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Abstract

For an undirected graph and a fixed integer k, a 2-matching is said to be Ck-free if it has
no cycle of length k or less. In particular, a C4-free 2-matching in a bipartite graph is called a
square-free 2-matching. The problem of finding a maximum Ck-free 2-matching in a bipartite
graph is NP-hard when k ≥ 6, and polynomially solvable when k = 4. Also, the problem of
finding a maximum-weight Ck-free 2-matching in a bipartite graph is NP-hard for any integer
k ≥ 4, and polynomially solvable when k = 4 and the weight function is vertex-induced on every
cycle of length four.

In this paper, we prove that the degree sequences of the Ck-free 2-matchings in a bipartite
graph form a jump system for k = 4, and do not always form a jump system for k ≥ 6. This
result is consistent with the polynomial solvability of the Ck-free 2-matching problem in bipartite
graphs and partially proves the conjecture of Cunningham that the degree sequences of C4-free
2-matchings form a jump system for any graph. We also show that the weighted square-free
2-matchings in a bipartite graph induce an M-concave (M-convex) function on the jump system
if and only if the weight function is vertex-induced on every square. This result is also consistent
with the polynomial solvability of the weighted square-free 2-matching problem.

1 Introduction

A jump system, introduced by Bouchet and Cunningham [3], is an extended concept of a matroid.
A jump system is a set of integer lattice points with an exchange property (to be described in
Section 2.2); see also [18, 23]. It is a generalization of a matroid [29, 33, 36], a delta-matroid [2, 4, 9],
and a base polyhedron of an integral polymatroid (or a submodular system) [14]. The concept of
M-concave (M-convex) functions on constant-parity jump systems [27] is a general framework of
optimization problems on jump systems, and it is a generalization of valuated matroids [10, 12],
valuated delta-matroids [11], and M-convex functions on base polyhedra [25] (see [26]).

Many efficiently solvable combinatorial optimization problems closely relate to these structures.
For instance, the minsquare factor problem [1] is a special case of minimization of an M-convex
function on a constant-parity jump system. The degree sequences of all matchings in an undirected
graph form a delta-matroid, and the maximum-weight matchings induce a valuated delta-matroid
(see [11, 27]). The even factor problem [7] (see also [6]) is NP-hard, and polynomially solvable
if the given digraph has a certain property called odd-cycle-symmetric [7, 30]. This property is
a necessary and sufficient condition for the degree sequences of the even factors to form a jump
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system [22]. A relation between weighted even factors and M-concave functions on constant-parity
jump systems is also clarified in [22]. The objective of the present paper is to investigate the
condition for the degree sequences of the Ck-free 2-matchings in a bipartite graph to have these
matroidal structures.

Let G = (V,E) be a simple undirected graph, that is, G has neither parallel edges nor self-loops.
In what follows, we often omit to declare that the graph is undirected. The subset of edges incident
to a vertex v ∈ V is denoted by δv. A 2-matching is a subset of edges M ⊆ E such that |M∩δv| ≤ 2
for every v ∈ V . For a 2-matching M , we say that M is Ck-free if M contains no cycle of length
k or less. For a fixed integer k, the Ck-free 2-matching problem is to find a Ck-free 2-matching of
maximum size in a given graph. Note that the case k ≤ 2 is exactly the classical simple 2-matching
problem, which can be solved efficiently.

Since the Ck-free 2-matching problem is a relaxation of the Hamiltonian cycle problem, it is
easily seen that this problem is NP-hard when |V |/2 ≤ k ≤ |V | − 1. Moreover, Papadimitriou
showed that the problem is NP-hard when k ≥ 5 (see [8]). On the other hand, for the case k = 3,
an augmenting path algorithm is given by Hartvigsen [16]. The C4-free 2-matching problem is left
open.

The relation between Ck-free 2-matchings and jump systems is studied by Cunningham [6]. For
a graph G = (V,E), the degree sequence dF ∈ ZV of an edge set F ⊆ E is defined by

dF (v) = |F ∩ δv|, v ∈ V.

Let Jk(G) ⊆ ZV denote the set of all degree sequences of Ck-free 2-matchings in G, that is,

Jk(G) = {dM | M is a Ck-free 2-matching in G}.

When k ≤ 2, Jk(G) is the set of all degree sequences of 2-matchings, and hence it is a constant-parity
jump system (see Section 2.2). Cunningham [6] showed the following theorem.

Theorem 1.1 ([6]). For any graph G, J3(G) is a constant-parity jump system. For any integer
k ≥ 5, there exists a graph G such that Jk(G) is not a jump system.

Note that this result is consistent with the polynomial solvability of the Ck-free 2-matching
problem. In [6], Cunningham conjectured that J4(G) is a jump system for any graph G and the
C4-free 2-matching problem is polynomially solvable.

The present paper focuses on bipartite graphs and discusses whether Jk(G) is a jump system for
a bipartite graph G and an integer k. Note that it suffices to consider the cases where k is even. The
C6-free 2-matching problem in bipartite graphs is known to be NP-hard [15]. On the other hand, for
the C4-free 2-matching problem in bipartite graphs, a min-max formula [19] and polynomial-time
algorithms [17, 30] are proposed. We remark that a cycle of length four is called a square, and a
C4-free 2-matching in a bipartite graph is often referred to as a square-free 2-matching.

Our main contribution is the following theorem.

Theorem 1.2. For any bipartite graph G, J4(G) is a constant-parity jump system. For any even
integer k ≥ 6, there exists a bipartite graph G such that Jk(G) is not a jump system.

Note that this theorem agrees with the polynomial solvability of the Ck-free 2-matching problem
in bipartite graphs. Also, this theorem partially solves Cunningham’s conjecture [6]. Table 1
summarizes the aforementioned results.

We also discuss the weighted version. Given a bipartite graph and a weight function on the
edge set, consider the problem of finding a Ck-free 2-matching maximizing the total weight of its

2



Table 1: Relation between the Ck-free 2-matching problem and jump systems (∗: our result).

Ck-free 2-matching problem Is Jk(G) a jump system?
General graph Bipartite graph General graph Bipartite graph

k ≥ 6 NP-hard [8] NP-hard [15] No [6] No∗

k = 5 NP-hard [8] — No [6] —
k = 4 Unknown P [17, 30] Unknown Yes∗

k = 3 P [16] — Yes [6] —
k ≤ 2 P P Yes Yes

edges. When k ≥ 6, this problem is NP-hard since the unweighted version is NP-hard. Moreover,
Z. Király proved that the weighted square-free 2-matching problem is also NP-hard (see [13]). This
problem is, however, tractable if the weight function is vertex-induced on every square.

Definition 1.3 (Vertex-induced weight). Let (G, w) be a weighted graph with G = (V,E) and w :
E → R. For subgraph H of G, w is vertex-induced on H if there exists a function πH : V (H) → R
such that w(e) = πH(u) + πH(v) for every edge e = (u, v) ∈ E(H). Here, V (H) and E(H) denote
the vertex set and edge set of H, respectively, and (u, v) denotes an edge connecting u, v ∈ V (H).

Makai [24] considered weight functions that are vertex-induced on every square in G. Note
that such a weight function is not necessarily induced by a single potential function on V , and
the potential functions may vary from one square to another. For this class of weight functions,
Makai [24] showed a linear programming description of maximum-weight square-free 2-matchings
and proved its dual integrality. By applying the ellipsoid method to this description, the weighted
square-free 2-matching problem for this class of weight functions can be solved in polynomial time.
Also, a combinatorial polynomial algorithm is given by Takazawa [32].

In this paper, we show a relation between the weighted square-free 2-matchings and M-concave
functions on constant-parity jump systems. For a weighted bipartite graph (G,w), define a function
f on J4(G) by

f(x) = max

{∑
e∈M

w(e)
∣∣∣∣ M is a square-free 2-matching, dM = x

}
.

Theorem 1.4. For a weighted bipartite graph (G,w), f is an M-concave function on the constant-
parity jump system J4(G) if and only if w is vertex-induced on every square in G.

This theorem suggests that assuming the weight function to be vertex-induced on every square
is reasonable in considering the weighted square-free 2-matching problem in bipartite graphs.

As a generalization of the square-free 2-matching problem, Frank [13] introduced the Kt,t-free t-
matching problem. A complete bipartite graph Kt,t is a graph (V,E) such that V can be partitioned
into two sets V1 and V2 with |V1| = |V2| = t and E = {(v1, v2) | v1 ∈ V1, v2 ∈ V2}. For a bipartite
graph G = (V,E), an edge set M ⊆ E is a Kt,t-free t-matching if M is a t-matching that contains
no Kt,t as a subgraph. Note that the square-free 2-matching problem is a special case t = 2 of the
Kt,t-free t-matching problem. In [13], a min-max formula for the Kt,t-free t-matching problem is
given as an extension of that for the square-free 2-matchings [19]. Also, the results in [24, 30, 32]
apply to Kt,t-free t-matchings. That is, the Kt,t-free t-matching problem is polynomially solvable,
and so is the weighted problem if the weight function is vertex-induced on every Kt,t. We anticipate
that Theorems 1.2 and 1.4 also extend to Kt,t-free t-matchings.
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This paper is organized as follows. In Section 2, we give some definitions on Ck-free 2-matchings,
jump systems and M-concave functions. In Sections 3 and 4, we prove Theorems 1.2 and 1.4,
respectively. Finally, we discuss Kt,t-free t-matchings in Section 5.

2 Definitions

2.1 Ck-free 2-matchings

Let G = (V,E) be a simple undirected graph with vertex set V and edge set E. An edge connecting
u, v ∈ V is denoted by (u, v). Recall that the set of edges incident to v ∈ V is denoted by δv. A cycle
C is a subgraph consisting of distinct vertices v1, . . . , vl and edges (v1, v2), . . . , (vl−1, vl), (vl, v1). A
cycle C is often denoted by C = (v1, v2, . . . , vl) and the length of C is defined by l, the number of
its edges. For a subgraph H of G, the vertex set and edge set of H are denoted by V (H) and E(H),
respectively. For a positive integer t, an edge set M ⊆ E is said to be a t-matching if |M ∩ δv| ≤ t
for every v ∈ V . In particular, a 2-matching is a vertex-disjoint collection of paths and cycles. We
denote a bipartite graph by (V1, V2; E). That is, for any edge in E, one of its end vertices is in V1

and the other in V2.

Definition 2.1 (Ck-free 2-matching). For a simple undirected graph G = (V,E) and an integer k,
an edge set M ⊆ E is a Ck-free 2-matching if M is a 2-matching that contains no cycle of length
k or less as a subgraph. In particular, if G is bipartite, a C4-free 2-matching is called a square-free
2-matching.

2.2 Jump systems

Let V be a finite set. For u ∈ V , we denote by χu the characteristic vector of u, with χu(u) = 1
and χu(v) = 0 for v ∈ V \ {u}. For x, y ∈ ZV , a vector s ∈ ZV is called an (x, y)-increment if
x(u) < y(u) and s = χu for some u ∈ V , or x(u) > y(u) and s = −χu for some u ∈ V .

Definition 2.2 (Jump system [3]). A nonempty set J ⊆ ZV is said to be a jump system if it
satisfies an exchange axiom, called the 2-step axiom:

For any x, y ∈ J and for any (x, y)-increment s with x+s ̸∈ J , there exists an (x+s, y)-
increment t such that x + s + t ∈ J .

A set J ⊆ ZV is a constant-parity system if
∑

v∈V (x(v) − y(v)) is even for any x, y ∈ J . For
constant-parity jump systems, J. F. Geelen observed a stronger exchange property:

(EXC) For any x, y ∈ J and for any (x, y)-increment s, there exists an (x + s, y)-increment t such
that x + s + t ∈ J and y − s − t ∈ J .

This property characterizes a constant-parity jump system (see [27] for details).

Theorem 2.3. A nonempty set J is a constant-parity jump system if and only if it satisfies (EXC).

A constant-parity jump system is a generalization of the base family of a matroid, an even
delta-matroid [34, 35], and a base polyhedron of an integral polymatroid. The degree sequences of
all subgraphs in an undirected graph is a typical example of a constant-parity jump system. That
is, for a graph G = (V,E),

JSG(G) = {dF | F ⊆ E}
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is a constant-parity jump system [3, 23]. The set of all degree sequences of 2-matchings, or J2(G),
is the intersection of JSG(G) and a box {0, 1, 2}V , and hence one can easily see that J2(G) is a jump
system. However, Theorems 1.1 and 1.2 are not obvious since the additional condition “Ck-free”
makes the situation more complicated when k ≥ 3. Our contribution is to show how to deal with
this condition when k = 4 and the graph is bipartite.

2.3 M-concave functions

An M-concave (M-convex) function on a constant-parity jump system is a quantitative extension of
a jump system, which is a generalization of valuated matroids [10, 12], valuated delta-matroids [11],
and M-concave (M-convex) functions on base polyhedra [25, 26].

Definition 2.4 (M-concave function on a constant-parity jump system [27]). For J ⊆ ZV , we call
f : J → R an M-concave function on a constant-parity jump system if it satisfies the following
exchange axiom:

(M-EXC) For any x, y ∈ J and for any (x, y)-increment s, there exists an (x + s, y)-increment t
such that x + s + t ∈ J , y − s − t ∈ J , and f(x) + f(y) ≤ f(x + s + t) + f(y − s − t).

It directly follows from (M-EXC) that J satisfies (EXC), and hence J is a constant-parity jump
system. We call a function f : J → R an M-convex function if −f is an M-concave function on
a constant-parity jump system. M-concave functions on constant-parity jump systems appear in
many combinatorial optimization problems such as the weighted matching problem, the minsquare
factor problem [1], and the weighted even factor problem in odd-cycle-symmetric digraphs [6, 7, 22].
Some properties of M-concave functions are investigated in [20, 21], and efficient algorithms for
maximizing an M-concave function on a constant-parity jump system are given in [28, 31].

3 Ck-free 2-matchings in bipartite graphs and jump systems

This section is devoted to the proof of Theorem 1.2. First, let us show the latter half of the theorem
by presenting an example of a bipartite graph G such that Jk(G) is not a jump system for k ≥ 6.

Consider a bipartite graph Ck = (Vk, Ek) consisting of a cycle (v1, v2, v3, . . . , vk). Define x, y ∈
ZVk by x(v1) = x(v2) = 1, x(v) = 2 for v ∈ Vk \ {v1, v2}, y(v4) = y(v5) = 1, and y(v) = 2 for
v ∈ Vk \ {v4, v5}. Then, for an even integer k ≥ 6, x, y ∈ Jk(Ck) and s = χv2 is an (x, y)-increment,
but there exists no (x+s, y)-increment t such that x+s+ t ∈ Jk(Ck) and y−s− t ∈ Jk(Ck). Thus,
for an even integer k ≥ 6, Jk(Ck) is not a jump system for this bipartite graph Ck.

We now focus on the first half of Theorem 1.2:

Proposition 3.1. For any bipartite graph G, J4(G) is a constant-parity jump system.

In the rest of this section, we prove Proposition 3.1 by presenting an algorithm for finding an
(x + s, y)-increment t satisfying (EXC) for given x, y ∈ J4(G) and (x, y)-increment s. In what
follows, we consider the case where s = −χu with u ∈ V1. The other cases can be dealt with in a
similar way.

3.1 Preliminaries

In this subsection, we prepare an operation and a notion that will be used in our algorithm.
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3.1.1 Shrinking cycles

Definition 3.2. Let C = (v1, v2, v3, v4) be a cycle of length four in G = (V1, V2; E) with v1, v3 ∈ V1

and v2, v4 ∈ V2. Shrinking of C in G consists of the following operations:

• identify v1 with v3, and denote the corresponding vertex by u1,

• identify v2 with v4, and denote the corresponding vertex by u2, and

• identify all edges between u1 and u2.

In the obtained graph, the edge between u1 and u2 corresponding to E(C) is called a square-edge.

Let C1, C2, . . . , Cp be edge disjoint cycles of length four, and let G◦ = (V ◦
1 , V ◦

2 ; E◦) be the graph
obtained from G = (V1, V2; E) by shrinking C1, C2, . . . , Cp. Note that G◦ might have some parallel
edges, whereas G does not. For F ◦

1 , F ◦
2 ⊆ E◦, let F ◦

1 \ F ◦
2 denote the usual difference set of F ◦

1 and
F ◦

2 , and let F ◦
1 − F ◦

2 denote the set of all edges e ∈ F ◦
1 such that no parallel edge of e is in F ◦

2 .
If an edge set L◦ ⊆ E◦ is obtained from L ⊆ E by shrinking C1, C2, . . . , Cp such that |E(Ci) ∩

L| = 3 for i = 1, 2, . . . , p, we say that L◦ is the shrunk edge set of L, and L is an expanded edge set
of L◦. Note that the shrunk edge set L◦ contains all square-edges in G◦.

In a shrunk graph G◦, a square is a cycle of length four whose corresponding edges in G form a
cycle of length four. In particular, a square contains no square-edges. Obviously, when we shrink
no edges, that is G◦ = G, a square is exactly a cycle of length four. We say that an edge set in G◦

is square-free if it contains no square.
We now define a map ϕ : ZV1∪V2 → ZV ◦

1 ∪V ◦
2 by

(ϕ(x))(u) =
∑

{x(v) | v ∈ V1 ∪ V2, v corresponds to u}

− 2|{square-edges incident to u}| (1)

for x ∈ ZV1∪V2 and u ∈ V ◦
1 ∪ V ◦

2 . One can see that for an edge set L ⊆ E satisfying that
|E(Ci) ∩ L| = 3 for i = 1, 2, . . . , p, ϕ(dL) is the degree sequence of the shrunk edge set of L.
Conversely, the following lemma holds.

Lemma 3.3. Let L◦ ⊆ E◦ be a 2-matching in G◦ that contains all square-edges and x be a vector
in {0, 1, 2}V1∪V2. If ϕ(x) is the degree sequence of L◦, there exists an expanded edge set L of L◦ in
G such that dL = x. Furthermore, such L is unique.

Proof. We show how to expand square-edges in L◦. Let (u1, u2) be a square-edge in L◦. Suppose
that v1, v3 ∈ V1 correspond to u1 ∈ V ◦

1 , and v2, v4 ∈ V2 correspond to u2 ∈ V ◦
2 . Denote the cycle

(v1, v2, v3, v4) in G by C.
For a given x and L◦, dL∩E(C)(v1) should satisfy the following. Note that x(v1) is at least one,

because x(v1) + x(v3) ≥ (ϕ(x))(u1) + 2 ≥ 3.

• If x(v1) = 1, then dL∩E(C)(v1) = 1.

• If x(v1) = 2 and (u1, u2) is the unique incident edge of u1 in L◦, then dL∩E(C)(v1) = 2.

• Suppose that x(v1) = 2 and an edge e ̸= (u1, u2) in L◦ is incident to u1. If the edge (or
cycle of length four) corresponding to e in G contains v1, then dL∩E(C)(v1) = 1. Otherwise
dL∩E(C)(v1) = 2.

For each vertex v ∈ V (C), dL∩E(C)(v) is uniquely determined in the same way.
Since the degree sequence dL∩E(C) defined as above satisfies that {dL∩E(C)(v1), dL∩E(C)(v3)} =

{dL∩E(C)(v2), dL∩E(C)(v4)} = {1, 2}, there exists a unique set of three edges L ∩ E(C) satisfying
this degree constraint. This shows the unique existence of a desired expanded edge set.
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3.1.2 Semi-2-matching triple

In this subsection, we often denote a shrunk graph by G = (V1, V2; E) to simplify the notation.
Our algorithm to find an (x + s, y)-increment t satisfying (EXC), which is described in Section 3.2,
keeps a triple (M,N, u) of M,N ⊆ E and u ∈ V1 ∪ V2 satisfying a certain condition. The purpose
of this subsection is to define this condition and to show some properties of the triples. Note that
the definitions in this subsection make sense only for the case where s = −χv with v ∈ V1.

Definition 3.4. For two edge sets M,N ⊆ E and a vertex u ∈ V1 ∪ V2, we say that (M,N, u) is
a semi-2-matching triple if M and N are square-free, both of them contain all square-edges in G,
and one of the following holds:

• M and N are 2-matchings.

• u ∈ V1, N is a 2-matching, dN (u) ≤ 1, dM (v) ≤ 2 for any v ∈ (V1 ∪V2) \ {u}, and dM (u) = 3.

• u ∈ V2, M is a 2-matching, dM (u) ≤ 1, dN (v) ≤ 2 for any v ∈ (V1 ∪V2) \ {u}, and dN (u) = 3.

Definition 3.5. Let (M,N, u) be a semi-2-matching triple in G. For two vectors x, y ∈ {0, 1, 2}V1∪V2 ,
(x, y) is the semi-degree of (M,N, u) if one of the following holds:

• u ∈ V1, dM − χu = x, and dN + χu = y.

• u ∈ V2, dM + χu = x, and dN − χu = y.

We denote by SG(x, y) the set of all semi-2-matching triples whose semi-degree is (x, y), and omit
the subscript G when no confusion will arise.

Definition 3.6. For (M1, N1, u1), (M2, N2, u2) ∈ S(x, y), we say that (M1, N1, u1) is adjacent to
(M2, N2, u2) if they satisfy one of the following conditions:

• u1 ∈ V1, (u1, u2) ∈ M1 − N1, M2 = M1 \ {(u1, u2)}, and N2 = N1 ∪ {(u1, u2)}.

• u1 ∈ V2, (u1, u2) ∈ N1 − M1, M2 = M1 ∪ {(u1, u2)}, and N2 = N1 \ {(u1, u2)}.

It is obvious that if (M1, N1, u1) is adjacent to (M2, N2, u2), then (M2, N2, u2) is adjacent to
(M1, N1, u1).

We say that (M,N, u) ∈ S(x, y) is active, if u ∈ V1 and dM (u) > dN (u), or u ∈ V2 and
dM (u) < dN (u). A semi-2-matching triple (M,N, u) ∈ S(x, y) is stable if M and N are 2-matchings
and |dM (u)− dN (u)| ≤ 1. This inequality means that χu or −χu, say t, is an (x, y)-increment such
that dM = x + t and dN = y − t (see Claim 3.18).

We now show some properties of the semi-2-matching triples, which will be used in our algo-
rithm.

Lemma 3.7. If (M,N, u) ∈ S(x, y), then neither M nor N has parallel edges.

Proof. Suppose that M contains parallel edges e1 and e2, whose common end vertices are u1 ∈ V1

and u2 ∈ V2. Then, at least one of u1 and u2 is incident to a square-edge e, which satisfies e ∈ M∩N
by Definition 3.4 and is distinct from e1 and e2. By the degree constraint in Definition 3.4, the
only possibility is that u = u1 is incident to e and u2 is incident to no square-edge. Suppose that
e corresponds to a square (v1, v2, v3, v4), u1 corresponds to v1 and v3, and e1 and e2 correspond
to (v1, u2) and (v3, u2) in the original graph. Then an expanded edge set of M contains a square
(u2, v1, v2, v3) or (u2, v1, v4, v3), which contradicts that M is square-free. Similarly, N has no parallel
edges.
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: edges in M .

: edges in N .

u v3

v2v1

v4

Figure 1: An illustration of Lemma 3.9.

Lemma 3.8. Suppose that (M,N, u1) is a semi-2-matching triple in S(x, y), e = (u1, u2) is an
edge in M − N , and u1 ∈ V1. If N ∪ {e} is square-free, then (M \ {e}, N ∪ {e}, u2) is in S(x, y)
and adjacent to (M,N, u1).

Proof. Since N ∪ {e} is square-free, (M \ {e}, N ∪ {e}, u2) is a semi-2-matching triple. The semi-
degree of (M \ {e}, N ∪ {e}, u2) is

(dM\{e} + χu2 , dN∪{e} − χu2) = (dM − χu1 , dN + χu1) = (x, y),

which means (M \{e}, N∪{e}, u2) ∈ S(x, y). It is obvious that (M \{e}, N∪{e}, u2) and (M,N, u1)
are adjacent by the definition.

Next we show the following.

Lemma 3.9. Suppose that (M,N, u) is a semi-2-matching triple in S(x, y), u ∈ V1, and dM (u) −
dN (u) ≥ 2. Then, one of the following conditions holds:

• (M,N, u) is adjacent to at least two semi-2-matching triples in S(x, y).

• (M,N, u) is adjacent to exactly one semi-2-matching triple in S(x, y) and there exists a square
C = (u, v1, v2, v3) in G such that {(u, v1), (u, v3)} ⊆ M and {(u, v1), (v1, v2), (v2, v3)} ⊆ N
(see Figure 1).

Proof. First, a 2-matching N consists of some disjoint paths and cycles, and |N ∩ δu| ≤ 1 by the
assumption of dM (u)− dN (u) ≥ 2. Hence, for at most one edge e ∈ δu, N ∪ {e} contains a square.

Suppose that (M,N, u) is adjacent to at most one semi-2-matching triple in S(x, y). By
Lemma 3.8, there exists at most one edge e ∈ (M ∩ δu)−N such that N ∪{e} has no square. Since
|(M ∩ δu) − N | ≥ dM (u) − dN (u) ≥ 2, we have that |(M ∩ δu) − N | = 2 and N ∪ {e} has a square
for some edge e ∈ (M ∩ δu) − N .

Therefore, there exist a square C = (u, v1, v2, v3) and an edge (u, v4) in G such that {(u, v3), (u, v4)} ⊆
M and {(u, v1), (v1, v2), (v2, v3)} ⊆ N . To the end, since dM (u)−dN (u) ≥ 2 and |(M∩δu)−N | = 2,
(u, v1) is contained in M .

Lemma 3.10. Suppose that (M,N, u) is a semi-2-matching triple in S(x, y), u ∈ V1, and dM (u)−
dN (u) ≥ 1. Then, one of the following conditions holds:

• (M,N, u) is adjacent to at least one semi-2-matching triple in S(x, y).

• (M,N, u) is adjacent to no semi-2-matching triple in S(x, y) and there exists a square C =
(u, v1, v2, v3) in G such that {(u, v1), (u, v3)} ⊆ M and {(u, v1), (v1, v2), (v2, v3)} ⊆ N .
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Proof. Almost the same as the proof of Lemma 3.9.

The next lemma is a generalization of Lemma 3.3. As the proof is almost the same as Lemma 3.3,
we omit it.

Lemma 3.11. Let G◦ = (V ◦
1 , V ◦

2 ; E◦) be a shrunk graph of the original graph G = (V1, V2; E).
Suppose that x◦, y◦ ∈ {0, 1, 2}V ◦

1 ∪V ◦
2 and (M◦, N◦, u◦) ∈ SG◦(x◦, y◦). For any vectors x, y ∈

{0, 1, 2}V1∪V2 with ϕ(x) = x◦ and ϕ(y) = y◦, there exists a semi-2-matching triple (M,N, u) ∈
SG(x, y) such that M and N are expanded edge sets of M◦ and N◦, respectively, and u corresponds
to u◦. Furthermore, if u◦ corresponds to a unique vertex u in G, such a semi-2-matching triple
(M,N, u) is unique.

3.2 Proof for Proposition 3.1

In this section, we give a constructive proof for Proposition 3.1. More precisely, we give an algorithm
for finding edge sets M ′, N ′ and an (x + s, y)-increment t such that M ′ and N ′ are square-free 2-
matchings, dM ′ = x + s + t, and dN ′ = y − s − t.

3.2.1 Updating a semi-2-matching triple

In this subsection, we consider a procedure of updating a given semi-2-matching triple in a shrunk
graph G = (V1, V2; E), which is a subroutine of our main algorithm. Roughly speaking, when a
semi-2-matching triple (M,N, u) is given as the input, this procedure increases |M∩N |, maintaining
its semi-degree. In the procedure, the shrunk graph G and edge sets M and N satisfy the following
assumption.

Assumption 3.12. Both edge sets M and N contain all square-edges in G, and G has no square
C such that E(C) ⊆ M ∪ N and |E(C) ∩ M | = |E(C) ∩ N | = 3.

The procedure is described as follows.

Procedure A
Input: A shrunk bipartite graph G = (V1, V2; E), vectors x, y ∈ {0, 1, 2}V1∪V2 , and an active
semi-2-matching triple (M,N, u) ∈ S(x, y) satisfying Assumption 3.12.
Output: A stable semi-2-matching triple (M ′, N ′, u′) ∈ S(x, y) with |M ′ ∩ N ′| ≥ |M ∩ N |, or a
non-stable semi-2-matching triple (M ′, N ′, u′) ∈ S(x, y) with |M ′ ∩ N ′| > |M ∩ N |.

Step 0. Set τ := 0, M (0) := M , N (0) := N , and u(0) := u. Then, go to Step 1.

Step 1. If (M (τ), N (τ), u(τ)) has an adjacent semi-2-matching triple (M ′, N ′, u′) ∈ S(x, y)
which is different from (M (τ−1), N (τ−1), u(τ−1)) (we ignore this condition if τ = 0), then set
(M (τ+1), N (τ+1), u(τ+1)) := (M ′, N ′, u′) and τ := τ + 1, and go to Step 2. Otherwise, go to Step 4.

Step 2. If u(τ) = u(τ ′) for some τ ′ < τ , then output a semi-2-matching triple (M (τ ′), N (τ), u(τ)) ∈
S(x, y), which satisfies that |M (τ ′) ∩ N (τ)| > |M ∩ N | (see Claim 3.14), and stop the procedure.
Otherwise, go to Step 3.

Step 3. If (M (τ), N (τ), u(τ)) is a stable semi-2-matching triple, then output (M (τ), N (τ), u(τ)) ∈
S(x, y) and stop the procedure. Otherwise, go to Step 1.

Step 4. If u(τ) ∈ V1, then execute Step 4-1. Otherwise, execute Step 4-2.
Step 4-1. In this case, if τ ≥ 1, then dM(τ)(u(τ)) − dN(τ)(u(τ)) ≥ 2, because (M (τ), N (τ), u(τ))

is not stable by Step 3. On the other hand, dM(τ)(u(τ))− dN(τ)(u(τ)) ≥ 1 if τ = 0 by the activeness
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: edges in M (τ).

: edges in N (τ).

u(τ) v3

v2v1

u(τ−1)

: edges in M (τ+1).

: edges in N (τ+1).

u(τ) v3

v2 = u(τ+1)v1

u(τ−1)

Figure 2: Definitions of M (τ+1), N (τ+1), and u(τ+1).

of the input. By Lemmas 3.9 and 3.10, there exists a square C = (u(τ), v1, v2, v3) in G such that
{(u(τ), v1), (u(τ), v3)} ⊆ M (τ) and {(u(τ), v1), (v1, v2), (v2, v3)} ⊆ N (τ). Hence, by Assumption 3.12,
E(C) ∩ M (τ) = {(u(τ), v1), (u(τ), v3)} and E(C) ∩ N (τ) = {(u(τ), v1), (v1, v2), (v2, v3)}.

As shown in Figure 2, define M (τ+1), N (τ+1), and u(τ+1) by

M (τ+1) := (M (τ) \ {(u(τ), v1)}) ∪ {(v1, v2)},
N (τ+1) := (N (τ) \ {(v2, v3)}) ∪ {(u(τ), v3)},
u(τ+1) := v2.

If M (τ+1) is square-free, then output a semi-2-matching triple (M (τ+1), N (τ+1), u(τ+1)) ∈ S(x, y),
which satisfies that |M (τ+1) ∩ N (τ+1)| = |M ∩ N | + 1 (see Claim 3.15), and stop the procedure.

Otherwise, there exists a square C ′ = (v2, v1, v4, v5) in M (τ+1), where {u(τ), v3} ∩ {v4, v5} = ∅
(see Figure 3). Then define

M (τ+2) := M (τ+1) \ {(v2, v5)},
N (τ+2) := N (τ+1) ∪ {(v2, v5)},
u(τ+2) := v5.

Output a semi-2-matching triple (M (τ+2), N (τ+2), u(τ+2)) ∈ S(x, y), which satisfies that |M (τ+2) ∩
N (τ+2)| = |M ∩ N | + 1 (see Claim 3.16), and stop the procedure.

Step 4-2. Execute a similar procedure to Step 4-1 by switching M (τ) and N (τ).

If u(τ1) = u(τ2) for distinct τ1 and τ2, then Procedure A stops in Step 2, which assures that each
step is executed at most |V1| + |V2| times. We now show the correctness of the procedure. First,
one can easily see the following claim.

Claim 3.13. In Step 1, |M (τ) ∩ N (τ)| = |M (τ+1) ∩ N (τ+1)|.

By this claim, if Procedure A outputs a stable semi-2-matching triple (M ′, N ′, u′) ∈ S(x, y) in
Step 3, then |M ′∩N ′| = |M∩N |, which shows that (M ′, N ′, u′) is a desired output. The correctness
of termination in Step 2 and Step 4 is guaranteed by the following claims.

Claim 3.14. In Step 2, (M (τ ′), N (τ), u(τ)) is in S(x, y) and |M (τ ′) ∩ N (τ)| > |M ∩ N |.
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: edges in M (τ+1).

: edges in N (τ+1).

u(τ) v3

v2 = u(τ+1)

v1

u(τ−1)

v4 v5

: edges in M (τ+2).

: edges in N (τ+2).

u(τ) v3

v2 = u(τ+1)

v1

u(τ−1)

v4 v5 = u(τ+2)

Figure 3: Definitions of M (τ+2), N (τ+2), and u(τ+2).

Proof. Since both (M (τ), N (τ), u(τ)) and (M (τ ′), N (τ ′), u(τ ′)) are in S(x, y), (M (τ ′), N (τ), u(τ)) is also
in S(x, y). On the other hand, M (τ ′) \M (τ) ⊆ N (τ) and (M (τ) \M (τ ′))∩N (τ) = ∅ by the definition
of the procedure, and hence

|M (τ ′) ∩ N (τ)| = |M (τ) ∩ N (τ)| − |(M (τ) \ M (τ ′)) ∩ N (τ)| + |(M (τ ′) \ M (τ)) ∩ N (τ)|

= |M ∩ N | + |M (τ ′) \ M (τ)|
> |M ∩ N |,

which completes the proof.

Claim 3.15. In Step 4-1, N (τ+1) is square-free and |M (τ+1) ∩ N (τ+1)| = |M ∩ N | + 1.

Proof. First, (u(τ), v1) is the unique edge in N (τ) ∩ δu(τ) and N (τ) ∩ δv1 = {(u(τ), v1), (v1, v2)}.
Thus, N (τ+1) does not have a square containing (u(τ), v3), and hence N (τ+1) is square-free because
N (τ) does not have a square. Furthermore, by Claim 3.13, |M (τ+1) ∩N (τ+1)| = |M (τ) ∩N (τ)|+1 =
|M ∩ N | + 1.

Claim 3.16. In Step 4-1, (M (τ+2), N (τ+2), u(τ+2)) ∈ S(x, y) and |M (τ+2) ∩N (τ+2)| = |M ∩N |+1.

Proof. Since C = (v2, v1, v4, v5) is the unique square in M (τ+1), M (τ+2) is square-free. On the other
hand, since N (τ+2) ∩ δv2 = {(v1, v2), (v2, v5)}, N (τ+2) ∩ δv1 = {(u(τ), v1), (v1, v2)}, and (u(τ), v5) ̸∈
N (τ+2), N (τ+2) does not have a square containing (v2, v5). Thus, by Claim 3.15, N (τ+2) is square-
free, and hence (M (τ+2), N (τ+2), u(τ+2)) ∈ S(x, y). Furthermore, by Claim 3.15, |M (τ+2)∩N (τ+2)| =
|M (τ+1) ∩ N (τ+1)| = |M ∩ N | + 1.

We can show the correctness of Step 4-2 in the same way. The above claims show the correctness
of Procedure A.
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3.2.2 Main algorithm

In this subsection, we give an algorithm for finding an (x+ s, y)-increment t using Procedure A. In
order to avoid confusion, let G = (V1, V2;E) denote the original graph and let G◦ = (V ◦

1 , V ◦
2 ; E◦)

denote a shrunk graph. The algorithm is described as follows.

Algorithm FIND-INCREMENT
Input: Square-free 2-matchings M and N in a bipartite graph G = (V1, V2; E) with dM = x and
dN = y, and an (x, y)-increment s = −χu with u ∈ V1.
Output: An (x + s, y − s)-increment t and square-free 2-matchings M ′ and N ′ in G such that
dM ′ = x + s + t and dN ′ = y − s − t.

Step 1. Let C1, C2, . . . , Cp be edge disjoint cycles of length four in G such that E(Ci) ⊆ M ∪N
and |E(Ci) ∩ M | = |E(Ci) ∩ N | = 3 for i = 1, 2, . . . , p. We take such C1, C2, . . . , Cp maximally,
and shrink them. Let G◦ = (V ◦

1 , V ◦
2 ; E◦) be the obtained graph satisfying Assumption 3.12, and

let M◦, N◦, x◦, y◦, u◦ and s◦ be counterparts in G◦ to M,N, x, y, u and s, respectively.

Step 2. Execute Procedure A for (M◦, N◦, u◦) ∈ SG◦(x◦+s◦, y◦−s◦). Then we obtain either (i)
a non-stable semi-2-matching triple (M∗, N∗, u∗) ∈ SG◦(x◦+s◦, y◦−s◦) with |M∗∩N∗| > |M◦∩N◦|,
or (ii) a stable semi-2-matching triple (M∗, N∗, u∗) ∈ SG◦(x◦ + s◦, y◦ − s◦) with |M∗ ∩ N∗| ≥
|M◦ ∩ N◦|. Go to Step 3 in the case (i), and go to Step 4 in the case (ii).

Step 3. Update M◦, N◦, and u◦ as M◦ := M∗, N◦ := N∗, and u◦ := u∗. While there exists a
square C such that E(C) ⊆ M◦ ∪ N◦ and |E(C) ∩ M◦| = |E(C) ∩ N◦| = 3, shrink C. Then, go to
Step 2.

Step 4. Let t be the (x + s, y − s)-increment corresponding to an (x◦ + s◦, y◦ − s◦)-increment t◦ =
dM∗ − x◦ − s◦. Output 2-matchings M ′ and N ′ in G which are expanded edge sets of M∗ and N∗,
respectively, such that dM ′ = x + s + t and dN ′ = y − s − t, and stop the algorithm.

In the algorithm, |M◦ \ N◦| + |N◦ \ M◦| decreases monotonically, which shows that FIND-
INCREMENT terminates in finite steps. The correctness of FIND-INCREMENT is guaranteed by
the following claims.

Claim 3.17. In the case (i) of Step 2, the non-stable semi-2-matching triple (M∗, N∗, u∗) is active.

Proof. Suppose that u∗ ∈ V1. Since x◦ + s◦, y◦ − s◦ ∈ {0, 1, 2}V ◦
1 ∪V ◦

2 , dM∗(u∗) = (x◦ + s◦)(u∗) + 1,
and dN∗(u∗) = (y◦ − s◦)(u∗) − 1, we have that dM∗(u∗) ≥ 1 and dN∗(u∗) ≤ 1. Therefore, if
(M∗, N∗, u∗) is not active, then dM∗(u∗) = dN∗(u∗) = 1, which contradicts that (M∗, N∗, u∗) is not
stable. For the case when u∗ ∈ V ◦

2 , we can show the claim in the same way.

Claim 3.18. In Step 4, t◦ = dM∗ − x◦ − s◦ is an (x◦ + s◦, y◦ − s◦)-increment.

Proof. Suppose that u∗ ∈ V ◦
1 . Then, dM∗ − x◦ − s◦ = −dN∗ + y◦ − s◦ = χu∗ by the definition of

SG◦(x◦ + s◦, y◦ − s◦). Since dM∗(u∗) − dN∗(u∗) ≤ 1 by the definition of a stable semi-2-matching
triple, (y◦−s◦)(u∗)− (x◦ +s◦)(u∗) = (dN∗(u∗)+1)− (dM∗(u∗)−1) ≥ 1, which means that t◦ = χu∗

is an (x◦ + s◦, y◦ − s◦)-increment. We can deal with the case when u∗ ∈ V ◦
2 in the same way.

Claim 3.19. In Step 4, there exist an (x + s, y − s)-increment t corresponding to t◦ and 2-matchings
M ′ and N ′ such that dM ′ = x + s + t and dN ′ = y − s − t. Furthermore, such t, M ′, and N ′ are
unique.
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Proof. Without loss of generality, we assume that u∗ ∈ V ◦
1 . Then, t◦ = χu∗ is an (x◦ + s◦, y◦ − s◦)-

increment by Claim 3.18.
First we show the existence of an unique (x + s, y − s)-increment t corresponding to t◦. We

observe that at most one square-edge is incident to u∗, because if two square-edges are incident to
u∗ then they are never updated in the algorithm.

If there exists no square-edge incident to u∗ and u∗ corresponds to u′ ∈ V1, then obviously,
t = χu′ is a desired (x + s, y − s)-increment.

Suppose that one square-edge is incident to u∗, and u∗ ∈ V ◦
1 corresponds to v1, v2 ∈ V1.

Since (x◦ + s◦)(u∗) = 1 and (y◦ − s◦)(u∗) = 2, we have that {(x + s)(v1), (x + s)(v2)} = {1, 2} and
(y−s)(v1) = (y−s)(v2) = 2. Hence, exactly one of χv1 and χv2 is a desired (x + s, y − s)-increment.

The (x + s, y − s)-increment t defined as above satisfies that ϕ(x + s + t) = x◦ + s◦ + t◦ and
ϕ(y−s−t) = y◦−s◦−t◦, where ϕ is defined by (1). Furthermore, x◦+s◦+t◦ and y◦−s◦−t◦ are the
degree sequences of M∗ and N∗, respectively. Hence, by Lemma 3.3, there exist 2-matchings M ′

and N ′ in G such that they are expanded edge sets of M∗ and N∗, respectively, and dM ′ = x+s+ t
and dN ′ = y − s − t. The uniqueness of M ′ and N ′ is also guaranteed by Lemma 3.3.

We have already presented an algorithm to find an (x + s, y − s)-increment. To obtain an
(x + s, y)-increment t, we need the following assumption.

Assumption 3.20. For x, y ∈ J4(G), let M and N be square-free 2-matchings with dM = x and
dN = y maximizing |M ∩ N |.

We now prove that under Assumption 3.20 the output t of FIND-INCREMENT is an (x + s, y)-
increment, that is, dM ′ ̸= x, dN ′ ̸= y.

Proposition 3.21. Let M and N be inputs of FIND-INCREMENT satisfying Assumption 3.20.
Then, the output (M ′, N ′) of FIND-INCREMENT satisfies that dM ′ ̸= dM and dN ′ ̸= dN .

Proof. If Procedure A outputs (M∗, N∗, u∗) ∈ SG◦(x◦ + s◦, y◦ − s◦) with |M∗ ∩ N∗| > |M◦ ∩ N◦|
at least once in Step 2 of FIND-INCREMENT, then the output (M ′, N ′) satisfies that |M ′ ∩N ′| >
|M ∩ N |, which implies dM ′ ̸= dM and dN ′ ̸= dN by Assumption 3.20.

Otherwise, when we execute Procedure A for the first time, it outputs a stable semi-2-matching
triple (M∗, N∗, u∗) ∈ SG◦(x◦ + s◦, y◦ − s◦) with |M∗ ∩ N∗| = |M◦ ∩ N◦|, where (M◦, N◦, u◦) is
the input of Procedure A. Since |M∗ ∩ N∗| = |M◦ ∩ N◦|, (M∗, N∗, u∗) is not output in Step 2 of
Procedure A, and hence u∗ ̸= u◦. This shows that t◦ = ±χu∗ is different from −s◦ = χu◦ , which
means t ̸= −s.

By Proposition 3.21, we complete the proof of Proposition 3.1.
Finally, we give a short remark. The above arguments show that FIND-INCREMENT finds

an (x + s, y)-increment in polynomial time if we are given square-free 2-matchings M and N with
dM = x and dN = y maximizing |M ∩ N |. When we are given square-free 2-matchings M and
N with dM = x and dN = y which do not necessarily maximize |M ∩ N |, by executing FIND-
INCREMENT, we obtain either an (x + s, y)-increment or square-free 2-matchings M ′ and N ′

such that dM ′ = x, dN ′ = y, and |M ′ ∩ N ′| > |M ∩ N |. Thus, by repeating FIND-INCREMENT,
we can also find an (x + s, y)-increment in polynomial time in this case.
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4 Weighted square-free 2-matchings and M-concave functions

In this section, we prove Theorem 1.4, which is a generalization of Proposition 3.1. We prove
the sufficiency (Proposition 4.1) and the necessity (Proposition 4.4) separately in the rest of this
section.

4.1 Sufficiency

This subsection is devoted to proving the sufficiency in Theorem 1.4.

Proposition 4.1. For a weighted bipartite graph (G, w), if w is vertex-induced on every square in
G, then f is an M-concave function on the constant-parity jump system J4(G).

Let G = (V1, V2;E) be a bipartite graph with a weight function w and G◦ = (V ◦
1 , V ◦

2 ; E◦)
be its shrunk bipartite graph. For F ⊆ E, we define w(F ) =

∑
e∈F w(e). In a similar way as

Proposition 3.1, we give an algorithm for finding an (x + s, y)-increment t satisfying (M-EXC) for
given x, y, and s. In our algorithm, we keep a semi-2-matching triple in SG◦(x◦ + s◦, y◦ − s◦),
where x◦, y◦, and s◦ are the counterparts in G◦ of x, y, and s. We define the weight of shrunk edge
sets with the aid of Lemma 3.11. Let (M◦, N◦, u◦) ∈ SG◦(x◦ + s◦, y◦ − s◦) be a semi-2-matching
triple such that u◦ corresponds to a unique vertex u in G, and let (M,N, u) ∈ SG(x + s, y − s) be
the corresponding semi-2-matching triple as in Lemma 3.11. For this case, we define the weights of
edge sets M◦ and N◦ by w′(M◦) = w(M) and w′(N◦) = w(N).

With this terminology, to deal with the weighted case, we modify Step 2 of Procedure A as
follows:

Step 2′. If u(τ) = u(τ ′) for some τ ′ < τ , then output the following semi-2-matching triple
and stop the procedure: output (M (τ ′), N (τ), u(τ)) ∈ S(x, y) if w′(M (τ ′)) ≥ w′(M (τ)), and output
(M (τ), N (τ ′), u(τ)) ∈ S(x, y) if w′(M (τ ′)) < w′(M (τ)). Otherwise, go to Step 3.

Note that when Step 2′ of Procedure A is executed, the weight of each edge set can be defined
by the following claim.

Claim 4.2. When Step 2′ of Procedure A is executed, u(τ) = u(τ ′) is incident to no square-edges.

Proof. Without loss of generality, we assume u(τ ′) = u(τ) ∈ V ◦
1 . Then, (u(τ ′), u(τ ′+1)) ∈ N (τ ′+1) \

M (τ ′+1) and (u(τ), u(τ−1)) ∈ N (τ−1) \ M (τ−1). Since u(τ ′+1) ̸= u(τ−1), two edges (u(τ ′), u(τ ′+1))
and (u(τ), u(τ−1)) are contained in N (τ−1). If u(τ) = u(τ ′) is incident to a square-edge, then
dN(τ−1)(u(τ)) ≥ 3, which contradicts the definition of S(x, y).

By modifying Step 2 of Procedure A as above, Algorithm FIND-INCREMENT is also modified
for weighted graphs. Note that the modified algorithm runs correctly and outputs an (x + s, y − s)-
increment t and square-free 2-matchings M ′ and N ′ such that dM ′ = x + s + t and dN ′ = y − s− t.
We now discuss the weight of the edges of the output of FIND-INCREMENT.

Lemma 4.3. Let (G,w) be a weighted bipartite graph such that w is vertex-induced on every square
in G, M and N be square-free 2-matchings in G, and s = −χu be a (dM , dN )-increment with u ∈ V1.
If we execute the modified algorithm of FIND-INCREMENT to obtain new square-free 2-matchings
M ′, N ′ and a (dM + s, dN − s)-increment t such that dM ′ = dM + s + t and dN ′ = dN − s− t, then
it holds that w(M ′) + w(N ′) ≥ w(M) + w(N).
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Proof. When w′(M (τ)) and w′(N (τ)) can be defined, let M(τ) and N(τ) be expanded edge sets
of M (τ) and N (τ) which are used to define w′(M (τ)) and w′(N (τ)), that is w′(M (τ)) = w(M(τ))
and w′(N (τ)) = w(N(τ)). In Step 1 of Procedure A, M (τ) ∪ N (τ) does not change even if we
consider the multiplicity of the edges. Thus, for each shrunk square C, dM(τ)∩E(C) + dN(τ)∩E(C) is
invariable. Since w is vertex-induced on every square in G, Step 1 of Procedure A does not change
w′(M (τ)) + w′(N (τ)).

By modification of Step 2 of Procedure A as above, the output in Step 2′ does not decrease
w′(M (τ)) + w′(N (τ)), in fact, w′(M (τ ′)) + w′(N (τ)) ≥ w′(M (τ)) + w′(N (τ)) if w′(M (τ ′)) ≥ w′(M (τ)),
and w′(M (τ)) + w′(N (τ ′)) > w′(M (τ)) + w′(N (τ)) if w′(M (τ ′)) < w′(M (τ)), because w′(M (τ)) +
w′(N (τ)) = w′(M (τ ′)) + w′(N (τ ′)) by the above argument for Step 1.

When Procedure A outputs a semi-2-matching triple (M (τ), N (τ), u(τ)) in Step 3, by the argu-
ment in Claim 3.19, the expanded edge sets M ′ and N ′ of M (τ) and N (τ) are determined uniquely.
Then, by the same argument as for Step 1, the total weight of the expanded edge sets is invariable.

Moreover, the total weight of the expanded edge sets of M (τ) and N (τ) does not change in
Step 4 of Procedure A, because w is vertex-induced on every square in G.

Therefore, the total weight does not decrease in Procedure A, which means that w(M ′) +
w(N ′) ≥ w(M) + w(N).

We are now ready to show Proposition 4.1.
Proof for Proposition 4.1. For x, y ∈ J4(G) and an (x, y)-increment s, let M and N be square-free
2-matchings such that dM = x, dN = y, w(M) = f(x), and w(N) = f(y). As with Assumption 3.20,
we assume that M and N maximize |M ∩ N | among such 2-matchings.

By executing the modified algorithm of FIND-INCREMENT, we find new square-free 2-matchings M ′

and N ′ and an (x + s, y)-increment t that satisfy dM ′ = x+s+t and dN ′ = y−s−t. By Lemma 4.3,
we have

f(x) + f(y) = w(M) + w(N)
≤ w(M ′) + w(N ′)
≤ f(x + s + t) + f(y − s − t).

Hence f is an M-concave function on J4(G). ¤

4.2 Necessity

This subsection is devoted to proving the necessity in Theorem 1.4.

Proposition 4.4. For a weighted bipartite graph (G,w), if f is an M-concave function on the
constant-parity jump system J4(G), then w is vertex-induced on every square in G.

Proof. Let C = (v1, v2, v3, v4) be a square in G. Let x = χv1 + 2χv2 + 2χv3 + χv4 ∈ J4(G)
and y = 2χv1 + χv2 + χv3 + 2χv4 ∈ J4(G). Then, M = {(v1, v2), (v2, v3), (v3, v4)} and N =
{(v1, v2), (v3, v4), (v4, v1)} are the unique edge sets such that dM = x and dN = y, and hence
f(x) = w(M) and f(y) = w(N).

For an (x, y)-increment s = χv1 , one can see that t = −χv3 is the only (x+ s, y)-increment such
that x+s+t ∈ J4(G) and y−s−t ∈ J4(G). Then, x+s+t = 2χv1 +2χv2 +χv3 +χv4 and y−s−t =
χv1 + χv2 + 2χv3 + 2χv4 . Since M ′ = {(v1, v2), (v2, v3), (v4, v1)} and N ′ = {(v2, v3), (v3, v4), (v4, v1)}
are the unique edge sets such that dM ′ = x + s + t and dN ′ = y − s− t, it holds that f(x + s + t) =
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w(M ′) and f(y − s − t) = w(N ′). If f is an M-concave function on J4(G), by (M-EXC), we have
w(M) + w(N) ≤ w(M ′) + w(N ′), which means that

w(v1, v2) + w(v3, v4) ≤ w(v2, v3) + w(v4, v1). (2)

Similarly, it holds that

w(v1, v2) + w(v3, v4) ≥ w(v2, v3) + w(v4, v1). (3)

By (2) and (3),
w(v1, v2) + w(v3, v4) = w(v2, v3) + w(v4, v1),

which shows that w is vertex-induced on C.

5 Concluding remarks

Finally, in this section, we discuss extensions of Theorems 1.2 and 1.4 to the Kt,t-free t-matchings.
A min-max formula for the square-free 2-matching problem [19] extends to the Kt,t-free t-

matching problem [13], and Pap’s maximum square-free 2-matching algorithm [30] is applicable to
the Kt,t-free t-matching problem. Thus, we expect that Kt,t-free t-matchings in bipartite graphs
also have some sort of matroidal structure. Namely, as an extension of the first half of Theorem 1.2,
we conjecture the following.

Conjecture 5.1. For any bipartite graph G,

Jt,t(G) = {dM | M is a Kt,t-free t-matching in G}

is a constant-parity jump system.

We can also consider the extension of Theorem 1.4. For a weighted bipartite graph (G,w),
define a function ft,t on Jt,t(G) by

ft,t(x) = max

{∑
e∈M

w(e)
∣∣∣∣ M is a Kt,t-free t-matching, dM = x

}
.

For the weighted Kt,t-free t-matching problem in a weighted bipartite graph (G,w) where w is
vertex-induced on every Kt,t in G, we have a linear programming description with dual integral-
ity [24] and a polynomial-time algorithm [32]. Thus, the following conjecture naturally arises.

Conjecture 5.2. For a weighted bipartite graph (G,w), ft,t is an M-concave function on the
constant-parity jump system Jt,t(G) if and only if w is vertex-induced on every Kt,t in G.
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