz+j = 0. (3)

The configuration for this model is the Lawrence lifting Λ(A) of A in (1):

Λ(A) =

(
A 0
EJ EJ

)
, A =

(
1 1 . . . 1
1 2 . . . J

)
, (4)

where EJ denotes the J × J identity matrix.
In general Markov bases of Λ(A) become very complicated. In usual applications of

the logistic regression model, however, X+j := X1j+X2j is fixed by a sampling scheme and
positive. Chen et al. [2005] showed that a simple subset of Markov bases of Λ(A) guar-
antees the connectivity of all fibers satisfying (X+1, . . . , X+J) > 0, where the inequality
“> 0” means that every element is positive.

Let ej be redefined by a 2 × J integer array with 1 in the (1, j)-cell and −1 in
the (2, j)-cell. Then we can show that the set of moves in (2) connects all fibers with
(X+1, . . . , X+J) > 0. More strongly, the set of moves is norm-reducing [Takemura and
Aoki, 2005] for any two tables x, y in any fiber with positive marginals, i.e. we can make
the L1 distance between x and y smaller by a move from the set.

Proposition 2. The set of moves

BΛ(A) = {±(ej1 + ej4 − ej2 − ej3) | 1 ≤ j1 < j2 ≤ j3 < j4 ≤ J, j2 − j1 = j4 − j3} (5)

is norm-reducing for all fibers with (X+1, . . . , X+J) > 0 for the univariate logistic regres-
sion model.

To prove this proposition, we present a simple lemma.

Lemma 1. Let z = {zij} be any move for the univariate logistic regression. Then there
exist j1 < j2 and j3 < j4 satisfying the following conditions.

(a) z1j1 > 0, z1j2 < 0, z1j3 < 0, z1j4 > 0 ;

(b) z1j1 = 1 implies j1 6= j4 ;

(c) z1j2 = −1 implies j2 6= j3 ;

(d) z1j = 0 for j1 < j < j2 and j3 < j < j4.

Proof. (a), (b) and (c) are obvious from the constraint (3) and z1+ = 0. We can assume
without loss of generality that there exist j1 < j2 such that z1j1 > 0, z1j2 < 0, z1j ≥ 0 for
1 ≤ j < j2 and z1j = 0 for j1 < j < j2. Since there exist j2 ≤ j3 < j4 satisfying (a), (b)
and (c), we can choose j3 and j4 to satisfy (d).
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We now give a proof of Proposition 2.

Proof of Propsition 2. We employ the distance reducing argument of Takemura and Aoki
[2005]. Let x and y be two tables in the same fiber. Then z := x − y is a move. We
can assume without loss of generality that there exist j1 < j2 ≤ j3 < j4 which satisfy the
conditions of Lemma 1 and j2 − j1 ≤ j4 − j3. Define j5 as j5 := j4 − (j2 − j1). Then by
applying a move

z′ := −ej1 + ej2 + ej5 − ej4 ,

we can reduce the L1 distance between x and y, because at least one of the following
operations can be performed to x or y:

j1 j2 j5 j4

i = 1 + 0+ 0+ +
i = 2 0+ + + 0+

+ −1 1 1 −1
1 −1 −1 1

= 0+ + + 0+
+ 0+ 0+ +

j1 j2 j5 j4

i = 1 0+ + + 0+
i = 2 + 0+ 0+ +

+ 1 −1 −1 1
−1 1 1 −1

= + 0+ 0+ +
0+ + + 0+

where 0+ denote that the cell frequency is nonnegative.

Chen et al. [2005] introduced a subset of B which still connects all fibers with X+j >
0, ∀j. Chen et al. [2005] did not give a proof of the following theorem.

Theorem 1 (Chen et al. [2005]). The set of moves

B0 = {z ∈ B | j2 = j1 + 1, j3 = j4 − 1} (6)

connects every fiber satisfying (X+1, . . . , X+J) > 0 for the univariate logistic regression
model.

Proof. It suffices to show that any move in z ∈ BΛ(A) of Proposition 2 can be replaced by
a series of moves in B0. To prove this it suffices to show that the L1 norm of any move
z ∈ BΛ(A), i.e., the L1 distance between the positive part x = z+ and the negative part
y = z− of z ∈ BΛ(A), is reduced by moves in B0. Denote z := ej1 −ej2 −ej3 +ej4 . We can
assume without loss of generality that j1 < j2 ≤ j3 < j4. We prove it by the induction on
δ := j2 − j1 = j4 − j3 ≥ 2.

When (x1,j1+1, x1,j4−1) > 0 or (x2,j1+1, x2,j4−1) > 0, we can apply z′ := −ej1 + ej1+1 +
ej4−1 − ej4 to z and

z + z′ := ej1+1 − ej2 − ej3 + ej4−1

as seen from the picture below, where zij = 0∗ denotes that xij = yij > 0.
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j1 j1 + 1 j4 − 1 j4

i = 1 1 0∗ 0∗ 1
i = 2 −1 0 0 −1

+ −1 1 1 −1
1 −1 −1 1

= 0 1 1 0
0 −1 −1 0

j1 j1 + 1 j4 − 1 j4

i = 1 1 0 0 1
i = 2 −1 0∗ 0∗ −1

+ −1 1 1 −1
1 −1 −1 1

= 0 1 1 0
0 −1 −1 0

From the inductive assumption, we can reduce the L1 norm of z + z′ by moves in B0.
When (x1,j1+1, x2,j3+1) > 0 or (x2,j1+1, x1,j3+1) > 0, we can apply z′ := −ej1 + ej1+1 +

ej3 − ej3+1 to z and
z + z′ := ej1+1 − ej2 − ej3+1 + ej4

as seen from the picture below.

j1 j1 + 1 j3 j3 + 1
i = 1 1 0∗ −1 0
i = 2 −1 0 1 0∗

+ −1 1 1 −1
1 −1 −1 1

= 0 1 0 −1
0 −1 0 1

j1 j1 + 1 j3 j3 + 1
i = 1 1 0 −1 0∗

i = 2 −1 0∗ 1 0
+ −1 1 1 −1

1 −1 −1 1
= 0 1 0 −1

0 −1 0 1

From the inductive assumption, we can reduce the L1 norm of z + z′ by moves in B0. In
the case that (x1,j2−1, x2,i4−1) > 0 or (x2,j2−1, x1,i4−1) > 0, the proof is similar.

Suppose that
x2,j1+1 = x1,j2−1 = x2,j3+1 = x1,j4−1 = 0.

We note that this implies that

x1,j1+1 > 0, x2,j2−1 > 0, x1,j3+1 > 0, x2,j4−1 > 0.

Then there exists j3 < j5 < j4 such that

x1j5 > 0, x2,j5+1 > 0

as in the following picture.

j1 j1 + 1 j2 − 1 j2 j3 j3 + 1 j5 j5 + 1 j4 − 1 j4

i = 1 1 0∗ 0 −1 −1 0∗ 0∗ 0 0 1
i = 2 −1 0 0∗ 1 1 0 0 0∗ 0∗ −1

By applying
z′ := −ej1 + ej1+1 + ej5 − ej5+1

6



and
z′′ := −ej5 + ej5+1 + ej4−1 − ej4

to z in this order, we obtain

z + z′ + z′′ = ej1+1 − ej2 − ej3 − ej4−1

as in the following picture.

j1 j1 + 1 j2 − 1 j2 j3 j3 + 1 j5 j5 + 1 j4 − 1 j4

i = 1 1 0∗ 0 −1 −1 0∗ 0∗ 0 0 1
i = 2 −1 0 0∗ 1 1 0 0 0∗ 0∗ −1

+
j1 j1 + 1 j2 − 1 j2 j3 j3 + 1 j5 j5 + 1 j4 − 1 j4

i = 1 −1 1 0 0 0 0 1 −1 0 0
i = 2 1 −1 0 0 0 0 −1 1 0 0

=
j1 j1 + 1 j2 − 1 j2 j3 j3 + 1 j5 j5 + 1 j4 − 1 j4

i = 1 0 1 0 −1 1 0 1 −1 0 −1
i = 2 0 −1 0 1 −1 0 −1 1 0 1

j1 j1 + 1 j2 − 1 j2 j3 j3 + 1 j5 j5 + 1 j4 − 1 j4

i = 1 0 1 0 −1 1 0 1 −1 0 −1
i = 2 0 −1 0 1 −1 0 −1 1 0 1

+
j1 j1 + 1 j2 − 1 j2 j3 j3 + 1 j5 j5 + 1 j4 − 1 j4

i = 1 0 0 0 0 0 0 −1 1 1 −1
i = 2 0 0 0 0 0 0 1 −1 −1 1

=
j1 j1 + 1 j2 − 1 j2 j3 j3 + 1 j5 j5 + 1 j4 − 1 j4

i = 1 0 1 0 −1 1 0 0 0 −1 0
i = 2 0 −1 0 1 −1 0 0 0 1 0

From the inductive assumption, we can reduce the L1 norm of z + z′ by moves in B0.
In the case that x1,j1+1 = x2,j2−1 = x1,j3+1 = x2,j4−1 = 0, the proof is similar.

3 Markov bases for models of Segre product type

In the previous section we considered univariate Poisson regression and logistic regression.
We now consider generalizing the results to multiple regression. In this section we show an
explicit form of Markov basis for multiple Poisson regression. Therefore an extension of
Proposition 1 to multiple regression is straightforward. In contrast, as we see in the next
section, it is difficult to generalize the results of univariate logistic regression to multiple
logistic regression.
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Multiple Poisson regression is a Segre product of univariate Poisson regressions. Quadratic
Gröbner bases of Segre products is already discussed in Aoki et al. [2008]. However Theo-
rem 2 below is about Markov bases (rather than Gröbner bases) and it is applicable even
if the component configurations do not possess quadratic Gröbner bases.

Consider two configurations A = (a1, . . . , aJ) and B = (b1, . . . , bK), where aj and bk

are column vectors. We assume the homogeneity, i.e., there exist weight vectors w, v such
that 〈w, aj〉 = 1, ∀j, 〈v, bk〉 = 1, ∀k. The configuration A⊗B of the Segre product of A
and B is defined as

A ⊗ B =
(
aj ⊕ bk, j = 1, . . . , J, k = 1, . . . , K

)
, aj ⊕ bk =

(
aj

bk

)
.

If both A and B are configurations of the form (1) for the univariate Poisson regression
model, then A ⊗ B corresponds to the bivariate Poisson regression model, where Xjk

is independently distributed according to Poisson distribution with mean µjk, which is
modeled as

log µjk = µ + αj + βk, j = 1, . . . , J, k = 1, . . . , K.

Let X = (Xjk)j=1,...,J,k=1,...,K denote a table of observed frequencies. The sufficient
statistic for the Segre product A ⊗ B is given by∑

j

ajXj+,
∑

k

bkX+k.

Therefore z = (zjk) is a move for A ⊗ B if and only if

0 =
∑

j

ajzj+, 0 =
∑

k

bkz+k. (7)

Given Markov bases BA and BB for A and B, respectively, our goal is to construct
a Markov basis for the Segre product A ⊗ B. Denote the elements of BA by zA =
(zA

1 , . . . , zA
J ). Let zA,+

j = max(zA
j , 0) be the positive part and zA,−

j = max(−zA
j , 0) be the

negative part of zA
j . Let deg zA =

∑J
j=1 zA,+

j =
∑J

j=1 zA,−
j be the degree of zA. Now zA is

uniquely written as

zA =

deg zA∑
h=1

(ejh
− ej′h

),

where j1 ≤ · · · ≤ jdeg zA and j′1 ≤ · · · ≤ j′deg zA . Let ejk denote a J ×K table with 1 at the
cell (j, k) and 0 everywhere else. Now choose arbitrary 1 ≤ k1, . . . , kdeg zA ≤ K and define

zA(k1, . . . , kdeg zA) =

deg zA∑
h=1

(ejhkh
− ej′hkh

).

We call zA(k1, . . . , kdeg zA) a “distribution” of zA by coordinates k1, . . . , kdeg zA . Note that
k1, . . . , kdeg zA are not ordered. Similarly define the distribution zB(j1, . . . , jdeg zB) of a
move zB ∈ BB.
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In addition to these moves we also consider the basic moves z(j1, j2; k1, k2) = ej1k1 +

ej2k2 − ej1k2 − ej2k1 of the form
+1 −1
−1 +1 . We now have the following theorem.

Theorem 2. The set of basic moves and the set of moves of the form zA(k1, . . . , kdeg zA),
1 ≤ k1, . . . , kdeg zA ≤ K, zA ∈ BA, zB(j1, . . . , jdeg zB), 1 ≤ j1, . . . , jdeg zB ≤ J , zB ∈ BB,
form a Markov basis for the Segre product A ⊗ B.

A proof of this theorem is given in Appendix. In Theorem 2 we have considered Segre
product of two configurations. By a recursive argument, a Markov basis for the Segre
product of arbitrary number of configurations A1 ⊗ · · · ⊗ Am is given as follows. Let BAj

be a Markov basis for the configuration Aj, j = 1, . . . ,m. Write [J ] = {1, . . . , J} and let

J̄j = [J1] × · · · × [Jj−1] × [Jj+1] × · · · × [Jm].

Let zAj ∈ BAj
and let k1, . . . , kdeg zAj ∈ J̄j. Now define

zAj(k1, . . . , kdeg zAj ) =

deg zAj∑
h=1

(ejhkh
− ej′hkh

),

where ej,k is an m-way table with 1 at the cell (j, k) and 0 everywhere else. Then we
have the following corollary to Theorem 2.

Corollary 1. The set of square-free degree two moves for the complete independence model
of J1 × · · · × Jm contingency tables and the set of moves of the form zAj(k1, . . . , kdeg zA),
k1, . . . , kdeg zA ∈ J̄j, j = 1, . . . ,m, form a Markov basis for the Segre product A1⊗· · ·⊗Am.

Minimality of the Markov basis constructed in Theorem 2 is not clear at the present.
However the maximum degree of moves in the Markov basis for A1 ⊗· · ·⊗Am is bounded
by the maximum degree of moves in BA1 , . . .BAm .

4 Connectivity of fibers of positive marginals in bi-

variate logistic regression

In this section we consider the extension of the results in univariate logistic regression
model to bivariate logistic regression model. Let {1, . . . , J} and {1, . . . , K} be the sets
levels of two covariates. Let X1jk and X2jk, j = 1, . . . , J , k = 1, . . . , K, be the numbers
of successes and failures, respectively, for level (j, k). The probability for success p1jk is
modeled as

logit(p1jk) = log

(
p1jk

1 − p1jk

)
= µ + αj + βk, (8)

j = 1, . . . , J, k = 1, . . . , K.

9



The sufficient statistics for this model is X1++,
∑J

j=1 jX1j+,
∑K

k=1 kX1+k, X+jk, ∀j, k.
Hence moves Z = (zijk) for the model satisfy

z1++ = 0,
J∑

j=1

jz1j+ = 0,
K∑

k=1

kz1+k = 0, z+jk = 0, ∀j, k.

Let

B =

(
1 1 . . . 1
1 2 . . . K

)
.

and let A be defined as in (4). Then the configuration for the bivariate logistic regression
model is the Lawrence lifting of Segre product Λ(A⊗B). Here we consider a set of moves
which connects every fiber satisfying X+jk > 0, ∀j, k.

Definition 1. Let ejk = (eijk) be redefined as an integer array with 1 at the cell (1jk),
−1 at the cell (2jk) and 0 everywhere else. Define BΛ(A⊗B) as the set of moves z = (zijk)
satisfying the following conditions,

1. z = ej1k1 − ej2k2 − ej3k3 + ej4k4 ;

2. (j1, k1) − (j2, k2) = (j3, k3) − (j4, k4).

BΛ(A⊗B) is an extension of BΛ(A) in Proposition 2 to the bivariate model (8). We note
that the (i = 1)-slice of a moves (z1jk) in BΛ(A⊗B) is a move of the Markov basis defined
in Theorem 2. Now we present the main theorem of this paper.

Theorem 3. BΛ(A⊗B) connects every fiber satisfying X+jk > 0, ∀j, k.

A proof of this theorem is given in Appendix. We give some examples of moves in
BΛ(A⊗B).

(1) k1 = · · · = k4 (2) k1 = · · · = k4 and j2 = j3 (3) k1 = k2 (k3 = k4)

j1 j2 j3 j4

k1 1 −1 −1 1
j1 j2 j4

k1 1 −2 1

j1 j2 j3 j4

k1 1 −1 0 0
k3 0 0 −1 1

(4) k1 = k2 and j2 = j3 (5) (j2, k2) = (j3, k3) (6) k1 = k4 and j2 = j3

j1 j2 j4

k1 1 −1 0
k3 0 −1 1

j1 j2 j4

k1 1 0 0
k2 0 −2 0
k4 0 0 1

j1 j2 j4

k2 0 −1 0
k1 1 0 1
k3 0 −1 0

5 Numerical examples

5.1 Data on coronary heart disease incidence

Table 1 refers to coronary heart disease incidence in Framingham, Massachusetts [Corn-
field, 1962, Agresti, 1990]. A sample of male residents, aged 40 through 50, were classified

10



Table 1: Data on coronary heart disease incidence
Serum Cholesterol (mg/100ml)

Blood 1 2 3 4 5 6 7
Pressure < 200 200-209 210-219 220-244 245-259 260-284 > 284

1 < 117 2/53 0/21 0/15 0/20 0/14 1/22 0/11
2 117-126 0/66 2/27 1/25 8/69 0/24 5/22 1/19
3 127-136 2/59 0/34 2/21 2/83 0/33 2/26 4/28
4 137-146 1/65 0/19 0/26 6/81 3/23 2/34 4/23
5 147-156 2/37 0/16 0/6 3/29 2/19 4/16 1/16
6 157-166 1/13 0/10 0/11 1/15 0/11 2/13 4/12
7 167-186 3/21 0/5 0/11 2/27 2/5 6/16 3/14
8 > 186 1/5 0/1 3/6 1/10 1/7 1/7 1/7

Source : Cornfield [1962]

on blood pressure and serum cholesterol concentration. 2/53 in the (1,1) cell means that
there are 53 cases, of whom 2 exhibited heart disease. We examine the goodness-of-fit
of the model (8) with J = 7 and K = 8. We first test the null hypotheses Hα : α = 0
and Hβ : β = 0 versus (8) using the likelihood ratio statistics Lα and Lβ. Then we have
Lα = 18.09 and Lβ = 22.56 and the asymptotic p-values are 2.107×10−5 and 2.037×10−6,
respectively, from the asymptotic distribution χ2

1. We computed the exact distribution
of Lα and Lβ via Monte Carlo Markov chain (MCMC) with the sets of moves BΓ(A) and
B0 discussed in Section 2. See the last paragraph of Section 6 on sampling under Hα

and Hβ. In all experiments in this paper, we sampled 100,000 tables after 50,000 burn-in
steps. Figure 1 and 2 represent histograms of Lα and Lβ. The solid lines in the figures
represent the density function of the asymptotic distribution χ2

1. The estimated p-values
are 1.0× 10−6 for all cases. Therefore both Hα and Hβ are rejected. We can see from the
figures that there are little differences between two histograms computed with BΓ(A) and
B0.

Next we set (8) as a null hypothesis and test it versus the following ANOVA type logit
model,

H1 : logit(p1jk) = log

(
p1jk

1 − p1jk

)
= µ + αj + βk, (9)

where
∑J

j=1 αj = 0 and
∑K

k=1 βk = 0 by likelihood ratio statistic L0. The value of L0 is

13.07587 and the asymptotic p-value is 0.2884 from the asymptotic distribution χ2
11. We

computed the exact distribution of L0 via MCMC with BΓ(A⊗B) defined in Definition 1.
As an extension of B0 in Theorem 1 to the bivariate model (8), we define B2

0 by the set
of moves z = ej1k1 − ej2k2 − ej3k3 + ej4k4 satisfying (j1, k1)− (j2, k2) = (j3, k3)− (j4, k4) is
either of (±1, 0), (0,±1), (±1,±1) or (±1,∓1). We also computed the exact distribution
of L0 with B2

0. Figure 3 represents histograms of L0 computed with BΓ(A⊗B) and B2
0. The

estimated p-values are 0.2706 with BΓ(A⊗B) and 0.2958 with B2
0. Therefore the model (8)

is accepted.
The p-values estimated with BΓ(A⊗B) and B2

0 are close and there are little differences

11
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(a) A histogram with BΓ(A) (b) A histogram with B0

Figure 1: Histograms of Lα via MCMC with BΓ(A) and B0
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(a) A histogram with BΓ(A) (b) A histogram with B0

Figure 2: Histograms of Lβ via MCMC with BΓ(A) and B0
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0

Figure 3: Histograms of L0 via MCMC with BΛ(A⊗B) and B2
0

between two histograms. From the results of Theorem 1 and this numerical experiment, B2
0

is also expected to connect every fiber with positive response variable marginals. However
the theoretical proof of it is not clear at the present and is left to our future research.
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5.2 Data on occurrence of esophageal cancer

Table 2: Data on occurrence of esophageal cancer
Age

Alcohol 1 2 3 4 5 6
Consumption 25-34 35-44 45-54 55-64 65-74 75+

0 Low 0/106 5/169 21/159 34/173 36/124 8/39
1 High 1/10 4/30 25/54 42/69 19/37 5/5
Source : Breslow and Day [1980]

The second example is from Table 4.16 in Christensen [1997] (data source is from Bres-
low and Day [1980]). Table 2 refers to the occurrence of esophageal cancer in Frenchmen
which were classified on ages and dummy variable on alcohol consumption. We test the
goodness-of-fit of the model (8) with J = 6 and K = 2 by likelihood ratio statistics L0

via MCMC. Then the value of L0 is 20.89 and the asymptotic p-value is 0.0003330 from
the asymptotic distribution χ2

4. We computed the exact distribution of L0 via MCMC
with BΓ(A⊗B) and B2

0. Figure 4 represents the histograms of L0. The estimated p-values
are 0.00011 with BΓ(A⊗B) and 0.00055 with B2

0. Therefore the model (8) is rejected at the
significance level of 1%.
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Figure 4: Histograms of L0 via MCMC with BΛ(A⊗B) and B2
0

6 Concluding remarks

In Theorem 3 we showed the connectivity result for bivariate logistic regression. A natural
extension of Theorem 3 to m covariates is given as follows. Let j = (j1, . . . , jm) denote
the combination of m levels and let ej denote an array with 1 at the cell (1, j) and −1 at
the cell (2, j). Define BΛ(A1⊗···⊗Am) as the set of the following moves z:

1. z = ej1 − ej2 − ej3 , +ej4
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2. j1 − j2 = j3 − j4 .

Then we conjecture the following.

Conjecture 1. The set of moves BΛ(A1⊗···⊗Am) connects every fiber with positive response
marginals for the logistic regression with m covariates.

The separation lemma and some steps of the proof of Theorem 3 can be easily gener-
alized to multiple logistic regression. However many steps of our proof, especially those
for Cases 3 and 5, are restricted to the two-dimensional case.

As discussed in Section 5 it seems that we can further restrict to the set of moves
z = ej1 − ej2 − ej3 + ej4 , where the elements of j1 − j2 = j3 − j4 are ±1 or 0. Hence a
stronger conjecture (even for the case of m = 2) is given as follows.

Conjecture 2. The subset of moves from BΛ(A1⊗···⊗Am) such that the elements of j1−j2 =
j3 − j4 are ±1 or 0 connects every fiber with positive response marginals for the logistic
regression with m covariates.

In this paper we considered logistic regression, which is the Lawrence lifting of Pois-
son regression. Our Theorem 2 describes Markov bases for a general Segre product of
configurations. Therefore it is interesting, in practice, to investigate connectivity result
for Lawrence lifting of a general Segre product of configurations.

In the bivariate logistic regression, it is interesting to test the null hypothesis that
the coefficient of one of the covariates is zero. Generating random samples under the
null hypothesis is simple because it reduces to univariate logistic regression as follows.
In (8) consider the null hypothesis H0 : β = 0. Given observed data (xijk), we can
generate random sample from the null conditional distribution by MCMC procedure for
the marginals (x1j+), j = 1, . . . , J . Then for each j, we can sample x1jk, k = 1, . . . , K,
by the random sampling without replacement.

Appendix

A Proof of Theorem 2

Let x and y be two tables in the same fiber. Write z = x− y. First consider the case that
x and y already have the same marginals:

0 = zj+,∀j, 0 = z+k, ∀k.

Then, as is well known for two-way complete independence model, we can use the basic
moves to move from X to Y . Note that (7) is always satisfied in these steps.

Next consider the case that the row sums are already the same

zj+ = 0, j = 1, . . . , J,

14



but the column sums are not yet the same. For the moment, ignoring joint frequencies,
just look at the column sums of x and y:

(x+1, . . . , x+K), (y+1, . . . , y+K)

We can use the moves of BB to move from the marginal frequency (x+1, . . . , x+K) to the
marginal frequency (y+1, . . . , y+K). However, of course we have to worry about the joint
frequencies and the row sums. Here the idea is that we can “distribute” moves of BB to
the cells of the J ×K table, in such a way that we never disturb the row sums. This way,
we can make column sums equal, while always keeping the row sums equal. Consider a
situation that a move zB of BB can be added to (x+1, . . . , x+K). Then we have

x+k ≥ zB,−
k , k = 1, . . . , K.

This shows that in each column k with ck = zB,−
k > 0, there are at least ck positive

frequencies of x, i.e., there exists indices j1,k, . . . , jck,k such that

(x1k, . . . , xJk) − (ej1,k
+ · · · + ejck,k

) ≥ 0.

Here “≥ 0” means that every component of the left-hand side is non-negative. Collect
the indices j1,k, . . . , jck,k for all k with zB,−

k > 0 as j1, . . . , jdeg zB . Then zB(j1, . . . , jdeg zB)
can be added to x. Note that zB is added to the marginal frequencies (x+1, . . . , x+K),
but the move does not change the row sums of x. This argument implies that the set of
moves zB(j1, . . . , jdeg zB) are sufficient for connecting two tables with the same row sums.

Lastly we consider the case that neither the row sums nor the column sums are the
same for x and y. We can employ a “greedy algorithm”, in which we first look at the
row sums only and try to make the row sums equal, because the column sums can be
adjusted later by the above argument. Now in the above argument, with the roles of the
rows and the columns interchanged, we can ignore the fact that the column sums are not
yet equal. We can use the same procedure as above. Therefore, by applying a move of
the form zA(k1, . . . , kdeg zA) we do not change the column sums of x and y. Then we can
make the row sums of x and y equal, while not changing the column sums of x and y.

B A separation lemma

Here we prove a lemma, which is needed for our proof of Theorem 3.

Lemma 2. Let I = [J ] × [K] and let S+ and S− be disjoint subsets of I satisfying the
following properties:

1. (j, k) ∈ S+, j′ ≤ j, k′ ≤ k ⇒ (j′, k′) ∈ S+.

2. (j, k) ∈ S−, j′ ≥ j, k′ ≥ k ⇒ (j′, k′) ∈ S−.

3. There are no distinct four points (j1, k1) ∈ S+, (j2, k2) ∈ S−, (j3, k3) 6∈ S+, (j4, k4) ∈
S+ and there are no distinct four points (j1, k1) ∈ S−, (j2, k2) ∈ S+, (j3, k3) 6∈
S−, (j4, k4) ∈ S− such that

(j1, k1) − (j2, k2) = (j3, k3) − (j4, k4).
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Then there exists a line with rational slope separating S+ and S−, i.e. there exist integers
a, b, c, ((a, b) 6= (0, 0)), such that

S+ ⊂ {(j, k) ∈ I | aj + bk ≤ c}, S− ⊂ {(j, k) ∈ I | aj + bk ≥ c}. (10)

Proof. The lemma obviously holds if S+ or S− is empty. Therefore we only need to
consider case that S+ and S− are non-empty. Define jl = min{j | ∃(j, k) ∈ S−} and for
j ∈ {jl, jl + 1, . . . , J} define f(j) = min{k | (j, k) ∈ S−}. Let f∗ be the largest convex
minorant [Moriguti, 1953] of f(j), j ∈ {jl, jl +1, . . . , J}, i.e. f∗(·) is the maximum among
convex functions not exceeding f(j) for each j ∈ {jl, jl + 1, . . . , J}. Then f ∗ consists of
finite number of line segments. Let j1 < j4 be endpoints of a line segment and let L∗

j1,j4

denote the line segment. Then (j1, f(j1)), (j4, f(j4)) ∈ S−. Also by construction of f ∗,

(j, k) ∈ S−, j1 ≤ j ≤ j4 ⇒ k ≥ f ∗(j).

Therefore every point strictly below L∗
j1,j4

belongs to S+. Consider the rectangular region
of integer points

Rj1,j4 = {j1, . . . , j4} × {f(j4), . . . , f(j1)}.
If there exists a point (j2, k2) ∈ S+ ∩ Rj1,j4 strictly above the line segment L+

j1,j4
, let

(j3, k3) = (j1, k1) − (j2, k2) + (j4, k4) ∈ (S+)C ∩ Rj1,j4 and condition 3 of the lemma is
violated. This shows that no point of Rj1,j4 strictly above L+

j1,j4
belongs to S−. Also the

points above Rj1,j4 belong to S+ by the monotonicity condition (2). Therefore L+
j1,j4

is a
separating line for the interval {j1, . . . , j4}.

Now we similarly construct the smallest concave majorant f∗(j) for S−. Then by a
hyperplane separation theorem for two convex sets, there exists a line with rational slope
between f∗(j) and f ∗(j). This prove the lemma.

C Proof of Theorem 3

Let x := {xijk} and y := {yijk} be two 2 × J × K tables in the same fiber satisfying
x+jk = y+jk > 0. Then z := {zijk} = x − y is a move for Λ(A ⊗ B). Let z1 denote the
(i = 1)-slice of z. As mentioned in Section 4, z satisfies z+jk = 0, zi++ = 0, ∀i, j, k, and

J∑
j=1

jz1j+ = 0,
K∑

k=1

kz1+k = 0. (11)

Note that zi++ = 0 implies

J∑
j=1

jz1j+ = 0 ⇔
J∑

j=1

(J − j + 1)z1j+ = 0. (12)

Similarly
∑K

k=1 kz1+k = 0 ⇔
∑K

k=1(K − k + 1)z1+k = 0. This implies that when we
consider a sign pattern of a move, we can arbitrarily choose directions for two factors j
and k.
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Let I+ and I− be the multisets of indices defined by

I+ := {(j, k) | z1jk > 0}, I− := {(j, k) | z1jk < 0},

where the multiplicity of (j, k) in I+ and I− is |z1jk|.
Suppose that (j1, k1) ∈ I+, (j2, k2) ∈ I− and j1 < j2. Then we note that there exist

j3 < j4, k3 and k4 satisfying

(j3, k3) ∈ I− \ {(j2, k2)}, (j4, k4) ∈ I+ \ {(j1, k1)} (13)

from (11). If k1 < k2 and k3 > k4, there exists k5 < k6, j5 and j6 satisfying

(j5, k5) ∈ I− \ {(j2, k2), (j3, k3)}, (j6, k6) ∈ I+ \ {(j1, k1), (j3, k4)}.

Write y(j1, j2; k1, k2) = ej1k1−ej2k2 . When a move z includes y(i1, i2; j1, j2), we denote
it by y(i1, i2; j1, j2) ⊂ z.

Case 1. We first consider the case where there exist j0, j1, j2, k0, k1 and k2 such that

z1j0k1 > 0, z1j0k2 < 0, (14)

z1j1k0 > 0, z1j2k0 < 0. (15)

Without loss of generality we assume j1 < j2 and k1 < k2. Let S+ = {(j, k) | ∃(j′, k′) ∈
I+, j ≤ j′, k ≤ k′}. Similarly define S− = {(j, k) | ∃(j′, k′) ∈ I−, j ≥ j′, k ≥ k′}. We
only need to consider the case that the condition 3 of Lemma 2 is satisfied. Also, if S+

or S− is not monotone in the sense of conditions 1 and 2 of Lemma 2, we can reduce the
L1 distance between x and y. This can be seen as follows. If S+ or S− is not monotone,
then we can find a pattern in Figure 5 (or a vertical pattern of this). Without loss of
generality let j2−j1 ≤ j4−j3 and define j5 := j4− (j2−j1). For simplicity assume j2 < j3

or k0 6= k3. Then by applying

z1 := −ej1k0 + ej2k0 − ej5k1 + ej4k1

to z, we can reduce the L1 distance between x and y by at least four. The case of k0 = k1

j1 j2

k0 + 0 · · · 0 −
j3 j5 j4

k1 − 0 · · · 0 +

Figure 5: Case 1 or Case 2-1

and j2 = j3 needs a special consideration, but the monotonicity holds with respect to the
horizontal separating line through (k0, j2). Therefore it suffices to consider the case that
S+ and S− are monotone in the sense of conditions 1 and 2 of Lemma 2. Then∑

j,k

(aj + bk + c)z1jk = 0
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implies that non-zero elements z1jk 6= 0 only exist on the line {(j, k) | aj + bk + c}. Then
the problem reduces to the univariate logistic regression.

Case 2. Next we consider the case that only one of the patterns of (14) or (15) exists.
Without loss of generality, we assume that (15) holds and from Lemma 1 we assume that
there exist j1 < j2 ≤ j3 < j4 such that

z1j1+ > 0, z1j2+ < 0, z1j3+ < 0, z1j4+ > 0.

In this case either a pattern of signs in Figure 5 or a pattern in Figure 6 has to exist in
z1.

j1 j2

k1 + 0 · · · 0 −

j3

k3 −

0
+ k4

j4

Figure 6: Case 2-2

Case 2-1. The case of Figure 5.
In this case we can reduce the L1 distance between x and y as in Case 1.

Case 2-2. The case of Figure 6.
In the case of Figure 6, we distinguish two subcases depending on j2 − j1 ≤ j4 − j3 or
j2 − j1 > j4 − j3.

Case 2-2-1. j2 − j1 ≤ j3 − j4.
Let j5 := j3 + (j2 − j1). By applying

z2a := −ej1k1 + ej2k1 + ej3k3 − ej5k3

to z, we reduce the L1 distance by four.

Case 2-2-2. j2 − j1 > j4 − j3.
In this case we prove the theorem by induction on j4 − j3. When j4 − j3 = 0, the
problem is reduced to Case 1. Therefore we assume that j4 − j3 > 0.

Case 2-2-2-1. (x1,j1+1,k1 , x1,j4−1,k4) > 0 or (x2,j1+1,k1 , x2,j4−1,k4) > 0.
In this case we can apply

z2b := −ej1k1 + ej1+1,k1 + ej4−1,k4 − ej4,k4
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to z and then

y(j3, j4 − 1; k3, k4) ⊂ z + z2b, ‖z + z2b‖1 = ‖z‖1.

Hence ‖z‖1 is can be reduced by moves of BΛ(A⊗B) from the inductive assumption.

In the case where (x1,j2−1,k2 , x1,j3+1,k3) > 0 or (x2,j2−1,k2 , x2,j3+1,k3) > 0, the proof is
similar.

Case 2-2-2-2. (x1,j1+1,k1 , x2,j3+1,k3) > 0 or (x2,j1+1,k1 , x1,j3+1,k3) > 0,
In this case we can apply

z2c := −ej1k1 + ej1+1,k1 + ej3k3 − ej3+1,k3

to z and then
y(j3 + 1, j4; k3, k4) ⊂ z + z2c.

Therefore ‖z‖1 can be reduced by moves of BΛ(A⊗B) from the inductive assumption.

In the case where (x1j2−1,k2 , x2j4−1,k4) > 0 or (x2j2−1,k2 , x1j4−1,k4) > 0, the proof is
similar.

Case 2-2-2-3. (x1,j1+1,k1 , x2,j2−1,k2 , x1,j3+1,k3 , x2,j4−1,k4) = 0.
In this case we have

(x2,j1+1,k1 , x1,j2−1,k2 , x2,j3+1,k3 , x1,j4−1,k4) > 0.

Then there exists j1 < j5 < j2 such that (x2j5k1 , x1j5+1,k1) > 0. Hence we can apply

z1
2d := −ej1k1 + ej1,k1+1 + ej5k1 − ej5+1,k1

and
z2
2d := −ej5k1 + ej5+1,k1 + ej4−1,k4 − ej4k4

to z in this order and then we have

‖z + z1
2d + z2

2d‖1 = ‖z‖1 and y(j1, k1 + 1; j2, k2) ⊂ z + z1
2d + z2

2d.

Hence theorem holds from the inductive assumption.

In the case where (x2,j1+1,k1 , x1,j2−1,k2 , x2,j3+1,k3 , x1,j4−1,k4) > 0, the proof is similar.

Case 3. We now consider the case that there exist no j0, k1, k2 satisfying (14) and there
exist no k0, j1, j2 satisfying (15). From Lemma 1, either of the patterns of signs as in
Figure 7 and Figure 8 has to exist in z1. Here we consider the case that patterns in
Figure 7 exist. The case of Figure 8 will be treated as Case 5 below. We make various
subcases depending on the sizes of two rectangles in Figure 7.

19



j1

k1 +
0

− k2

j2

j3

k3 −

0
+ k4

j4

Figure 7: Case 3

j1

k1 +
0

− k2

j2

j4

+ k4

0
k3 −

j3

Figure 8: Case 5

Case 3-1. j2 − j1 ≥ j4 − j3 and k2 − k1 ≥ k4 − k3.
In this case the left rectangle contains the right rectangle in Figure 7. Define (j5, k5)
by

(j5, k5) := (j1, k1) − (j3, k3) + (j4, k4).

Then
z3a := −ej1k1 + ej5k5 + ej3k3 − ej4k4

reduces the L1 distance by four.

In the case where j2 − j1 ≤ j4 − j3 and k2 − k1 ≤ k4 − k3, the proof is similar.

Case 3-2. When there is no inclusion relation between two rectangles of Figure 7, it
suffices to consider the case of j2 − j1 > j4 − j3 and k2 − k1 < k4 − k3. We prove the
theorem by induction on l := (k2 − k1) + (j4 − j3). If l = 0, the theorem holds from
Case 1.

Case 3-2-1. (x1j1,k1+1, x1j4,k4−1) > 0.
In this case we can apply

z3b := −ej1k1 + ej1,k1+1 + ej4,k4−1 + ej4k4

and then we have

y(j1, j2; k1 + 1, k2) ⊂ z + z3b, y(j3, j4; k4, k4 − 1) ⊂ z + z3b.

From the inductive assumption the theorem holds in this case.

Also in the following cases, the proof is similar.
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• (x2j1,k1+1, x2j4,k4−1) > 0 ;

• (xi,j1+1,k1 , xi,j4−1,k4) > 0 ;

• (xij2,k2−1, xij3,k3+1) > 0 ;

• (xi,j2−1,k2 , xi,j3+1,k3) > 0 ;

Case 3-2-2. (x1j1,k1+1, x2j3,k3+1) > 0.
In this case we can apply

z3c := −ej1k1 + ej1,k1+1 + ej3k3 + ej3,k3+1

and then we have

y(j1, j2; k1 + 1, k2) ⊂ z + z3c, y(j3, j4; k3 + 1, k4) ⊂ z + z3c.

From the inductive assumption the theorem holds in this case.

Also in the following cases, the proof is in the similar way.

• (x2,j1,k1+1, x1,j3,k3+1) > 0 ;

• (xi,j1+1,k1 , xi∗,j3+1,k3) > 0 ;

• (xi,j2,k2−1, xi∗,j4,k4−1) > 0 ;

• (xi,j2−1,k2 , xi∗,j4−1,k4) > 0,

where i∗ := 3 − i.

Case 3-2-3. x2j1,k1+1 = x1j2,k2−1 = x2j3,k3+1 = x1j4,k4−1 = 0.
From the result of Case 3-2-1 and Case 3-2-2, it suffices to consider the case where

x2j1,k1+1 = x1j2,k2−1 = x2j3,k3+1 = x1j4,k4−1 = 0. (16)

We note that (16) implies

(x1j1,k1+1, x2j2,k2−1, x1j3,k3+1, x2j4,k4−1) > 0.

Therefore there exist j1 < j5 < j2 and k1 < k5 < k2 satisfying either

x1j5k5 > 0 x2j5,k5+1 > 0 (17)

or
x1j5k5 > 0 x2,j5+1,k5 > 0. (18)

Case 3-2-3-1. x1j5k5 > 0 and x2j5,k5+1 > 0 (17).
In this case we can apply

z1
3d := −ej1k1 + ej1,k1+1 + ej5k5 − ej5,k5+1
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and
z2
3d := −ej5k5 + ej5,k5+1 + ej4k4−1 − ej4k4

to z in this order. Then we have ‖z + z1
3d + z2

3d‖1 = ‖z‖1 and

y(j1, j2; k1 + 1, k2) ⊂ z + z1
3d + z2

3d, y(j3, j4; k3, k4 − 1) ⊂ z + z1
3d + z2

3d.

Hence from the inductive assumption the L1 distance can be reduced by moves in
BΛ(A⊗B).

Case 3-2-3-2. x1j5k5 > 0 and x2,j5+1,k5 > 0 (18).
In this case we further consider subcases depending on the value of x1,j1+1,k.

Case 3-2-3-2-1. x1,j1+1,k1 > 0.
From the result of Case 3-2-1 and and Case 3-2-2, it suffices to consider the case
where

x2,j1+1,k1 = x1,j4−1,k4 = x2,j3+1,k3 = x1,j2−1,k2 = 0. (19)

We note that (19) implies that

(x1,j1+1,k1 , x2,j4−1,k4 , x1,j3+1,k3 , x2,j2−1,k2) > 0.

Since (18) is satisfied, we can apply

z1
3e := −ej1k1 + ej1+1,k1 + ej5k5 − ej5+1,k5

and
z2
3e := −ej5k5 + ej5+1,k5 + ej4−1,k4 − ej4k4

in this order. Then we have ‖z + z1
3e + z2

3e‖1 = ‖z‖1 and

y(j1 + 1, j2; k1, k2) ⊂ z + z1
3e + z2

3e, y(j3, j4 − 1; k3, k4) ⊂ z + z1
3e + z2

3e.

Hence from the inductive assumption, L1 distance can be reduced by moves in
BΛ(A⊗B).

If any of x2,j2−1,k2 , x1,j3+1,k3 , x2,j4−1,k4 is positive, the same argument can be applied.

Case 3-2-3-2-2. (Case 4) x1,j1+1,k1 = x2,j2−1,k2 = x1,j3+1,k3 = x2,j4−1,k4 = 0.
For readability, we relabel this case as Case 4. In this case

(x2,j1+1,k1 , x1,j2−1,k2 , x2,j3+1,k3 , x1,j4−1,k4) > 0.

Then there exists j1 < j6 < j2 and k1 < k6 < k2 satisfying either

x2j6k6 > 0, x1,j6+1,k6 > 0 (20)

or
x2j6k6 > 0, x1,j6,k6+1 > 0. (21)
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Case 4-1. The case that (20) is satisfied.
In this case the proof is in similar to Case 3-2-3-1.

Case 4-2. The case that (20) is not satisfied.
In this case

x1jk1 = 0, j = j1 + 1, . . . , j2, x2j3k = 0, k = k3 + 1, . . . , k4. (22)

We can assume without loss of generality that j2 < j3. Then we note that

(j7, k7) := (j4, k4) − (j2, k2) + (j1, k1) ∈ J

where J := [J ] × [K].

Case 4-2-1. x2j7k7 > 0 or y1j7k7 > 0.
In this case we can apply

z4a := −ej1k1 + ej2k2 + ej7k7 − ej4k4

to z and we can reduce the L1 distance by four.

Case 4-2-2. x2j7k7 = 0 and y1j7k7 = 0.
In this case we have z1j7k7 > 0.

Case 4-2-2-1. The case that there exists j7 < j8 < j3 such that z1j8k7 < 0.
In this case we can prove the theorem in the same way as Case 2-2.

Case 4-2-2-2. The case that z1jk7 ≥ 0 for all j7 < j < j3.
From the condition (22) there exists j9 satisfying either of the following conditions,

(i) j7 ≤ j9 < j3, z1j9k7 > 0 and x1,j9+1,k7 > 0 ;

(ii) j7 < j9 < j3, z1j9k7 = z1j9+1,k7 = 0, x2j9k7 > 0 and x1j9+1,k7 > 0.

Case 4-2-2-2-1. The case that (i) is satisfied.
In this case by applying the move

z4b := −ej9k7 + ej9+1,k7 + ej4−1,k4 − ej4k4 ,

we have ‖z + z4b‖1 = ‖z‖1 and

y(j1, j2; k1, k2) ⊂ z + z4b, y(j3, j4 − 1; k3, k4) ⊂ z + z4b.

Hence the theorem holds from the inductive assumption.
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Case 4-2-2-2-2. The case that (ii) is satisfied.
In this case by applying the move z4b and

z4c := −ej1k1 + ej1+1,k1 + ej9k7 + ej9+1,k7

in this order and then we have ‖z + z4b + z4c‖1 = ‖z‖1 and

y(j1 + 1, j2; k1, k2) ⊂ z + z4b + z4c, y(j3, j4 − 1; k3, k4) ⊂ z + z4b + z4c

Hence the theorem holds from the inductive assumption.

Case 5. We now consider the case where z1 contains patterns of signs in Figure 8 and
does not contain patterns of signs in Figure 7. We show that if z1 contains the pattern of
signs in Figure 9, we can reduce the L1 norm z or otherwise z is not a move. The proof
is by induction on

l := min ((j2 − j1) + (k2 − k1), (j4 − j3) + (k3 − k4)) .

When l = 1, theorem holds by Case 1.

Case 5-1. k2 > k4

Based on the argument in Case 3-2-1 and 3-2-2, we only need to consider the case
that z1 contains patterns in Figure 9, where z1jk = 0∗ and z1jk = 0∗ denote x1jk =
y1jk > 0 and x2jk = y2jk > 0, respectively. Define two set of cells A1 and A2 as in
Figure 9. Then there exist j5, k5, j6 and k6 such that

j1 < j5 < j2, j3 < j6 < j4, k1 < k5 < k2, k4 < k6 < k4,

z1j5k5 = 0∗, z1j5k5+1 = 0∗, z1j6k6 = 0∗, z1j6,k6+1 = 0∗

as represented in Figure 9(i). Then we can apply the move

z5a := ej5k5 − ej5,k5+1 − ej6k6 − ej5,k6+1,

z5b := ej6k6 − ej6,k6+1 − ej4k4 + ej4,k4+1

to z in this order and z′ := z +z5a +z5b is expressed as in Figure 9(ii). Suppose that
there exists (j, k) ∈ A1 such that z1jk < 0. Then z1jk4 = 0 and hence there exists
k ≤ k′ < k4 such that

z1jk′ < 0, z1j,k′+1 = 0.

Therefore we can apply the move

z5c := −ej5k5 + ej5,k5+1 + ejk′ − ej,k′+1

and z′′ := z′ + z5c satisfies

‖z′′‖1 = ‖z‖1, y(j1, j2; k1, k2) ⊂ z′′.
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Figure 10: Case 5-2

Therefore the theorem holds by the inductive assumption.

Similarly we can prove the theorem in the case where there exists (j, k) ∈ A2 such
that z1jk > 0.

Now we suppose that z1jk ≥ 0 for (j, k) ∈ A1 and z1jk ≤ 0 for (j, k) ∈ A1. Since
there does not exist the pattern in Figure 7, there exist k4 < k7 < k3 such that
z1jk ≥ 0 for k ≤ k7 and z1jk ≤ 0 for k > k7. This contradicts the condition∑K

k=1 kz1jk = 0 and hence z is not a move.

Case 5-2. k2 < k4

By using the same argument, we only need to consider the case that z1 contains
patterns in Figure 10(i). Then both S+ and S− is monotone in the sense of condi-
tions 1 and 2 of Lemma 2. Therefore if z is a move, we can reduce L1 norm of z
from Lemma 2 in the similar way to Case 5-1.
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separation lemma and to Ian Dinwoodie for constructive suggestion on the numerical
examples.

25



References

Alan Agresti. Categorical Data Analysis. New York : John Wiley and Sons, 1st edition,
1990.

Satoshi Aoki and Akimichi Takemura. Markov chain Monte Carlo exact tests for incom-
plete two-way contingency table. Journal of Statistical Computation and Simulation,
75(10):787–812, 2005.

Satoshi Aoki, Takayuki Hibi, Hidefumi Ohsugi, and Akimichi Takemura. Gröbner bases
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