
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Some Characterizations of Affinely
Full-dimensional Factorial Designs

Satoshi AOKI and Akimichi TAKEMURA

METR 2008–44 December 2008

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html



The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.



Some characterizations of affinely full-dimensional
factorial designs

Satoshi Aoki∗†and Akimichi Takemura‡§

December, 2008

Abstract

A new class of two-level non-regular fractional factorial designs is defined. We
call this class an affinely full-dimensional factorial design, meaning that design
points in the design of this class are not contained in any affine hyperplane in the
vector space over F2. The property of the indicator function for this class is also
clarified. A fractional factorial design in this class has a desirable property that
parameters of the main effect model are simultaneously identifiable. We investigate
the property of this class from the viewpoint of D-optimality. In particular, for the
saturated designs, the D-optimal design is chosen from this class for the run sizes
r ≡ 5, 6, 7 (mod 8).

Keywords: Affine hyperplane, D-optimality, fractional factorial designs, Hadamard
maximal determinant problem, identifiability, indicator function, non-regular de-
signs.

1 Introduction

In the literature on two-level fractional factorial designs, regular fractional factorial de-
signs have been mainly studied both in theory and applications. The reason is that
properly chosen regular fractional factorial designs have many desirable properties of be-
ing balanced and orthogonal. In addition, the regular fractional factorial designs are easily
constructed and used based on important concepts such as resolution and aberration. An
elegant theory based on the linear algebra over F2 is well established for regular two-level
fractional factorial designs. See [26] for example.

On the other hand, non-regular designs have also been receiving attention of re-
searchers over the years, in particular for some specific topics such as Plackett-Burman
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designs, Hall’s designs and mixed-level orthogonal arrays. However, it is very difficult
to derive theoretical results for general non-regular fractional factorial designs. Suppose
we have s controllable factors of two-levels and want to construct a fractional factorial
design with r runs, where r is neither a 1/2-, 1/4-, 1/8-, . . . fraction of the 2s full factorial
design. One approach to choose an r-runs design is to rely on various optimal criteria
such as D-, A- or E-optimality. However, the problem of characterizing these optimal
designs for practically many values of (s, r) is combinatorially very difficult. See [28] and
[7] for examples of D-optimal saturated designs. These works, in addition to enormous
literature on Hadamard matrices such as [20], indicate the difficulty of the characteriza-
tion of the D-optimal designs and the development of simple algorithms for obtaining
them. For the other criteria such as A- or E-optimality, see [33]. Another approach for
the problem of optimal selection is various extension of the minimum aberration criterion
to non-regular designs. See [13] and [39] for minimum G2-aberration, [47] for generalized
minimum aberration, [46] for minimum moment aberration.

In this paper, we give a new approach for investigating general non-regular fractional
factorial designs from a theoretical viewpoint. We define a class of non-regular designs,
which is derived naturally from the argument of identifiability of parameters. There are
some other works considering such a classification of designs. [1] gives a classification
of fractional factorial designs with simple structure in view of their indicator functions.
The indicator function, first introduced in [17], has become a powerful tool for studying
general non-regular fractional factorial designs. See [8] and [25] for example. Since our
work is motivated by the indicator function approach, we also consider properties of the
indicator function of the designs in our proposed class.

The construction of this paper is as follows. In Section 2, we define a new class of the
two-level non-regular fractional factorial designs and investigate its property. In Section
3, we consider relations between the class and D-optimal designs. In particular we pay
special attention to the saturated designs. Finally in Section 4, we give some discussion.

2 Definition of an affinely full-dimensional factorial

design

Suppose there are s controllable factors of two levels. Let D be the 2s full factorial design
with levels being −1 and 1. D is written as

D = {−1, 1}s = {(x1, . . . , xs) | x2
1 = · · · = x2

s = 1}.

A fractional factorial design F (without replication) is a subset of D. Let r be the run size
of F . Therefore F is a set of r points in D. Arranging the elements of F appropriately,
we represent F as an r × (s + 1) matrix M ∈ {−1, 1}r×(s+1)

M =

 1 m11 · · · m1s
...

...
...

1 mr1 · · · mrs

 , (1)
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where mij is the level of the jth factor in the ith run. We call the left-most column of
M the “0-th column” and write its elements as mi0 ≡ 1, i = 1, . . . , r. Note that M is
the design matrix of F for the main effect model. If we write βj as the parameter of the
main effect of the jth factor for j = 1, . . . , s, the linear model for the observation variable
Y = (Y1, . . . , Yr)

′ is written as

Y = Mβ + ε, ε ∼ Nm(0, σ2I),
β = (β0, β1, . . . , βs)

′,
(2)

where β0 is the parameter for intercept. We put m1j = 1 for j = 1, . . . , s without loss of
generality (by relabeling the two levels of each factor). We also assume that each column
(m1j, . . . ,mrj)

′, j = 1, . . . , s, contains at least one −1.
The indicator function f of F is defined in [17] as a function on D such that

f(x) =

{
1, if x ∈ F ,
0, if x ∈ D \ F .

Following [17], we define contrasts XI(x) =
∏

i∈I xi on D for I ∈ P , where P is the set of
all subsets of {1, . . . , s}. A fundamental fact in the theory of the experimental design is
that {XI , I ∈ P} forms an orthogonal basis of the set of all real-valued functions on D.
The indicator function f of F is then written as the polynomial form

f(x) =
∑
I∈P

bIXI(x). (3)

Since x2
i = 1 on D for i = 1, . . . , s, the above expression is square-free and is unique on

D.
A regular 2s−k fractional factorial design A ⊂ D is generated by k linearly independent

generating relations
XI1(x) = 1, . . . , XIk

(x) = 1, (4)

i.e. A = {x ∈ D | XI`
(x) = 1, ` = 1, . . . , k}. A contains 2s−k points. Note that the

right hand sides of the relations (4) reflect the assumption m1j = 1 for j = 1, . . . , s. In
general, we can take XI`

(x) = −1 instead of XI`
(x) = 1 in (4). This just depends on the

labeling of two levels for each factor. From randomization viewpoint, given the labelings
of two levels of each factor, it is desirable to choose 1 or −1 randomly for each generating
relation in (4).

Now we define a class of non-regular fractional factorial designs.

Definition 2.1. A non-regular fractional factorial design F is called an affinely full-
dimensional factorial design if there is no regular fractional factorial design A satisfying
F ( A. Conversely, a non-regular fractional factorial design F is called a subset fractional
factorial design if there is some regular fractional factorial design A satisfying F ( A.

The above definition gives a new class of the non-regular fractional factorial designs.
Any fractional factorial design with r > 2s−1 is an affinely full-dimensional factorial
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design. The merit of the definition might not be clear at a glance. One of the properties
of the affinely full-dimensional factorial design is the simultaneous identifiability of the
parameters in the model (2). Note that the least squares estimator of β is written as
β̂ = (M ′M)−1M ′y for the observation y. We call β is simultaneously identifiable if M ′M
is a non-singular matrix. We also note that, for regular fractional factorial designs, the
singularity of M ′M simply corresponds to a confounding relation of the main effects. On
the other hand, for the non-regular designs, the relation is not obvious. We clarify this
point in the following lemma.

Lemma 2.1. If F is an affinely full-dimensional factorial design, then M ′M is non-
singular, i.e., β is simultaneously identifiable.

Proof. We show the contraposition. Suppose the columns of M are linearly dependent.
This dependence relation is preserved by the following operation: subtract the left-most
column (1, . . . , 1)′ of M from the other s columns and then divide the s columns by −2.
By this operation, 1 is mapped to 0 and −1 is mapped to 1. Denote the resulting matrix
by M̃ = {m̃ij}. Then m̃ij = (1 − mij)/2 for j ≥ 1 and m̃i0 ≡ 1 for i = 1, . . . , r. From
the assumption of linearly dependence there exists some integer vector c = (c0, c1, . . . , cs)

′

satisfying
M̃c = 0. (5)

Considering the modulo 2 reduction of (5), we have

M̃c = 0 (mod 2), (6)

where the odd elements and the even elements of c are replaced by 1 and 0, respectively.
Here we can assume that there exists an odd element of c in (5), since if every element of c
is even then we can divide (5) by the power of 2 in the factorization of the greatest common

divisor of the elements of c. Moreover c0 = 0, since the first row of M̃ is (1, 0, . . . , 0). Then
(6) implies that there are even 1’s in {m̃ij | cj = 1, j ≥ 1} for i = 1, . . . , r, or equivalently
there are even −1’s in {mij | cj = 1, j ≥ 1} for i = 1, . . . , r. Therefore XI(x) = 1 holds
for I = {j | cj = 1, j ≥ 1}. Q.E.D.

From this lemma, we also have the following corollary.

Corollary 2.1. Let M be a design matrix of a non-regular fractional factorial design. If
M ′M is singular, then the design is a subset fractional factorial design.

The proof of Lemma 2.1 clarifies the geometrical meaning of the class. By the corre-
spondence (1,−1) ↔ (0, 1), XI(x1, . . . , xs) = 1, (x1, . . . , xs) ∈ D if and only if

c1x̃1 + · · · + csx̃s = 0 (mod 2), x̃j = (1 − xj)/2, j = 1, . . . , s,

where

cj =

{
1, if j ∈ I,
0, if j 6∈ I.
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However, as remarked earlier, design points can be chosen by XI(x1, . . . , xs) = −1. There-
fore, in general there may be a constant term c0 = 0 or 1:

c0 + c1x̃1 + · · · + csx̃s = 0 (mod 2), x̃j = (1 − xj)/2, j = 1, . . . , s. (7)

In this sense, F is a proper subset of no regular fractional factorial design if and only if
the points of F , considered as a subset of Fs

2 = {0, 1}s, are not contained in any affine
hyperplane of the form (7), i.e., we can form a basis of Fs

2 = {0, 1}s as the differences of
the vectors in F . This is the reason we call the class affinely full-dimensional.

The question of determining whether a given design is an affinely full-dimensional is
immediately read off from its indicator function.

Lemma 2.2. Let F be a fractional factorial design and (3) be its indicator function. Then
F is an affinely full-dimensional factorial design if and only if |bI | < b∅ for all I ∈ P .

Proof. Obvious from Proposition 4.2 and Corollary 4.3 of [17]. Q.E.D.

3 D-optimality of the affinely full-dimensional facto-

rial designs

In Section 2, we define a new class of the non-regular fractional factorial designs, namely,
affinely full-dimensional factorial designs. The affinely full-dimensional factorial designs
have a desirable property that all the parameters are always simultaneously identifiable in
the saturated model. Next problem of interest is whether this class includes good designs
or not in view of various optimality criteria. In this paper, we consider D-optimality of
the designs. For given r and s, the D-optimal design is the matrix M ∈ {−1, 1}r×(s+1)

which maximizes | det(M ′M)|. The D-optimal designs minimize the generalized variance
of β̂ ([33]).

3.1 D-optimal designs for the saturated cases

First we consider the saturated cases, i.e., the cases of r = s + 1. In this case, the
maximization of | det(M ′M)| reduces to the maximization of | det M |, M ∈ {−1, 1}r×r.
This problem is known as the Hadamard maximal determinant problem. Despite a century
of works by mathematicians, this problem remains unanswered in general.

To investigate the relation between the maximal determinant problem and the affinely
full-dimensional factorial designs, we show a basic theorem.

Theorem 3.1. A design with a design matrix M is affinely full-dimensional factorial if
and only if det M is not divisible by 2r.

We define M and M̃ as in the proof of Lemma 2.1. The columns of these matrices are
numbered from 0 to s = r− 1 and the rows are numbered from 1 to r. Note that the first
row of M̃ is (1, 0, . . . , 0). This matrix has the following property.
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Lemma 3.1. det M̃ is an odd integer if and only if M is a design matrix of an affinely
full-dimensional factorial design.

Proof of Lemma 3.1. If M is a design matrix of a subset fractional factorial design or
a regular fractional factorial design, there exists 1 ≤ j1 < · · · < jp ≤ s, p ≥ 2 satisfying

p∏
`=1

mij`
= 1

for i = 1, . . . , r. From the definition of M̃ , this is equivalent to

p∑
`=1

m̃ij`
= 0 (mod 2)

for i = 1, . . . , r. It means that M̃ is a singular matrix in F2, i.e., det M̃ = 0 (mod 2).
Q.E.D.

Proof of Theorem 3.1. From the definition, we construct M̃ from M as follows:

• subtracting the left-most column of M from the other columns,

mij ← mij − mi0, i = 1, . . . , r, j = 1, . . . , s,

• dividing the columns except for the left-most column by −2,

mij ← mij/(−2), i = 1, . . . , r, j = 1, . . . , s.

Note that, after the first operation, no column of M is (0, . . . , 0)′ from our assumption.

Therefore (−2)r−1 det M̃ = det M holds. From Lemma 3.1, we have proved the theorem.
Q.E.D.

Theorem 3.1 shows that whether a given non-regular fractional factorial design is affinely
full-dimensional or not is judged from its determinant. Using this characteristic, we
investigate the D-optimal designs.

There are many literature reporting the solution of the Hadamard maximal deter-
minant problem for specific r. The most basic result was given by Hadamard ([19]) as
det M ≤ rr/2, where the bound is achieved only for Hadamard matrices. Paley has con-
jectured that a Hadamard matrix exists for every r = 0 (mod 4). The lowest order for
which a Hadamard matrix is not yet obtained is r = 668 ([35]). For a design where the
design matrix M is a Hadamard matrix, it is a subset fractional factorial design since the
bound reduces to (4k)r/2 = 2rkr/2. In fact, the product of the elements in each row is
1 from the property of Hadamard matrix. Therefore we consider the case that r is not
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Table 1: Summary whether the maximal determinant matrices are affinely full-
dimensional factorial design (Yes) or subset fractional factorial design (No) for r =
4, . . . , 99. The values of the maximal determinant are given as divided by 2r−1. The
values that achieve the bounds ([2], [14], [45] and [15]) are underlined.

r class r class Det/2r−1 r class Det/2r−1 r class Det/2r−1

4 No 5 Yes 3 6 Yes 5 7 Yes 9
8 No 9 No 7 · 23 10 No 9 · 24 11 No 26 · 5
12 No 13 Yes 5 · 36 14 Yes 13 · 36 15 Yes 36 · 5 · 7
16 No 17 No 216 · 5 18 No 17 · 28 · 28 19 ?
20 No 21 Yes 59 · 29 22 ? 23 ?
24 No 25 No 7 · 612 26 No 25 · 312 · 212 27 ?
28 No 29 ? 30 Yes 29 · 714 31 ?
32 No 33 ? 34 ? 35 ?
36 No 37 ? 38 Yes 37 · 918 39 ?
40 No 41 No 9 · 1020 42 No 41 · 520 · 220 43 ?
44 No 45 ? 46 Yes 45 · 1122 47 ?
48 No 49 ? 50 No 49 · 624 · 224 51 ?
52 No 53 ? 54 Yes 53 · 1326 55 ?
56 No 57 ? 58 ? 59 ?
60 No 61 Yes 11 · 1530 62 Yes 61 · 1530 63 ?
64 No 65 ? 66 No 65 · 832 · 232 67 ?
68 No 69 ? 70 ? 71 ?
72 No 73 ? 74 No 73 · 936 · 236 75 ?
76 No 77 ? 78 ? 79 ?
80 No 81 ? 82 No 81 · 1040 · 240 83 ?
84 No 85 ? 86 Yes 85 · 2142 87 ?
88 No 89 ? 90 No 89 · 1144 · 244 91 ?
92 No 93 ? 94 ? 95 ?
96 No 97 ? 98 No 97 · 1248 · 248 99 ?
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divisible by 4. According to the literature reporting the maximal determinant matrices,
we investigate whether the D-optimal design matrix is affinely full-dimensional factorial
or not for r < 100. The results are given in Table 1. In Table 1, “?” means that the
maximal determinant matrix is not obtained (or the maximality is not proved) at present.
We also show the values of the maximal determinant divided by 2r−1 for r = 1, 2, 3 (mod
4). We underline the values, when the values achieve the known bounds such as [2] for
r ≡ 1 (mod 4), [14] and [45] for r ≡ 2 (mod 4) and [15] for r ≡ 3 (mod 4). We omit the ref-
erence for the Hadamard matrices. For the other maximal determinant matrices, see [27]
for r = 5; [44] for r = 6, 7; [16] for r = 9, 10, 11; [36] for r = 9, 10, 15; [45] for r = 10, 26;
[18] for r = 11; [34] for r = 13, 25, 50; [12] for r = 13; [14] for r = 14, 18, 26, 30, 38; [10]
for r = 14, 18; [9] for r = 15, 74, 82, 90, 98; [11] and [29] for r = 15; [41], [28] and [21]
for r = 17; [50] for r = 18, 26, 30, 38; [7] and [30] for r = 21; [4] for r = 25, 61; [23]
for r = 26, 30, 38, 42, 46, 50, 54, 66; [3], [43], [37] and [38] for r = 41; [48] and [22] for
r = 42, 66; [51] for r = 50, 62; [49] for r = 54; [31] and [32] for r = 61; [52] for r = 66; [5]
for r = 86; [24] for r = 90.

Table 1 shows an interesting periodicity. We present the following conjecture.

Conjecture 3.1. For r = 5, 6, 7 (mod 8), D-optimal design is affinely full-dimensional
factorial. For r = 0, 1, 2, 3, 4 (mod 8), D-optimal design is subset fractional factorial.

Though the authors do not succeed in proving this conjecture, we do not find any
counterexample at present. We consider special cases instead. For the case r = 1 (mod
4), [2] gives a bound

det M ≤ (2r − 1)1/2(r − 1)(r−1)/2. (8)

See also [14] and [45]. This bound is achievable only if 2r − 1 is a perfect square. In
fact, for r = 5, 13, 25, 41, 61 in Table 1, the maximum determinant achieves the bound,
whereas the maximal determinant matrix has not been founded at present for r = 85.
For the cases that the bound is attained, it is easy to prove the conjecture.

Proposition 3.1. For r = 1 (mod 8) and the bound (8) is attained, the maximal deter-
minant matrix is chosen as a design matrix for the subset fractional factorial design. On
the other hand, for r = 5 (mod 8) and the bound (8) is attained, the maximal determinant
matrix is chosen as a design matrix for the affinely full-dimensional factorial design.

Proof. Write 2r − 1 = m2 and r = 4k + 1. Then it holds

(2r − 1)1/2(r − 1)(r−1)/2 = m2r−1k2k.

Since m is an odd integer, the maximal determinant is divisible by 2r if and only if k is
an even integer, i.e., r = 1 (mod 8). Q.E.D.

Similarly, for the case that r = 2 (mod 4), [14] and [45] give a bound

det M ≤ 2(r − 1)(r − 2)(r−2)/2. (9)
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In Table 1, all the maximum determinants achieve the bound for r = 6, 10, . . . , 98 except
for unsolved cases, r = 22, 34, 58, 70, 78, 94. For the cases that the bound is achieved, it
is also easy to prove the conjecture.

Proposition 3.2. For r = 2 (mod 8) and the bound (9) is attained, the maximal deter-
minant matrix is chosen as a design matrix for the subset fractional factorial design. On
the other hand, for r = 6 (mod 8) and the bound (9) is attained, the maximal determinant
matrix is chosen as a design matrix for the affinely full-dimensional factorial design.

Proof. For r = 8k + 2, k ≥ 1, the bound,

2(r − 1)(r − 2)(r−2)/2 = (r − 1)k4k2r+4k−1,

is divisible by 2r since k ≥ 1. For r = 8k + 6, k ≥ 0, the bound,

2(r − 1)(r − 2)(r−2)/2 = (r − 1)(2k + 1)4k+22r−1,

is not divisible by 2r since both r − 1 and 2k + 1 are odd integers. Q.E.D.

For the cases that r = 3 (mod 4), though a similar bound is given by [15], the maximal
determinant matrix attaining the bound is not found at present except for r = 3.

3.2 D-optimal designs for 4 and 5 factors cases

Next we consider the non-saturated cases of s = 4, 5. We enumerate all the design matrices
of the runs r ≤ 10 and obtain the D-optimal designs. We investigate whether the D-
optimal designs are the affinely full-dimensional factorial design or the subset fractional
factorial design. The result is summarized in Table 2 and 3. Note that the factorial design
is always affinely full-dimensional for r > 8, s = 4 since r > 2s−1.

We have not yet derived any clear relation between the D-optimality and the affine
full-dimensionality like Conjecture 3.1 at present from the results in Table 2 and 3.

4 Discussion

We classify non-regular designs by whether it is a proper subset of some regular fractional
factorial design (namely, subset fractional factorial design) or not (namely, affinely full-
dimensional factorial design). We also give a geometrical interpretation of each class, i.e.,
the affinely full-dimensional factorial design is characterized as the design with the points
which are not contained in any affine hyperplane. One justification of our definition is
the simultaneous identifiability of the parameters for the main effect model, which is one
of the most important concepts in the theory of designed experiments. Therefore, if the
main purpose of the data analysis is the estimation of the parameters for the main effect
model, the strategy of considering the affinely full-dimensional factorial designs is useful.
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Table 2: D-optimal designs for 4 factors
r 5 6 7

D-optimal
design

x1 x2 x3 x4

1 1 1 1
1 1 −1 −1
1 −1 1 −1

−1 1 1 −1
−1 −1 −1 1

x1 x2 x3 x4

1 1 1 1
1 1 1 −1
1 1 −1 1
1 −1 −1 −1

−1 1 −1 −1
−1 −1 1 1

x1 x2 x3 x4

1 1 1 1
1 1 1 −1
1 −1 −1 1
1 −1 −1 −1

−1 1 −1 1
−1 1 −1 −1
−1 −1 1 1

class affinely full-dim. affinely full-dim. subset FF
relation none none x1x2x3 = 1
max | det M ′M | 28 · 32 210 · 5 212 · 3
r 8 9 10

D-optimal
design

x1 x2 x3 x4

1 1 1 1
1 1 1 −1
1 −1 −1 1
1 −1 −1 −1

−1 1 −1 1
−1 1 −1 −1
−1 −1 1 1
−1 −1 1 −1

x1 x2 x3 x4

1 1 1 1
1 1 1 −1
1 1 −1 1
1 −1 1 1
1 −1 −1 −1

−1 1 1 1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

x1 x2 x3 x4

1 1 1 1
1 1 1 −1
1 1 −1 1
1 −1 1 1
1 −1 −1 −1

−1 1 1 1
−1 1 1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

class regular FF affinely full-dim. affinely full-dim.
relation x1x2x3 = 1 none none
max | det M ′M | 215 212 · 13 212 · 3 · 7
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Table 3: D-optimal designs for 5 factors

r 6 7

D-optimal
design

x1 x2 x3 x4 x5

1 1 1 1 1
1 1 1 −1 −1
1 1 −1 1 −1
1 −1 −1 −1 1

−1 1 −1 −1 1
−1 −1 1 1 −1

x1 x2 x3 x4 x5

1 1 1 1 1
1 1 1 −1 −1
1 1 −1 1 −1
1 −1 1 −1 1
1 −1 −1 1 1

−1 1 −1 −1 1
−1 −1 1 1 −1

class affinely full-dim. subset FF
relation none x2x3x4x5 = 1
max |det M ′M | 210 · 52 216

r 8 9 10

D-optimal
design

x1 x2 x3 x4 x5

1 1 1 1 1
1 1 1 −1 −1
1 −1 −1 1 1
1 −1 −1 −1 −1

−1 1 −1 1 −1
−1 1 −1 −1 1
−1 −1 1 1 −1
−1 −1 1 −1 1

x1 x2 x3 x4 x5

1 1 1 1 1
1 1 1 1 −1
1 1 1 −1 −1
1 −1 −1 1 1
1 −1 −1 −1 −1

−1 1 −1 1 −1
−1 1 −1 −1 1
−1 −1 1 1 −1
−1 −1 1 −1 1

x1 x2 x3 x4 x5

1 1 1 1 1
1 1 1 1 −1
1 1 1 −1 1
1 1 −1 −1 −1
1 −1 −1 1 1
1 −1 −1 −1 −1

−1 1 −1 1 1
−1 1 −1 −1 −1
−1 −1 1 1 −1
−1 −1 1 −1 1

class regular FF subset FF affinely full-dim.
relation x1x2x3 = x1x4x5 = 1 x1x2x3 = 1 none
max |det M ′M | 218 216 · 7 214 · 72
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It is an interesting topic to investigate whether various “good” designs are the affinely
full-dimensional factorial designs or not. In this paper, we consider this problem from the
concept of D-optimality. In particular, from the investigation of the D-optimal designs
for the saturated cases, interesting mod 8 periodicity is suggested. Though the conjec-
ture is not proved at present, it holds for all the proved D-optimal designs under 100
runs. We believe that the conjecture interests researchers studying Hadamard maximum
determinant problem.

It is also important to consider other optimal criteria such as A- or E-optimality. As
an initial investigation, we have confirmed that the D-optimal designs of saturated designs
for s = 4, 5 in Table 2 and 3 are also A-optimal and E-optimal designs.
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123–132.

[15] H. Ehlich (1964b). Determinantenabschätzungen für binäre Matrizen mit N ≡ 3 mod
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