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Abstract

Error estimates with explicit constants are given for approximations of functions, defi-
nite integrals and indefinite integrals by means of the Sinc approximation. Although in the
literature various estimates have already been given for these approximations, they were
basically for examining the rates of convergence, and several constants were left unevalu-
ated. Giving more explicit estimates, i.e., evaluating these constants is of great practical
importance, since by which we can reinforce the useful formulas with the concept of “veri-
fied numerical computations.” We also improve some formulas themselves to decrease their
computational costs. Numerical examples that confirm the theory are also given.

1 Introduction

The Sinc approximation on the whole real line is expressed as

F (x) ≈
n∑

j=−n

F (jh)S(j, h)(x), x ∈ R, (1.1)

where S(j, h)(x) is the so-called Sinc function defined by

S(j, h)(x) =
sin[π(x/h − j)]

π(x/h − j)
,

and h is a mesh size appropriately selected depending on n. A variety of approximation formulas
are derived from the Sinc approximation. For example, the Sinc quadrature for the integral on
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(−∞, ∞) is derived by integrating both sides of (1.1):

∫ ∞

−∞
F (x) dx ≈

∫ ∞

−∞


n∑

j=−n

F (jh)S(j, h)(x)

 dx = h
n∑

j=−n

F (jh), (1.2)

which coincides with the (truncated) trapezoidal formula. Here the relation
∫ ∞
−∞ S(j, h)(x) dx =

h is used. Another example is the Sinc indefinite integration expressed as∫ x

−∞
F (σ) dσ ≈

∫ x

−∞


n∑

j=−n

F (jh)S(j, h)(σ)

 dσ =
n∑

j=−n

F (jh)J(j, h)(x), (1.3)

where the basis function J(j, h)(x) is computed via the sine integral Si(x) =
∫ x
0 {sin(σ)/σ}dσ:

J(j, h)(x) = h

{
1
2

+
1
π

Si[π(x/h − j)]
}

. (1.4)

Other examples include Sinc indefinite convolution, Harmonic-Sinc approximation, approxima-
tion of derivatives, approximation of Hilbert and Cauchy transforms, and approximation of
inversion of Fourier and Laplace transforms (see, for example, Stenger [20,21]).

When the target interval is finite, say (a, b), variable transformations are utilized. The most
frequently-used transformation has been the Single-Exponential (SE ) transformation [20, 21],
while recently a stronger transformation, called the Double-Exponential (DE ) transformation
has been introduced [8, 25]. Under these transformations, some approximation formulas de-
scribed above have been proved to enjoy exponential accuracy. For example, let us consider the
Sinc approximation of a function f with the SE transformation, which we denote fSE-Sinc here.
The error of the approximation can be estimated as (Stenger [20,21]):

sup
t∈(a, b)

|f(t) − fSE-Sinc(t)| ≤ C
√

n e−
√

πdµn, (1.5)

where d and µ are characteristic constants of f , and C is an “implicit” constant that does not
depend on n, but can depend on other parameters in the scheme. If the DE transformation is
used instead, the approximate function fDE-Sinc enjoys the faster convergence [27]:

sup
t∈(a, b)

|f(t) − fDE-Sinc(t)| ≤ C e−πdn/ log(2dn/µ). (1.6)

Again, C is an implicit constant that at least does not depend on n. In either case, the fast
convergence properties encouraged many authors to develop numerical schemes for a variety of
problems, such as Fredholm integral equations [11, 15, 16], Volterra integral equations [11, 17],
initial value problems of ordinary differential equations [3, 12], boundary value problems of
second-order ordinary differential equations [2, 19, 23], and boundary value problems of fourth-
order ordinary differential equations [9, 13, 18]. As a consequence, today such Sinc schemes
(often grouped as the Sinc methods) are considered to be one of the most useful numerical
methods that can apply to a wide range of problems.

The main aim of the present paper is to give more explicit error estimates than the existing
estimates mentioned above, by clarifying the explicit forms of the constant C’s. The reason of
this is that in order to reinforce the promising schemes with the idea of verified numerical com-
putation, which is a modern tool to design reliable and practical numerical libraries, estimates
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must be given without any ambiguity. See, for example, Corliss–Rall [4], Eiermann [5] and
Petras [14] for numerical integration with guaranteed accuracy, where the errors of quadrature
rules (such as Newton–Cotes or Gaussian formulas) have been estimated by strict inequalities
with explicit constants. In other words, the existing estimates for the Sinc formulas are perfect
in that they successfully reveal the convergence rates (note that the constant C’s above are
proved to be independent of n), but if we hope to know the quantity of the errors exactly, more
explicit estimates are desired. Giving the sharp estimates of the constant C’s is actually not
an easy task, especially in the case of the DE transformation. In this project, we show esti-
mates of the constant C’s with explicit forms, concentrating on the approximation formulas for
functions (1.1), definite integrals (1.2), and indefinite integrals (1.3), since they can be handled
alike. In the case of indefinite integrals, we not only give the explicit constants, but also show
that the existing estimates of the convergence rates can be improved.

As a second, subsidiary aim, we also improve some of the existing schemes themselves to
reduce their computational cost. Recall that the original Sinc sampling formula is defined as
an infinite sum, i.e.

F (x) ≈
∞∑

j=−∞
F (jh)S(j, h)(x), x ∈ R, (1.7)

which is then truncated in the formula (1.1) assuming that |F (x)| decays sufficiently fast as
x → ±∞. In the existing schemes, the truncation is always done symmetrically; i.e.,

∑∞
−∞ is

approximated by
∑n

−n for some n. In this case the number of evaluation points of F is 2n + 1.
It is, however, obviously not optimal when function’s decay rates as x → −∞ and x → ∞ are
different. Suppose, for example, it is known that the function decays faster as x → −∞ than
as x → ∞. Then it should make sense to choose some M < n and modify the formula (1.1) as

F (x) ≈
n∑

j=−M

F (jh)S(j, h)(x), x ∈ R, (1.8)

which obviously reduces the cost to M + n + 1 (< 2n + 1). The usefulness of the form (1.8)
has been pointed out by Stenger [20,21] for some limited range of formulas. We extend this to
other formulas covered in the present paper.

The organization of this paper is as follows. The main estimate results are stated in Section 2.
For readers’ convenience, we also briefly review conventional error analyses here. Then in
Section 3 several numerical results are shown to confirm the theory. The proofs of the main
theorems are left to Section 4. Section 5 is devoted to the conclusions.

2 Conventional and new error analyses for Sinc approximation,
Sinc quadrature and Sinc indefinite integration

We first describe approximation formulas incorporated with variable transformations, and then
summarize the conventional and new error analyses.
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2.1 SE-Sinc approximation, SE-Sinc quadrature and SE-Sinc indefinite inte-
gration

The SE transformation is defined by

t = ψSE(x) =
b − a

2
tanh

(x

2

)
+

b + a

2
,

and its inverse is expressed as

x = ψ−1
SE (t) = log

(
t − a

b − t

)
.

The SE transformation maps x ∈ R into t ∈ (a, b). Thus by considering F (x) = f(ψSE(x))
in (1.8), we can apply the Sinc approximation (1.8) to a function f(t) defined on a finite
interval (a, b):

f(ψSE(x)) ≈
N∑

j=−M

f(ψSE(jh))S(j, h)(x), x ∈ R.

Since t = ψSE(x), this approximation is equivalent to

f(t) ≈
N∑

j=−M

f(ψSE(jh))S(j, h)(ψ−1
SE (t)), t ∈ (a, b). (2.1)

How the upper and lower bounds of the summation, N and M , are determined will be discussed
later. We call this approximation the SE-Sinc approximation. Similarly, the SE transformation
can be utilized for definite integration (1.2) and indefinite integration (1.3) as follows:∫ b

a
f(t) dt =

∫ ∞

−∞
f(ψSE(x))ψ′

SE(x) dx ≈ h

N∑
j=−M

f(ψSE(jh))ψ′
SE(jh), (2.2)

∫ t

a
f(s) ds =

∫ ψ−1
SE (t)

−∞
f(ψSE(σ))ψ′

SE(σ) dσ ≈
N∑

j=−M

f(ψSE(jh))ψ′
SE(jh)J(j, h)(ψ−1

SE (t)). (2.3)

We call these approximations the SE-Sinc quadrature and the SE-Sinc indefinite integration,
respectively. Note that, as for indefinite integration, there is another type of formulas [6, 7, 20]
where the Sinc function S(j, h) is employed as a basis function, instead of J(j, h). In the
present paper, however, we will not get into them but focus solely on (2.3), since the other type
is nothing but the combination of (2.1) and (2.3), and thus can be analyzed in a like manner.

2.2 DE-Sinc approximation, DE-Sinc quadrature and DE-Sinc indefinite in-
tegration

Recently it has turned out that replacing the SE transformation with the DE transformation
accelerates the convergence rate of the Sinc schemes in many cases [8, 25]; in fact, certain
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optimality has been proved [22,24]. The DE transformation and its inverse are

t = ψDE(x) =
b − a

2
tanh

(π

2
sinh(x)

)
+

b + a

2
,

x = ψ−1
DE (t) = log

 1
π

log
(

z − a

b − z

)
+

√
1 +

{
1
π

log
(

z − a

b − z

)}2
 .

The DE transformation maps the whole real line R onto a finite interval (a, b), like as the SE
transformation. Hence, in a similar manner, the following formulas can be obtained:

DE-Sinc approximation: f(t) ≈
N∑

j=−M

f(ψDE(jh))S(j, h)(ψ−1
DE (t)), (2.4)

DE-Sinc quadrature:
∫ b

a
f(t) dt ≈ h

N∑
j=−M

f(ψDE(jh))ψ′
DE(jh), (2.5)

DE-Sinc indefinite integration:
∫ t

a
f(s) ds ≈

N∑
j=−M

f(ψDE(jh))ψ′
DE(jh)J(j, h)(ψ−1

DE (t)). (2.6)

Like in the SE-Sinc case, there is another formula for indefinite integration [26]; but in the
present paper (from the same reason as above) we focus on (2.6).

2.3 Function space

In order that the formulas above work accurately, the transformed function by the SE transfor-
mation or the DE transformation should be analytic and bounded on some strip domain,

Dd = {ζ ∈ C : | Im ζ| < d},

for a positive constant d. To be more specific, we introduce the following function space.

Definition 2.1. Let D be a simply-connected domain which satisfies (a, b) ⊂ D , and let K, α, β
be positive constants. Then LK,α,β(D) denotes the family of all functions f that are analytic
on D , and satisfy for all z in D the condition that

|f(z)| ≤ K|Qα,β(z)|,

where Qα,β(z) = (z − a)α(b − z)β . For simplicity, we write Q1,1(z) as Q(z).

In what follows, D is either ψSE(Dd) or ψDE(Dd), where

ψSE(Dd) =
{

z ∈ C :
∣∣∣∣arg

(
z − a

b − z

)∣∣∣∣ < d

}
,

ψDE(Dd) =

z ∈ C :

∣∣∣∣∣∣arg

 1
π

log
(

z − a

b − z

)
+

√
1 +

{
1
π

log
(

z − a

b − z

)}2
∣∣∣∣∣∣ < d

 .

We here would like to emphasize that in the new theorems given below, estimates will be given
explicitly using only the known parameters regarding the function space: i.e., K, α, β, d, and
b − a.
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2.4 Error analyses for the SE-Sinc case: existing and new results

As for the convergence rate of the SE-Sinc approximation (2.1), the next theorem has been
known.

Theorem 2.2 (Stenger [20, Theorem 4.2.5]). Let f ∈ LK,α,β(ψSE(Dd)) for d with 0 < d < π.
Let µ = min{α, β}, n be a positive integer, and h be selected by the formula

h =

√
πd

µn
. (2.7)

Furthermore, let M and N be positive integers defined by{
M = n, N = dαn/βe (if µ = α)
N = n, M = dβn/αe (if µ = β)

(2.8)

respectively. Then there exists a constant C independent of n such that

sup
t∈(a, b)

∣∣∣∣∣∣f(t) −
N∑

j=−M

f(ψSE(jh))S(j, h)(ψ−1
SE (t))

∣∣∣∣∣∣ ≤ C
√

n e−
√

πdµn. (2.9)

Although it successfully reveals the fundamental convergence property, the constant C
in (2.9) is left unestimated except the fact that it is independent of n. It is indispensable,
however, to know its concrete form when we hope to guarantee the accuracy of the approxima-
tion. In this paper, we give the constant explicitly below.

Theorem 2.3. Assume that the assumptions of Theorem 2.2 are fulfilled. Then the inequal-
ity (2.9) holds with

C =
2K(b − a)α+β

µ

[
2

πd(1 − e−2
√

πdµ){cos(d/2)}α+β
+

√
µ

πd

]
.

Note that the constant C here depends only on K, α, β, d, and b − a, which are all known
from the assumptions.

For the SE-Sinc quadrature (2.2), an estimate has been again given by Stenger [20].

Theorem 2.4 (Stenger [20, Theorem 4.2.6]). Let fQ ∈ LK,α,β(ψSE(Dd)) for d with 0 < d < π.
Let µ = min{α, β}, n be a positive integer, and h be selected by the formula

h =

√
2πd

µn
. (2.10)

Furthermore, let M and N be positive integers defined by (2.8). Then there exists a constant
C independent of n such that∣∣∣∣∣∣

∫ b

a
f(t) dt − h

N∑
j=−M

f(ψSE(jh))ψ′
SE(jh)

∣∣∣∣∣∣ ≤ C e−
√

2πdµn. (2.11)
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Again, the constant C in (2.11) is not given explicitly in the above theorem. We give its
concrete form below.

Theorem 2.5. Assume that the assumptions of Theorem 2.4 are fulfilled. Then the inequal-
ity (2.11) holds with

C =
2K(b − a)α+β−1

µ

[
2

(1 − e−
√

2πdµ){cos(d/2)}α+β
+ 1

]
.

Remark 1. Beighton–Noble [1] have given an error estimate for the (modified) SE-Sinc quadra-
ture, but its convergence rate has been polynomial with respect to h. This is because the Euler–
Maclaurin summation formula has been used in their analysis. In the present paper, the error
is analyzed based on Stenger’s [20] idea, and the exponential convergence rate is guaranteed.

The error analysis of the SE-Sinc indefinite integration (2.3) has been given by Haber [6],
only in the case M = N .

Theorem 2.6 (Haber [6, Theorem 2]). Let fQ ∈ LK,µ,µ(ψSE(Dd)) for d with 0 < d < π. Let
n be a positive integer, and h be selected by the formula (2.7). Then there exists a constant C
independent of n such that

sup
t∈(a, b)

∣∣∣∣∣∣
∫ t

a
f(s) ds −

n∑
j=−n

f(ψSE(jh))ψ′
SE(jh)J(j, h)(ψ−1

SE (t))

∣∣∣∣∣∣ ≤ C
√

n e−
√

πdµn.

We improve this analysis as follows.

Theorem 2.7. Let fQ ∈ LK,α,β(ψSE(Dd)) for d with 0 < d < π. Let µ = min{α, β}, n be a
positive integer, and h be selected by the formula (2.7). Furthermore, let M and N be positive
integers defined by (2.8). Then it follows that

sup
t∈(a, b)

∣∣∣∣∣∣
∫ t

a
f(s) ds −

N∑
j=−M

f(ψSE(jh))ψ′
SE(jh)J(j, h)(ψ−1

SE (t))

∣∣∣∣∣∣ ≤ C e−
√

πdµn,

where

C =
2K(b − a)α+β−1

µ

[
1

d(1 − e−2
√

πdµ){cos(d/2)}α+β

√
πd

µ
+ 1.1

]
.

Notice the differences between Theorem 2.6 and Theorem 2.7; the latter not only reveals
the concrete form of the constant C, but also gives a sharper rate of convergence (notice

√
n is

now removed). It also adapts the optimal formula where the truncation is done at M and N
with (generally) M 6= N .

2.5 Error analyses for the DE-Sinc case: existing and new results

Next we describe the results for the DE-Sinc cases. First, we would like to emphasize that
all the existing schemes and analyses have been given only in the case M = N . In the new
theorems below, however, we cover the optimal cases M 6= N .

The convergence rate of the DE-Sinc approximation (2.4) can be observed by the next
theorem, which is faster than the SE-Sinc case.
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Theorem 2.8 (Tanaka et al. [27, Theorem 3.1]). Let f ∈ LK,µ,µ(ψDE(Dd)) for d with 0 < d <
π/2. Let n be a positive integer with n > µ/(2d), and h be selected by the formula

h =
log(2dn/µ)

n
. (2.12)

Then there exists a constant C independent of n such that

sup
t∈(a, b)

∣∣∣∣∣∣f(t) −
n∑

j=−n

f(ψDE(jh))S(j, h)(ψ−1
DE (t))

∣∣∣∣∣∣ ≤ C e−πdn/ log(2dn/µ).

We improve the estimate as follows:

Theorem 2.9. Let f ∈ LK,α,β(ψDE(Dd)) for d with 0 < d < π/2. Let µ = min{α, β}, ν =
max{α, β}, n be a positive integer with n ≥ (ν e)/(2d), and h be selected by the formula (2.12).
Furthermore, let M and N be positive integers defined by{

M = n, N = n − blog(β/α)/hc (if µ = α)
N = n, M = n − blog(α/β)/hc (if µ = β)

(2.13)

respectively. Then it follows that

sup
t∈(a, b)

∣∣∣∣∣∣f(t) −
N∑

j=−M

f(ψDE(jh))S(j, h)(ψ−1
DE (t))

∣∣∣∣∣∣ ≤ C1

[
C2

1 − e−πµ e
+ µ e

π
2
ν

]
e−πdn/ log(2dn/µ),

where the constants C1 and C2 are defined by

C1 =
2K(b − a)α+β

πdµ
, (2.14)

C2 =
2

π cosα+β(π
2 sin d) cos d

. (2.15)

Remark 2. One may notice that the conditions on n are different between Theorem 2.8 and
Theorem 2.9. The condition n > µ/(2d) (in Theorem 2.8) is needed to assure the positiveness of
the mesh size h. In Theorem 2.9, it is rewritten as n ≥ (ν e)/(2d); this is because of the following
reasons. Firstly, in order to modify the scheme itself so that it allows optimal truncation with
M and N , we need n > ν/(2d) to assure the positiveness of M and N in (2.13). Secondly, with
the condition n > ν/(2d), it is not possible to evaluate the maximum of 1/ log(2dn/µ), which
is included in the constant (see (4.4) in the proof). In order to establish explicit estimates, we
further would like to relax the condition to n ≥ (ν e)/(2d), which still seems reasonable, and
then the term can be simply estimated as 1/ log(2dn/µ) ≤ 1/ log(2dn/ν) ≤ 1/ log(e) = 1.

For the DE-Sinc quadrature (2.5), the next error analysis has been given.

Theorem 2.10 (Tanaka et al. [28, Theorem 3.1]). Let fQ ∈ LK,µ,µ(ψDE(Dd)) for d with
0 < d < π/2. Let n be a positive integer with n > µ/(4d), and h be selected by the formula

h =
log(4dn/µ)

n
. (2.16)
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Then there exists a constant C independent of n such that∣∣∣∣∣∣
∫ b

a
f(t) dt − h

n∑
j=−n

f(ψDE(jh))ψ′
DE(jh)

∣∣∣∣∣∣ ≤ C e−2πdn/ log(4dn/µ).

We refine the result as follows.

Theorem 2.11. Let fQ ∈ LK,α,β(ψDE(Dd)) for d with 0 < d < π/2. Let µ = min{α, β}, ν =
max{α, β}, n be a positive integer with n ≥ (ν e)/(4d), and h be selected by the formula (2.16).
Furthermore, let M and N be positive integers defined by (2.13). Then it follows that∣∣∣∣∣∣

∫ b

a
f(t) dt − h

N∑
j=−M

f(ψDE(jh))ψ′
DE(jh)

∣∣∣∣∣∣ ≤ C̃1

[
C̃2

1 − e−
π
2
µ e

+ e
π
2
ν

]
e−2πdn/ log(4dn/µ),

where the constants C̃1 and C̃2 are defined by

C̃1 =
2K(b − a)α+β−1

µ
, (2.17)

C̃2 =
2

cosα+β(π
2 sin d) cos d

. (2.18)

The DE-Sinc indefinite integration (2.6) has been proposed by Muhammad–Mori [10], where
a rough convergence analysis has also been discussed. We present here their results as a theorem
by clarifying mathematical assumptions.

Theorem 2.12 (Muhammad–Mori [10]). Let fQ ∈ LK,µ,µ(ψDE(Dd)) for d with 0 < d < π/2.
Let µ′ = µ− ε for ε with 0 < ε < µ, n be a positive integer with n > µ′/(2d), and h be selected
by the formula

h =
log(2dn/µ′)

n
.

Then there exists a constant C independent of n such that

sup
t∈(a, b)

∣∣∣∣∣∣
∫ t

a
f(s) ds −

n∑
j=−n

f(ψDE(jh))ψ′
DE(jh)J(j, h)(ψ−1

DE (t))

∣∣∣∣∣∣ ≤ C e−πdn/ log(2dn/µ′).

By modifying the scheme and clarifying the concrete form of constants, we give a more
explicit estimate, and additionally obtain a sharper rate of convergence as follows.

Theorem 2.13. Let fQ ∈ LK,α,β(ψDE(Dd)) for d with 0 < d < π/2. Let µ = min{α, β}, ν =
max{α, β}, n be a positive integer with n ≥ (ν e)/(2d), and h be selected by the formula (2.12).
Furthermore, let M and N be positive integers defined by (2.13). Then it follows that

sup
t∈(a, b)

∣∣∣∣∣∣
∫ t

a
f(s) ds −

N∑
j=−M

f(ψDE(jh))ψ′
DE(jh)J(j, h)(ψ−1

DE (t))

∣∣∣∣∣∣
≤ C̃1

d

[
C̃2

2
1

1 − e−πµ e
+ e

π
2
(α+β)

]
log(2dn/µ)

n
e−πdn/ log(2dn/µ),

where the constants C̃1 and C̃2 are defined by (2.17) and (2.18), respectively.
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3 Numerical examples

In this section, we present numerical results that confirm the estimates for the six approxima-
tions: (2.1)–(2.6). All programs are written in C with double-precision floating-point arithmetic,
and GNU Scientific Library is used for computing the sine integral function in (1.4). We set
the interval (a, b) to (−1, 1), and consider test problems below.

Example 1 (approximation of a function). Consider the function

f1(t) = (1 + t2)1/2(1 + t)1/2(1 − t)3/4.

This function is analytic on the domain ψSE(Dπ/2) and ψDE(Dπ/6), and satisfies

|f1(z)| ≤ 2|1 + z|1/2|1 − z|3/4,

for all z ∈ ψSE(Dπ/2) and z ∈ ψDE(Dπ/6).

Example 2 (approximation of a definite integral). Consider the function

f2(t) =
1
2
(1 + t2)1/2 +

1
8
(1 + t)−1/2, (3.1)

and its definite integral on (−1, 1):∫ 1

−1
f2(t) dt =

1
4

{
2 arcsinh(1) + 3

√
2
}

.

The function f2 is analytic on the domain ψSE(Dπ/2) and ψDE(Dπ/6), and satisfies

|f2(z)Q(z)| ≤
(

23/4 +
1
8

)
|1 + z|1/2|1 − z|1,

for all z ∈ ψSE(Dπ/2) and z ∈ ψDE(Dπ/6).

Example 3 (approximation of an indefinite integral). Consider the function f2 of (3.1) again,
and its indefinite integral on (−1, 1):∫ t

−1
f2(s) ds =

1
4

{
21/2 + (1 + t)1/2 + t(1 + t2)1/2 + arcsinh(1) + arcsinh(t)

}
.

Figure 1 and 2 show the results for Example 1. Since f1 ∈ LK,α,β(ψSE(Dd)) with K = 2, α =
1/2, β = 3/4, d = π/2, and also f1 ∈ LK,α,β(ψDE(Dd)) with K = 2, α = 1/2, β = 3/4, d = π/6,
we can apply Theorem 2.3 and Theorem 2.9 to estimate the approximation errors; the estimated
maximum error is plotted as the dotted lines in the figures. The actual numerical error is checked
on 1999 equally-spaced points, i.e. t = −0.999, . . . , 0.001, 0, 0.001, . . . , 0.999, and plotted as
the solid line with + points. We can see that the estimate surely bounds the actual errors from
above in both figures. Similarly, Figure 3 and 4 show the results for Example 2, and Figure 5
and 6 for Example 3. In both problems, the estimates are in fact sharp upper bounds of the
actual error, when the effects of rounding errors are negligible.

10



 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0  50  100  150  200  250  300

m
ax

im
um

 e
rr

or

n

SE-Sinc approximation
Error estimate

Figure 1. Error of the SE-Sinc approxima-
tion and its estimate.
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Figure 2. Error of the DE-Sinc approxima-
tion and its estimate.

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0  50  100  150  200  250  300

er
ro

r

n

SE-Sinc quadrature
Error estimate

Figure 3. Error of the SE-Sinc quadrature
and its estimate.
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Figure 4. Error of the DE-Sinc quadrature
and its estimate.
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Figure 5. Error of the SE-Sinc indefinite
integration and its estimate.
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Figure 6. Error of the DE-Sinc indefinite
integration and its estimate.
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4 Proofs

In this section, we give proofs for the six new theorems above. Rough structures of the proofs
are the same in all the cases, and thus in order to help readers understanding, we first outline the
common structure in § 4.1, taking the SE-Sinc approximation (2.1) as an example. In particular,
there we clarify which terms have been left unestimated. Then in § 4.2 detailed proofs for the
SE-Sinc formulas are given, and in § 4.3 for the DE-Sinc formulas. Finally in § 4.4, we give the
proof of supporting lemmas.

4.1 Sketch of the proofs

Proofs consist of evaluating two kinds of errors: discretization error and truncation error. In
the SE-Sinc approximation (2.1), for example, the total error can be bounded as∣∣∣∣∣∣f(t) −

N∑
j=−M

f(ψSE(jh))S(j, h)(ψ−1
SE (t))

∣∣∣∣∣∣
≤

∣∣∣∣∣∣f(t) −
∞∑

j=−∞
f(ψSE(jh))S(j, h)(ψ−1

SE (t))

∣∣∣∣∣∣
+

∣∣∣∣∣∣
−M−1∑
j=−∞

f(ψSE(jh))S(j, h)(ψ−1
SE (t)) +

∞∑
j=N+1

f(ψSE(jh))S(j, h)(ψ−1
SE (t))

∣∣∣∣∣∣ .

The first term of the right hand side is the discretization error, and the second is the truncation
error. Let us evaluate these terms in turn.

First, we consider the discretization error. To this end, it is indispensable to introduce the
following function space.

Definition 4.1. Let Dd(ε) be a rectangular domain defined for 0 < ε < 1 by

Dd(ε) = {ζ ∈ C : |Re ζ| < 1/ε, | Im ζ| < d(1 − ε)}.

Then H1(Dd) denotes the family of all functions F analytic on Dd, and such that the norm
N1(F, d) is finite, where

N1(F, d) = lim
ε→0

∮
∂Dd(ε)

|F (ζ)||dζ|.

The discretization error of the Sinc approximation for a function F belonging to H1(Dd)
has been estimated as follows.

Theorem 4.2 (Stenger [20, Theorem 3.1.3]). Let F ∈ H1(Dd). Then

sup
x∈R

∣∣∣∣∣∣F (x) −
∞∑

j=−∞
F (jh)S(j, h)(x)

∣∣∣∣∣∣ ≤ N1(F, d)
πd(1 − e−2πd/h)

e−πd/h.

By setting F (x) = f(ψSE(x)), we can apply the theorem to obtain an estimate for the
SE-Sinc approximation.

Next, the truncation error can be evaluated by the next lemma.
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Lemma 4.3 (Stenger [20, in the proof of Theorem 4.2.5]). Let f ∈ LK,α,β(ψSE(Dd)) for d with
0 < d < π. Let µ = min{α, β}, n be a positive integer, and M and N be positive integers
defined by (2.8). Then it follows that∣∣∣∣∣∣
−M−1∑
j=−∞

f(ψSE(jh))S(j, h)(ψ−1
SE (t))

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∞∑

j=N+1

f(ψSE(jh))S(j, h)(ψ−1
SE (t))

∣∣∣∣∣∣ ≤ 2K(b − a)α+β

µh
e−µnh.

Notice that Theorem 4.2 and Lemma 4.3 refer to different function spaces H1(Dd) and
LK,α,β(ψSE(Dd)); the next lemma gives a link between these spaces.

Lemma 4.4 (Stenger [20, Theorem 4.2.4]). If f ∈ LK,α,β(ψSE(Dd)) for d with 0 < d < π, then
f(ψSE(·)) ∈ H1(Dd).

By summing up the above results and by taking h according to (2.7), the constant C in (2.9)
can be estimated as{

N1(f(ψSE(·)), d)
πd(1 − e−2πd/h)

+
2K(b − a)α+β

µh

}
1√
n
≤ N1(f(ψSE(·)), d)

πd(1 − e−2
√

πdµ)
+

2K(b − a)α+β

√
πdµ

≤
KN1(Qα,β(ψSE(·)), d)

πd(1 − e−2
√

πdµ)
+

2K(b − a)α+β

√
πdµ

. (4.1)

There remains a term to be estimated: N1(Qα,β(ψSE(·)), d). To the authors’ best knowledge,
this term has never been explicitly evaluated, and one of the primal contributions of the present
paper is that it is given for the first time. Its proof is left to § 4.4.

Lemma 4.5. Let α and β be positive constants, let µ = min{α, β}, and let d be a constant
with 0 < d < π. Then

N1(Qα,β(ψSE(·)), d) ≤ 4
µ

{
b − a

cos(d/2)

}α+β

.

This completes the desired explicit estimation. It turns out that the term N1(Qα,β(ψSE(·)), d)
commonly appears in the other two formulas (2.2) and (2.3) as well, and proofs can be derived
in like manner there.

The DE-Sinc cases can be handled in an analogous fashion. There are two terms to be evalu-
ated: N1(Qα,β(ψDE(·)), d) for the DE-Sinc approximation (2.4), and N1(cosh(·)Qα,β(ψDE(·)), d)
for the DE-Sinc quadrature (2.5) and the DE-Sinc indefinite integration (2.6). The evaluation
is given as follows, while its proof is left to § 4.4; we here like to mention that the proof gets far
more complicated than the SE-Sinc case.

Lemma 4.6. Let α and β be positive constants, let µ = min{α, β}, and let d be a constant
with 0 < d < π/2. Then

N1(Qα,β(ψDE(·)), d) ≤ N1(cosh(·)Qα,β(ψDE(·)), d) ≤ 4
πµ cos d

{
b − a

cos(π
2 sin d)

}α+β

.

4.2 Proofs in the SE-Sinc case

4.2.1 Proof for the SE-Sinc approximation (2.1)

As described above, the proof of Theorem 2.3 can be immediately obtained by combining
Lemma 4.5 with the inequality (4.1).

13



4.2.2 Proof for the SE-Sinc quadrature (2.2)

The discretization error of the Sinc quadrature has been analyzed in the literature as follows.

Theorem 4.7 (Stenger [20, Theorem 3.2.1]). Let F ∈ H1(Dd). Then∣∣∣∣∣∣
∫ ∞

−∞
F (x) dx − h

∞∑
j=−∞

F (jh)

∣∣∣∣∣∣ ≤ N1(F, d)
1 − e−2πd/h

e−2πd/h.

Let us apply the theorem to the SE-Sinc quadrature. Since Q(ψSE(ζ)) = (b − a)ψ′
SE(ζ), it

follows that

|f(ψSE(ζ))ψ′
SE(ζ)| =

1
b − a

|f(ψSE(ζ))Q(ψSE(ζ))| ≤ K

b − a
|Qα,β(ψSE(ζ))|, (4.2)

under the assumption that fQ ∈ LK,α,β(ψSE(Dd)). Thus it immediately follows f(ψSE(·))ψ′
SE(·) ∈

H1(Dd) because N1(Qα,β(ψSE(·)), d) is finite from Lemma 4.5. Therefore we can use Theorem 4.7
for F (x) = f(ψSE(x))ψ′

SE(x) to bound the discretization error of the SE-Sinc quadrature as fol-
lows.

Lemma 4.8. Let fQ ∈ LK,α,β(ψSE(Dd)) for d with 0 < d < π, and let µ = min{α, β}. Then∣∣∣∣∣∣
∫ b

a
f(t) dt − h

∞∑
j=−∞

f(ψSE(jh))ψ′
SE(jh)

∣∣∣∣∣∣ ≤ 4K(b − a)α+β−1

µ cosα+β(d/2)
e−2πd/h

1 − e−2πd/h
.

The truncation error is bounded as follows.

Lemma 4.9. Assume that the assumptions of Lemma 4.8 are fulfilled. Furthermore let n be a
positive integer, and M and N be positive integers defined by (2.8). Then it follows that∣∣∣∣∣∣h

−M−1∑
j=−∞

f(ψSE(jh))ψ′
SE(jh)

∣∣∣∣∣∣ +

∣∣∣∣∣∣h
∞∑

j=N+1

f(ψSE(jh))ψ′
SE(jh)

∣∣∣∣∣∣ ≤ 2K(b − a)α+β−1

µ
e−µnh.

Proof. We can see that the same proof as Lemma 4.3 holds because (b − a)f(·)ψ′
SE(ψ−1

SE (·)) ∈
LK,α,β(ψSE(Dd)) from (4.2). ¥

Combining Lemma 4.8 with Lemma 4.9, we obtain Theorem 2.5.

4.2.3 Proof for the SE-Sinc indefinite integration (2.3)

The discretization error of the Sinc indefinite integration has been analyzed as follows.

Theorem 4.10 (Stenger [20, Lemma 3.6.4]). Let F ∈ H1(Dd). Then

sup
x∈R

∣∣∣∣∣∣
∫ x

−∞
F (σ) dσ −

∞∑
j=−∞

F (jh)J(j, h)(x)

∣∣∣∣∣∣ ≤ N1(F, d)
2d(1 − e−2πd/h)

h e−πd/h.

From this we obtain an estimate for the SE-Sinc case in the same way as Lemma 4.8.
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Lemma 4.11. Let fQ ∈ LK,α,β(ψSE(Dd)) for d with 0 < d < π, and let µ = min{α, β}. Then

sup
t∈(a, b)

∣∣∣∣∣∣
∫ t

a
f(s) ds −

∞∑
j=−∞

f(ψSE(jh))ψ′
SE(jh)J(j, h)(ψ−1

SE (t))

∣∣∣∣∣∣ ≤ 2K(b − a)α+β−1

dµ cosα+β(d/2)
h e−πd/h

1 − e−2πd/h
.

For the truncation error, it is necessary to bound the basis function J(j, h). The next lemma
gives the bound.

Lemma 4.12 (Stenger [20, Lemma 3.6.5]). For x ∈ R, the function J(j, h)(x) is bounded by

|J(j, h)(x)| ≤ 1.1h.

Using this lemma and Lemma 4.9, we can bound the truncation error as follows.

Lemma 4.13. Assume that the assumptions of Lemma 4.9 are fulfilled. Then it follows that∣∣∣∣∣∣
−M−1∑
j=−∞

f(ψSE(jh))ψ′
SE(jh)J(j, h)(ψ−1

SE (t))

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∞∑

j=N+1

f(ψSE(jh))ψ′
SE(jh)J(j, h)(ψ−1

SE (t))

∣∣∣∣∣∣
≤ 1.1

2K(b − a)α+β−1

µ
e−µnh.

Combining Lemma 4.11 with Lemma 4.13, we obtain Theorem 2.7.

4.3 Proofs in the DE-Sinc case

4.3.1 Error estimation for the DE-Sinc approximation (2.4)

From Lemma 4.6, it immediately follows that f(ψDE(·)) ∈ H1(Dd) if f ∈ LK,α,β(ψDE(Dd)),
similar to Lemma 4.4. Therefore Theorem 4.2 can be used to bound the discretization error as
follows.

Lemma 4.14. Let f ∈ LK,α,β(ψDE(Dd)) for d with 0 < d < π/2, and let µ = min{α, β}. Then

sup
t∈(a, b)

∣∣∣∣∣∣f(t) −
∞∑

j=−∞
f(ψDE(jh))S(j, h)(ψ−1

DE (t))

∣∣∣∣∣∣ ≤ C1C2
e−πd/h

1 − e−2πd/h
,

where the constants C1 and C2 are defined by (2.14) and (2.15), respectively.

The truncation error is estimated in the next lemma.

Lemma 4.15. Assume that the assumptions of Lemma 4.14 are fulfilled. Furthermore let
ν = max{α, β}, n be a positive integer, and M and N be positive integers defined by (2.13).
Then it follows that∣∣∣∣∣∣
−M−1∑
j=−∞

f(ψDE(jh))S(j, h)(ψ−1
DE (t))

∣∣∣∣∣∣+
∣∣∣∣∣∣

∞∑
j=N+1

f(ψDE(jh))S(j, h)(ψ−1
DE (t))

∣∣∣∣∣∣ ≤ 2d e
π
2

νC1
e−

π
2

µ exp(nh)

h enh
,

where the constant C1 is defined by (2.14).
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Proof. Clearly |S(j, h)(ψ−1
DE (t))| ≤ 1 for all t ∈ (a, b). And since f ∈ LK,α,β(ψDE(Dd)), it follows

for all x ≤ 0 that

|f(ψDE(x))| ≤ KQα,β(ψDE(x))

= K
(b − a)α+β

(1 + e−π sinh(x))α(1 + eπ sinh(x))β

≤ K(b − a)α+β eπα sinh(x)

≤ K(b − a)α+β e
π
2
α e−

π
2
α exp(−x),

then the first sum is bounded as∣∣∣∣∣∣
−M−1∑
j=−∞

f(ψDE(jh))S(j, h)(ψ−1
DE (t))

∣∣∣∣∣∣ ≤ K(b − a)α+β e
π
2
α
−M−1∑
j=−∞

e−
π
2
α exp(−jh)

≤ K(b − a)α+β e
π
2
α

∫ −M

−∞
e−

π
2
α exp(−sh) ds

≤ 2K(b − a)α+β e
π
2
α

παh eMh

∫ −M

−∞

παh

2
e−sh e−

π
2
α exp(−sh) ds

=
2K(b − a)α+β e

π
2
α

παh eMh
e−

π
2

α exp(Mh).

Furthermore using µ = min{α, β}, ν = max{α, β}, and the relations (2.13), we have

2K(b − a)α+β e
π
2
α

παh eMh
e−

π
2
α exp(Mh) ≤ 2K(b − a)α+β e

π
2
ν

πµh enh
e−

π
2
µ exp(nh) = d e

π
2
νC1

e−
π
2

µ exp(nh)

h enh
.

Similarly we can bound the second sum, thus the claim follows. ¥

Then we can prove Theorem 2.9 as follows.

Proof. From Lemma 4.14 and Lemma 4.15, clearly it follows that

sup
t∈(a, b)

∣∣∣∣∣∣f(t) −
N∑

j=−M

f(ψDE(jh))S(j, h)(ψ−1
DE (t))

∣∣∣∣∣∣ ≤ C1

[
C2

e−πd/h

1 − e−2πd/h
+ 2d e

π
2

ν e−
π
2

µ exp(nh)

h enh

]
.

Substituting (2.12) into the first term, we have

e−πd/h

1 − e−2πd/h
=

e−πdn/ log(2dn/µ)

1 − e−πµ(2dn/µ)/ log(2dn/µ)
≤ e−πdn/ log(2dn/µ)

1 − e−πµ e
, (4.3)

since the function eπµx/ log x has its minimum at x = e. The second term can be evaluated as

e−
π
2
µ exp(nh)

h enh
=

µ e−πdn

2d log(2dn/µ)
=

exp
{
−πµ

2 (2dn/µ)
(
1 − 1

log(2dn/µ)

)}
log(2dn/µ)

µ

2d
e−πdn/ log(2dn/µ),

and using n ≥ (ν e)/(2d) ≥ (µ e)/(2d), we have

exp
{
−πµ

2 (2dn/µ)
(
1 − 1

log(2dn/µ)

)}
log(2dn/µ)

≤
exp

{
−πµ

2 (e)
(
1 − 1

log(e)

)}
log(e)

= 1, (4.4)

since the left hand side is monotonically decreasing. Thus this theorem is established. ¥
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4.3.2 Proof for the DE-Sinc quadrature (2.5)

Noticing that
ψ′

DE(ζ) =
π

b − a
cosh(ζ)Q(ψDE(ζ)),

we easily obtain

|f(ψDE(ζ))ψ′
DE(ζ)| =

π| cosh(ζ)|
b − a

|f(ψDE(x))Q(ψDE(ζ))| ≤ π| cosh(ζ)|
b − a

K|Qα,β(ζ)|, (4.5)

under the assumption that fQ ∈ LK,α,β(ψDE(Dd)). From this and Lemma 4.6, it immediately
follows f(ψDE(·))ψ′

DE(·) ∈ H1(Dd). Therefore we can use Theorem 4.7 to bound the discretiza-
tion error as follows.

Lemma 4.16. Let fQ ∈ LK,α,β(ψDE(Dd)) for d with 0 < d < π/2, and let µ = min{α, β}.
Then ∣∣∣∣∣∣

∫ b

a
f(t) dt − h

∞∑
j=−∞

f(ψDE(jh))ψ′
DE(jh)

∣∣∣∣∣∣ ≤ C̃1C̃2
e−2πd/h

1 − e−2πd/h
,

where the constants C̃1 and C̃2 are defined by (2.17) and (2.18), respectively.

The truncation error is estimated by the next lemma.

Lemma 4.17. Assume that the assumptions of Lemma 4.16 are fulfilled. Furthermore let
ν = max{α, β}, n be a positive integer, and M and N be positive integers defined by (2.13).
Then it follows that∣∣∣∣∣∣h

−M−1∑
j=−∞

f(ψDE(jh))ψ′
DE(jh)

∣∣∣∣∣∣ +

∣∣∣∣∣∣h
∞∑

j=N+1

f(ψDE(jh))ψ′
DE(jh)

∣∣∣∣∣∣ ≤ e
π
2
νC̃1 e−

π
2

µ exp(nh),

where the constant C̃1 is defined by (2.17).

Proof. Since fQ ∈ LK,α,β(ψDE(Dd)) and (4.5), it follows for all x ≤ 0 that

|f(ψDE(x))ψ′
DE(x)| ≤ π cosh(x)

b − a

K(b − a)α+β

(1 + e−π sinh(x))α(1 + eπ sinh(x))β

≤ K(b − a)α+β−1π cosh(x) eπα sinh(x),

then the first sum is bounded as∣∣∣∣∣∣h
−M−1∑
j=−∞

f(ψDE(jh))ψ′
DE(jh)

∣∣∣∣∣∣ ≤ h

−M−1∑
j=−∞

K(b − a)α+β−1π cosh(jh) eπα sinh(jh)

≤ K(b − a)α+β−1

∫ −Mh

−∞
π cosh(x) eπα sinh(x) dx

=
K(b − a)α+β−1

α
e−πα sinh(Mh)

≤ K(b − a)α+β−1 e
π
2
α

α
e−

π
2
α exp(Mh).
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Furthermore using µ = min{α, β}, ν = max{α, β}, and the relations (2.13), we have

K(b − a)α+β−1 e
π
2
α

α
e−

π
2
α exp(Mh) ≤ K(b − a)α+β−1 e

π
2

ν

µ
e−

π
2

µ exp(nh) =
e

π
2
νC̃1

2
e−

π
2
µ exp(nh).

Similarly we can bound the second sum, thus the claim follows. ¥

Now we are in a position to prove Theorem 2.11.

Proof. From Lemma 4.16 and Lemma 4.17, clearly it follows that∣∣∣∣∣∣
∫ b

a
f(t) dt − h

N∑
j=−M

f(ψDE(jh))ψ′
DE(jh)

∣∣∣∣∣∣ ≤ C̃1

[
C̃2

e−2πd/h

1 − e−2πd/h
+ e

π
2

ν e−
π
2
µ exp(nh)

]
.

Substituting (2.16) into the first term, we have

e−2πd/h

1 − e−2πd/h
=

e−2πdn/ log(4dn/µ)

1 − e−
π
2
µ(4dn/µ)/ log(4dn/µ)

≤ e−2πdn/ log(4dn/µ)

1 − e−
π
2
µ e

,

similar to (4.3). The second term can be evaluated as

e−
π
2
µ exp(nh) = e−2πdn = exp

{
−πµ

2
(4dn/µ)

(
1 − 1

log(4dn/µ)

)}
e−2πdn/ log(4dn/µ),

and using n ≥ (ν e)/(4d) ≥ (µ e)/(4d), we have

exp
{
−πµ

2
(4dn/µ)

(
1 − 1

log(4dn/µ)

)}
≤ exp

{
−πµ

2
(e)

(
1 − 1

log(e)

)}
= 1,

since the left hand side is monotonically decreasing. It completes the proof. ¥

4.3.3 Proof for the DE-Sinc indefinite integration (2.6)

Above we have already seen that f(ψDE(·))ψ′
DE(·) ∈ H1(Dd) if fQ ∈ LK,α,β(ψDE(Dd)), thus the

discretization error can be obtained as below by using Theorem 4.10 and Lemma 4.6.

Lemma 4.18. Assume that the assumptions of Lemma 4.16 are fulfilled. Then∣∣∣∣∣∣
∫ t

a
f(s) ds −

∞∑
j=−∞

f(ψDE(jh))ψ′
DE(jh)J(j, h)(ψ−1

DE (t))

∣∣∣∣∣∣ ≤ C̃1C̃2

2d

h e−πd/h

1 − e−2πd/h
,

where the constants C̃1 and C̃2 are defined by (2.17) and (2.18), respectively.

The truncation error is estimated as follows; since it can be easily obtained from Lemma 4.12
and Lemma 4.17, we omit the proof.

Lemma 4.19. Assume that the assumptions of Lemma 4.17 are fulfilled. Then it follows that∣∣∣∣∣∣
−M−1∑
j=−∞

f(ψDE(jh))ψ′
DE(jh)J(j, h)(ψ−1

DE (t))

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∞∑

j=N+1

f(ψDE(jh))ψ′
DE(jh)J(j, h)(ψ−1

DE (t))

∣∣∣∣∣∣
≤ 1.1 e

π
2
νC̃1 e−

π
2
µ exp(nh),

where the constant C̃1 is defined by (2.17).
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Finally, we prove Theorem 2.13.

Proof. From Lemma 4.18 and Lemma 4.19, clearly it follows that

sup
t∈(a, b)

∣∣∣∣∣∣
∫ t

a
f(s) ds −

N∑
j=−M

f(ψDE(jh))ψ′
DE(jh)J(j, h)(ψ−1

DE (t))

∣∣∣∣∣∣
≤ C̃1

[
C̃2

2d

e−πd/h

1 − e−2πd/h
+

1.1
h

e
π
2
ν e−

π
2
µ exp(nh)

]
h.

We can use (4.3) for the first term. For the second term, we have

e−
π
2
µ exp(nh) ≤ e

π
2
µ e−πµ cosh(nh)

= e
π
2
µ exp

[
−π

2
µ

{
(2dn/µ) +

1
(2dn/µ)

}]
= e

π
2
µ exp

[
−π

2
µ

{
(2dn/µ) +

1
(2dn/µ)

− (2dn/µ)
log(2dn/µ)

}]
e−πdn/ log(2dn/µ).

Furthermore, since n ≥ (ν e)/(2d) ≥ (µ e)/(2d), it follows that

1.1
h

=
1.1µ

2d
× (2dn/µ)

log(2dn/µ)
≤ 1.1µ

2d
× e2

{
(2dn/µ) +

1
(2dn/µ)

− (2dn/µ)
log(2dn/µ)

}
.

If we set a function g as g(x) = x e−
π
2
µx, which has its maximum at x = 2/(πµ), we have

1.1
h

e
π
2
ν e−

π
2

µ exp(nh) ≤ e
π
2
(µ+ν) 1.1µ

2d
e2

[
g

(
(2dn/µ) +

1
(2dn/µ)

− (2dn/µ)
log(2dn/µ)

)]
e−πdn/ log(2dn/µ)

≤ e
π
2
(µ+ν) 1.1µ

2d
e2

[
2

πµ e

]
e−πdn/ log(2dn/µ)

=
1.1 e
π

e
π
2
(µ+ν)

d
e−πdn/ log(2dn/µ)

<
e

π
2
(µ+ν)

d
e−πdn/ log(2dn/µ).

Furthermore using e
π
2
(µ+ν) = e

π
2
(α+β), we obtain the desired inequality. ¥

4.4 Proofs of Lemma 4.5 and Lemma 4.6

Here we prove Lemma 4.5 and Lemma 4.6.
First we consider Lemma 4.5. Recall that Qα,β(z) = (z−a)α(b− z)β . If we apply a variable

transformation z = ψSE(ζ), we get

Qα,β(ψSE(ζ)) =
(b − a)α+β

(1 + e−ζ)α(1 + eζ)β
.

In view of this, we can see that the next lemma is essential to estimate N1(Qα,β(ψSE(·)), d).
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Lemma 4.20. Let x and y be real numbers with |y| < π, and let ζ = x + i y. Then∣∣∣∣ 1
1 + eζ

∣∣∣∣ ≤ 1
(1 + ex) cos(y/2)

, (4.6)∣∣∣∣ 1
1 + e−ζ

∣∣∣∣ ≤ 1
(1 + e−x) cos(y/2)

. (4.7)

Proof. We only prove the first inequality (4.6), because the second one (4.7) can be easily
derived by replacing ζ with −ζ. Using

cosh2(x/2) − sin2(y/2) ≥ cosh2(x/2){1 − sin2(y/2)} = cosh2(x/2) cos2(y/2),

we have∣∣∣∣ 1
1 + eζ

∣∣∣∣ =
e−x/2

2
√

cosh2(x/2) − sin2(y/2)
≤ e−x/2

2 cosh(x/2) cos(y/2)
=

1
(1 + ex) cos(y/2)

,

which establishes the lemma. ¥

Using this lemma, we can estimate N1(Qα,β(ψSE(·)), d) (Lemma 4.5).

Proof. For all ε with 0 < ε < 1, we have

lim
x→±∞

∫ d(1−ε)

−d(1−ε)
|Qα,β(ψSE(x + i y))|dy ≤ lim

x→±∞

(b − a)α+β

(1 + e−x)α(1 + ex)β

∫ d(1−ε)

−d(1−ε)

dy

cosα+β(y/2)
= 0,

if we note Lemma 4.20. Therefore N1(Qα,β(ψSE(·)), d) can be written as

N1(Qα,β(ψSE(·)), d) = lim
y→d

∫ ∞

−∞
|Qα,β(ψSE(x+i y))|dx+ lim

y→−d

∫ ∞

−∞
|Qα,β(ψSE(x+i y))|dx. (4.8)

Again using Lemma 4.20, we can estimate it as

N1(Qα,β(ψSE(·)), d) ≤ 2
{

b − a

cos(d/2)

}α+β ∫ ∞

−∞

dx

(1 + e−x)α(1 + ex)β

≤ 2
{

b − a

cos(d/2)

}α+β ∫ ∞

−∞

dx

(1 + e−x)µ(1 + ex)µ

= 4
{

b − a

cos(d/2)

}α+β ∫ ∞

0

{
e−x

(1 + e−x)2

}µ

dx

≤ 4
{

b − a

cos(d/2)

}α+β ∫ ∞

0
e−µx dx

= 4
{

b − a

cos(d/2)

}α+β 1
µ

.

¥

Now we switch to Lemma 4.6. The function cosh(ζ) is bounded as

| cosh(x + i y)| =
√

cosh2(x) − sin2(y) ≤ cosh(x), (4.9)
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for all x, y ∈ R. The main difficulty in proving Lemma 4.6 is that bounding the function
Qα,β(ψDE(ζ)) is quite a complicated task. Since

Qα,β(ψDE(ζ)) =
(b − a)α+β

(1 + e−π sinh ζ)α(1 + eπ sinh ζ)β
,

the next lemma is essential in the project.

Lemma 4.21. Let x and y be real numbers with |y| < π/2, and let ζ = x + i y. Then∣∣∣∣ 1
1 + eπ sinh ζ

∣∣∣∣ ≤ 1
(1 + eπ sinh(x) cos y) cos(π

2 sin y)
, (4.10)∣∣∣∣ 1

1 + e−π sinh ζ

∣∣∣∣ ≤ 1
(1 + e−π sinh(x) cos y) cos(π

2 sin y)
.

We like to leave its long proof to the end of this section. If we accept this lemma, we can
derive Lemma 4.6 as follows.

Proof. We write Ω(ζ) = cosh(ζ)Qα,β(ψDE(ζ)) for simplicity. It is sufficient to bound N1(Ω, d)
since clearly N1(Qα,β(ψDE(·)), d) ≤ N1(Ω, d) holds. Using (4.9) and Lemma 4.21, we have

|Ω(x + i y)| ≤ cosh(x)
{

b − a

cos(π
2 sin y)

}α+β 1
(1 + e−π sinh(x) cos y)α(1 + eπ sinh(x) cos y)β

≤ cosh(x)
{

b − a

cos(π
2 sin y)

}α+β 1
(1 + e−π sinh(x) cos y)µ(1 + eπ sinh(x) cos y)µ

≤ cosh(x)
{

b − a

cos(π
2 sin y)

}α+β

e−πµ sinh(|x|) cos y (4.11)

for all x ∈ R and y ∈ [−d, d]. Then it follows for all ε with 0 < ε < 1 that

lim
x→±∞

∫ d(1−ε)

−d(1−ε)
|Ω(x + i y)|dy ≤ lim

x→±∞

(b − a)α+β cosh(x)
eπµ sinh(|x|) cos d(1−ε)

∫ d(1−ε)

−d(1−ε)

dy

cosα+β(π
2 sin y)

= 0.

Therefore, similar to (4.8), we can see that

N1(Ω, d) = lim
y→d

∫ ∞

−∞
|Ω(x + i y)|dx + lim

y→−d

∫ ∞

−∞
|Ω(x + i y)|dx,

and by (4.11), it is estimated as

N1(Ω, d) ≤ 2
{

b − a

cos(π
2 sin d)

}α+β ∫ ∞

−∞
cosh(x) e−πµ sinh(|x|) cos d dx

= 4
{

b − a

cos(π
2 sin d)

}α+β ∫ ∞

0
cosh(x) e−πµ sinh(x) cos d dx

= 4
{

b − a

cos(π
2 sin d)

}α+β 1
πµ cos d

.

This is the desired inequality. ¥
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Finally we finish this section by proving Lemma 4.21.

Proof. We only need to show (4.10) for the same reason as in Lemma 4.20. Clearly (4.10) holds
if y = 0, thus we assume y 6= 0 below. The left hand side of (4.10) is equal to∣∣∣∣ 1

1 + eπ sinh(x+i y)

∣∣∣∣ =
1

(1 + eπ sinh(x) cos y)
√

g(x, y)
,

where

g(x, y) = 1 −
sin2(π

2 cosh(x) sin y)
cosh2(π

2 sinh(x) cos y)
.

Then for (4.10) it is sufficient to prove the inequality g(x, y) ≥ g(0, y), because

g(0, y) = 1 − sin2(π
2 sin y) = cos2(π

2 sin y).

Since g is an even function, we can assume x ≥ 0 and 0 < y < π/2 without loss of generality. In
what follows, we prove g(x, y) ≥ g(0, y) holds for each y; this is done in the following two steps:

1) Show ∂
∂xg(x, y) ≥ 0 for all x with 0 ≤ x ≤ x0,

2) Show g(x, y) ≥ g(x0, y) for all x with x0 < x,

where x0 = log((1 + cos y)/ sin y).
Let us first consider the second one, which is relatively easy. Clearly it holds that

g(x, y) = 1 −
sin2(π

2 cosh(x) sin y)
cosh2(π

2 sinh(x) cos y)
≥ 1 − 1

cosh2(π
2 sinh(x) cos y)

= tanh2(π
2 sinh(x) cos y).

The equality holds when x = x0. Since the function tanh2(π
2 sinh(x) cos y) is monotonically

increasing with respect to x, it follows for all x with x > x0 that

g(x, y) ≥ tanh2(π
2 sinh(x) cos y) ≥ tanh2(π

2 sinh(x0) cos y) = g(x0, y).

This completes the second step.
Next we consider the first step, 0 ≤ x ≤ x0. Notice that 1 ≤ cosh(x) ≤ 1/ sin(y) in this

range of x. Considering the derivative of g(x, y), we have

∂
∂x

g(x, y)

=
π sin(π

2 cosh(x) sin y) sin(π
2 cosh(x) sin(y) + y) sinh(π

2 sinh(x) cos(y) + x)
2 cosh3(π

2 sinh(x) cos y)
{g1(x, y) + g2(x, y)} ,

where

g1(x, y) =
sin(π

2 cosh(x) sin(y) − y)
sin(π

2 cosh(x) sin(y) + y)
,

g2(x, y) =
sinh(π

2 sinh(x) cos(y) − x)
sinh(π

2 sinh(x) cos(y) + x)
.
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Let us prove g1(x, y) + g2(x, y) ≥ 0, which then proves ∂
∂xg(x, y) ≥ 0. We readily see

sin(π
2 cosh(x) sin(y) + y) ≥ 0,

sin(π
2 cosh(x) sin(y) − y) ≥ 0,

sinh(π
2 sinh(x) cos(y) + x) ≥ 0,

since 1 ≤ cosh(x) ≤ 1/ sin(y). Moreover, if π
2 cos y ≥ 1,

sinh(π
2 sinh(x) cos(y) − x) ≥ 0.

Hence we can conclude g1(x, y) + g2(x, y) ≥ 0 if 0 < y ≤ arccos(2/π).
Assume arccos(2/π) < y < π/2 below. In this range of y, we prove g1(x, y) + g2(x, y) ≥ 0

by showing:

1a) ∂
∂xg1(x, y) ≥ 0 and ∂

∂xg2(x, y) ≥ 0,

1b) g1(0, y) + g2(0, y) ≥ 0.

The claim 1a) can be shown as follows. For the derivative of g1(x, y), it immediately holds that

∂
∂x

g1(x, y) =
π sinh(x) sin(2y) sin y

2 sin2(π
2 cosh(x) sin(y) + y)

≥ 0.

For the derivative of g2(x, y), we have

∂
∂x

g2(x, y) =
(π

2 cos y) cosh(x) sinh(2x) − sinh(2(π
2 cos y) sinhx)

sinh2((π
2 cos y) sinh(x) + x)

≥ (π
2 cos y)

{cosh(x) sinh(2x) − sinh(2 sinhx)}
sinh2((π

2 cos y) sinh(x) + x)
,

since 0 < π
2 cos y < 1. Furthermore differentiating the numerator of the right hand side, we

have

d
dx

{cosh(x) sinh(2x) − sinh(2 sinhx)} = cosh(x) {3 cosh(2x) − 2 cosh(2 sinh x) − 1} .

Recalling 0 ≤ x ≤ x0 = log((1 + cos y)/ sin y) and arccos(2/π) < y < π/2, we can see

0 ≤ x ≤ log
(

1 + cos y

sin y

)
<

1
2

log
( π

2 + 1
π
2 − 1

)
,

and in this range of x, it follows that

3 cosh(2x) − 2 cosh(2 sinh x) − 1 ≥ 0.

Thus ∂
∂xg2(x, y) ≥ 0 holds.

The proof is completed by showing 1b):

g1(0, y) + g2(0, y) =
sin(π

2 sin(y) − y)
sin(π

2 sin(y) + y)
+

π
2 cos(y) − 1
π
2 cos(y) + 1

≥ 0.
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Let us start with the obvious inequality for 0 ≤ s ≤ π/2:(
π
2 + s

)
sin(s) ≥ π

2 sin(s) ≥ s,

from which we have (
π
2 − s

) (
π
2 + s

)
sin(s) ≥

(
π
2 − s

)
s ≥ cos(s)s,

and it follows for 0 ≤ s ≤ π/2 that

2 sin(s)
{(

π
2

)2 − s2
}
≥ 2s cos s.

Putting s = π
2 sin(y) here, we have

2 sin(π
2 sin y)

{
π
2 cos y

}2 ≥ 2(π
2 sin y) cos(π

2 sin y).

This inequality is equivalent to:{
sin(π

2 sin y)(π
2 cos y) − (π

2 sin y) cos(π
2 sin y)

} {
(π

2 cos y) + 1
}

≥ −
{
sin(π

2 sin y)(π
2 cos y) + (π

2 sin y) cos(π
2 sin y)

}{
(π

2 cos y) − 1
}

,

which then is equal to:

sin(π
2 sin y)(π

2 cos y) − (π
2 sin y) cos(π

2 sin y)
sin(π

2 sin y)(π
2 cos y) + (π

2 sin y) cos(π
2 sin y)

+
(π

2 cos y) − 1
(π

2 cos y) + 1
≥ 0.

The left hand side is nothing but g1(0, y) + g2(0, y), which completes the proof. ¥

5 Concluding remarks

In this paper, explicit error estimates have been given for the SE/DE-Sinc approximation,
the SE/DE-Sinc quadrature, and the SE/DE-Sinc indefinite integration, i.e. (2.1)–(2.6). By
“explicit” we mean that the estimates are given with all the constants explicitly clarified; this
is in contrast to the existing convergence analyses by several authors [6,10,20,27,28] where the
convergence rates have been successfully revealed, but the constants have been left unevaluated.
Giving explicit estimates is quite important from practical perspective, since it enables us to
guarantee the accuracy of approximations in actual computations, and make the numerical
formulas more reliable and practical. We have also improved some formulas themselves so that
the computational costs are decreased. This is done by replacing the symmetric truncation,
like (1.1), with the optimal truncation, like (1.8). The numerical results have been also shown,
which confirm the theory.

Future works include the followings. First, we are now in fact constructing libraries with
guaranteed accuracy based on the new explicit estimates. This will be reported soon elsewhere.
Second, similar explicit estimates are desired for other Sinc formulas, such as approximations
of derivatives and indefinite convolutions.
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