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Abstract. This paper deals with the traveling tournament problem,
which is a well-known benchmark problem in the field of tournament
timetabling. We propose a new lower bound for the traveling tournament
problem, and construct a randomized approximation algorithm yielding a
feasible solution whose approximation ratio is less than 2+(9/4)/(n−1),
where n is the number of teams. For the traveling tournament problem,
this is the first approximation algorithm with a constant approximation
ratio, which is less than 2+3/4.
Key words: traveling tournament problem, lower bound, approximation
algorithm, randomized algorithm, tournament, timetabling, scheduling

1 Introduction

In the field of tournament timetabling, the traveling tournament problem (TTP)
is a well-known benchmark problem established by Easton, Nemhauser and
Trick [2]. The objective of TTP is to make a round-robin tournament that mini-
mizes total traveling distance. The problem TTP includes an optimization aspect
like the traveling salesman problem (TSP) and the vehicle routing problem. How-
ever, TTP is surprisingly harder than TSP; there is a 10-teams TTP instance
not yet solved exactly [10]. This is very contrastive to TSP, where a 10-cities
instance of TSP is obviously easy.

Various studies on TTP have been appeared in recent years [2, 9]. Most of the
best upper bounds of TTP instances are obtained by metaheuristic algorithms [1,
10, 11]. On the other hand, there are a few researches about lower bound and
exact method for TTP [2], and no approximation algorithm for TTP is proposed
so far.
� This work was partially supported by Grants-in-Aid for Scientific Research, by the
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In this paper, we propose a new lower bound for TTP, and construct a
randomized approximation algorithm yielding a feasible solution whose approx-
imation ratio is less than 2+ (9/4)/(n− 1) where n is the number of teams. Our
result is the first approximation algorithm with a constant approximation ratio,
which is less than 2+3/4.

2 Traveling Tournament Problem

In this section, we introduce some terminology and then define TTP. For more
discussions on TTP and its variations, see [7, 8].

We are given a set of teams T = {1, 2, . . . , n} where n ≥ 4 and even, and
each team has its home venue. A game is specified by an ordered pair of teams.
A double round-robin tournament is a set of games in which every team plays
every other team once at its home venue and once at away (i.e., at the venue of
the opponent); hence, exactly 2(n − 1) slots are required to complete a double
round-robin tournament.

Each team stays its home venue before a tournament, and then travels to
play its games at the chosen venues. After a tournament, each team goes back to
its home venue (if necessary). We note that, when a team plays two consecutive
away games, the team goes directly from the venue of the first opponent to the
other without returning to its home venue.

For any pair of teams i, j ∈ T , dij ≥ 0 denotes the distance between i’s
and j’s venues. Throughout this paper we assume that dii = 0 and triangle
inequalities (dij + djk ≥ dik) hold for any i, j, k ∈ T .

The traveling tournament problem is defined as follows.

Traveling Tournament Problem (TTP) [2]
Input: a set of teams T and a distance matrix D = (dij), indexed by T .
Output: a double round-robin tournament S of n teams such that

1. no team plays more than three consecutive away games;
2. no team plays more than three consecutive home games;
3. teams i at j immediately followed by j at i is prohibited (no repeaters);
4. the total distance traveled by the teams is minimized.

In the rest of this paper, a double round-robin tournament satisfying the above
conditions 1–3 (1–4) is called a feasible (optimal, respectively) tournament.

Most of the best upper bounds for TTP are obtained by metaheuristic algo-
rithms [1, 10, 11]. However, to prove the optimality of TTP is very difficult; for
instance, there still exists an open instance of n = 10 [10].

3 Lower Bound

In this section, we consider lower bounds for TTP. The independent lower bound,
proposed in [2], is a well-known lower bound for TTP. This bound is obtained by
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summing up of minimum traveling distance of each team; in other words, one has
to solve n instances of 3-customer vehicle routing problem (see [5] for 3-customer
vehicle routing problem). Although the performance of the independent lower
bound is experimentally good (about 5% smaller than the optimal value of an
instance), to get this bound is NP-hard in general because the 3-customer vehicle
routing problem is NP-hard [6].

Here we propose a new lower bound, which is less tight than the independent
lower bound but easy to compute. We denote the sum total of ordered pair of
distances between venues by Δ, i.e., Δ

def.=
∑

(i,j)∈T 2 dij . In addition, to simply
show the status of before and after a tournament, we introduce two artificial
slots 0 and 2n − 1, and assume that each team is at home in these slots.

Theorem 1 provides a lower bound of the optimal value of TTP. (The idea
of the following method is similar to the “radial cost” of vehicle routing prob-
lems [4].)

Theorem 1. The optimal value z∗ of TTP satisfies that z∗ ≥ (2/3)Δ.

Proof.
Let S∗ be an optimal tournament of a given instance of TTP.
Suppose that in S∗ team i plays three consecutive away games at teams

j1, j2, then j3. The total traveling distance of team i corresponding to these
games, denoted by d(i; j1, j2, j3), is dij1 + dj1j2 + dj2j3 + dj3i. From the triangle
inequality, we have d(i; j1, j2, j3) = dij1 +dj1j2 +dj2j3 +dj3i ≥ dij1 +dj1j2 +dj2i ≥
dij1 + dj1i. Similarly, the following inequalities hold: d(i; j1, j2, j3) ≥ dij2 + dj2i

and d(i; j1, j2, j3) ≥ dij3 + dj3i. Hence, d(i; j1, j2, j3) ≥ (dij1 + dj1i + dij2 + dj2i +
dij3 + dj3i)/3.

Next, consider the case that team i is at home in a particular slot, plays two
consecutive away games at teams j4 and j5, then goes back to the home of i.
The corresponding distance d(i; j4, j5) is dij4 + dj4j5 + dj5i. We can easily show
that d(i; j4, j5) ≥ (dij4 + dj4i + dij5 + dj5i)/2 ≥ (dij4 + dj4i + dij5 + dj5i)/3.

Finally, consider the case that team i is at home in a particular slot, plays
an away game at team j6, then goes back to its home. For the corresponding
distance d(i; j6), we have d(i; j6) = dij6 + dj6i ≥ (dij6 + dj6i)/3.

From the above, in the tournament S∗ the traveling distance of team i is at
least (1/3)

∑
j∈T\{i}(dij+dji). Therefore we have z∗ ≥ (1/3)

∑
i∈T

∑
j∈T\{i}(dij+

dji) = (2/3)Δ. ��
Corollary 1. Let z∗ be the optimal value of an instance of TTP. The traveling
distance of every feasible tournament of the instance is at most 3z∗.

Proof. When team i has no consecutive away games, the distance traveled by i
becomes the longest, i.e.,

∑
j∈T\{i}(dij + dji). Thus, the traveling distance of

every tournament is at most
∑

i∈T

∑
j∈T\{i}(dij + dji) = 2Δ, which is three

times the lower bound obtained by Theorem 1. ��
Corollary 1 says that every algorithm yielding a feasible tournament of TTP

is a 3-approximation algorithm for TTP. However, in the next section we propose
a better approximation algorithm.
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4 Approximation Algorithm

In this section, for constructing good feasible tournaments, we propose a ran-
domized algorithm based on the Modified Circle Method (MCM), which was
proposed in [3] by the authors for the constant distance traveling tournament
problem. See the appendix for the detail of MCM.

When a team plays at away in at least one of slots s and s + 1, we say that
the team has a move between these slots. On the number of moves in a feasible
tournament produced by MCM, we have the following result.

Theorem 2. [3] The algorithm MCM produces a feasible tournament S in which
the number of moves, denoted by M(S), satisfies that

M(S) =

⎧⎨
⎩

(4/3)n2 − (2/3)n − 1 (n ≡ 0 mod 3),
(4/3)n2 − (1/2)n − 4/3 (n ≡ 1 mod 3),
(4/3)n2 + (1/6)n − 5/3 (n ≡ 2 mod 3).

Here we note that MCM runs in O(n2). Now we propose a simple randomized
algorithm.

Algorithm 1.
Step 1: Construct a feasible tournament S by MCM.
Step 2: Randomly permute the names of teams in S.

Theorem 3. The approximation ratio of Algorithm 1 is bounded by

2 + (9/4)/(n − 1).

Proof. We denote the distance of a tournament obtained by Algorithm 1 by a
random variable Z. The random permutation of names of teams implies that each
move in tournament S obtained by MCM is assigned to a fixed pair of (mutually
distinct) team venues with probability 1/(n2 − n). Thus, the expectation of the
distance of a move is Δ/(n2 − n). Since MCM outputs a feasible tournament
whose number of moves is less than (4/3)n2 + (1/6)n, we have

E[Z] <
(
(4/3)n2 + (1/6)n

)
Δ/(n2 − n).

From the above, the approximation ratio of Algorithm 1 is strictly bounded by(
(4/3)n2 + (1/6)n

)
Δ/(n2 − n)

z∗
≤

(
(4/3)n2 + (1/6)n

)
Δ/(n2 − n)

(2/3)Δ

= (3/2)
(4/3)n2 + (1/6)n

n2 − n
= 2 +

9/4
n − 1

. ��

Theorem 3 says that when we generate a number of random permutations,
the probability to find a tournament whose approximation ratio is less than
2 + (9/4)/(n − 1) converges to 1. Since n ≥ 4, Algorithm 1 is a randomized
approximation algorithm with a constant approximation ratio, which is less
than 2+3/4.
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Appendix: Modified Circle Method

Here we describe the procedure of the Modified Circle Method (MCM), which
was proposed in [3] by the authors.

Denote the set of teams by T = {1, 2, . . . , n}. We introduce a directed graph
Ge = (T,Ae) with a vertex set T and a set of mutually disjoint directed edges

Ae def.= {(j, n + 1 − j) : �j/3	 is even, 1 ≤ j ≤ n/2}
∪ {(n + 1 − j, j) : �j/3	 is odd, 1 ≤ j ≤ n/2}.

Let Go = (T,Ao) be a directed graph obtained from Ge by reversing the direction
of the edge between 1 and n. For each s ∈ {1, 2, . . . , n − 1}, we define a per-
mutation πs by (πs(1), πs(2), . . . , πs(n)) = (s, s + 1, . . . , n− 1, 1, 2, . . . , s− 1, n).
For any permutation π on T , Ge(π) (resp., Go(π)) denotes the set of n/2 games
satisfying that every directed edge (u, v) ∈ Ae (resp., Ao) corresponds to a game
between π(u) and π(v) held at the home venue of π(v).

Consider the case that n ≡ 0 mod 3. Let X be a single round-robin tourna-
ment satisfying that games in slot s are defined by Go(πs) if s ∈ {1, 2, 3} mod 6,
and by Ge(πs) if s ∈ {4, 5, 0} mod 6. Figure 1 shows the games of the first four
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(a)  s = 1 (b)  s = 2

(c)  s = 3 (d)  s = 4

Fig. 1. Games of the first four slots in X, where n = 18.

slots in X when n = 18. For each i ∈ {1, 2, . . . , n/3 − 1}, we denote a partial
schedule of X consisting of a sequence of three slots (3i− 2, 3i− 1, 3i) by Xi. In
addition, we denote the partial schedule of X consisting of two slots (n− 2, n−
1) by Xn/3. Now we construct a double round-robin tournament Y by con-
catenating these partial schedules as follows: Y = (X1, X1, X2, X2, X3, X3, X4,
X4, X5, . . . , Xn

3 −1,Xn
3
, Xn

3
), where Xi is the partial schedule obtained from Xi

by reversing all venues.
Consider the case that n ≡ 1 mod 3. We construct a single round-robin tour-

nament X with the same method as above. For each i ∈ {1, 2, . . . , (n−1)/3}, we
denote a partial schedule of X consisting of a sequence of three slots (3i−2, 3i−
1, 3i) by Xi. We construct a double round-robin tournament Y by concatenating
the partial schedules as follows: Y = (X1, X1, X2, X2, X3, . . . , Xn−1

3
, Xn−1

3
).

Consider the case that n ≡ 2 mod 3. Let G̃e (resp., G̃o) be a directed graph
obtained from Ge (resp., Go) by reversing the direction of the edge between
n/2 − 1 and n/2 + 2. We construct a single round-robin tournament X as well
as the above cases using directed graphs G̃e and G̃o. For each i ∈ {2, 3, . . . , (n−
2)/3}, we denote a partial schedule of X consisting of a sequence of three slots
(3i− 3, 3i− 2, 3i− 1) by Xi. We denote the partial schedules of X consisting of
two slots (1, 2) by X1 and two slots (n − 2, n − 1) by X(n+1)/3. We construct a
double round-robin tournament Y by concatenating these partial schedules as
follows: Y = (X1, X1, X2, X2, X3, . . . , Xn+1

3
, Xn+1

3
).
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For all the cases, the single round-robin tournament X has neither partial
home-away patterns HHHH, AAAA, HAH nor AHA; that is, each team has at
most three consecutive home/away games in a single round-robin tournament X.
The time complexity to construct X and Y is O(n2), i.e., MCM runs in linear
time in the output size.

On the number of moves of the tournament produced by MCM, Theorem 2
holds. For the proof of Theorem 2, see [3].


