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represented by optimal transport

Tomonari SEI

January 30, 2009

Abstract

We propose a flexible statistical model for high-dimensional quantitative
data on a hypercube. Our model, called the structural gradient model (SGM),
is based on a one-to-one map on the hypercube that is a solution for an op-
timal transport problem. As we show with many examples, SGM can de-
scribe various dependence structures including correlation and heteroscedas-
ticity. The maximum likelihood estimation of SGM is effectively solved by
the determinant-maximization programming. In particular, a lasso-type esti-
mation is available by adding constraints. SGM is compared with graphical
Gaussian models and mixture models.
Keywords: determinant maximization, Fourier series, graphical model, lasso,
optimal transport, structural gradient model.

1 Introduction

In recent years, it becomes more important to treat high-dimensional quantitative

data especially in biostatistics and spatial-temporal statistics. The graphical Gaus-

sian model is one of the most important model. However, the Gaussian model repre-

sents only the second-order interaction without heteroscedasticity. In this paper, we

introduce the structural gradient model (SGM) that represents both higher-order

and heteroscedastic interactions of data. The model is defined by a transport map

that pushes the target probability density forward to the uniform density. The data

structure is described by the parameters in the transport map. This model is a

practical specification of the gradient model defined in Sei [2006].

We consider probability density functions on the hypercube [0, 1]m written as

p(x) = det(D2ψ(x)), x ∈ [0, 1]m, (1)

where ψ is a convex function and D2ψ(x) is the Hessian matrix of ψ at x. The

function p is a probability density function if the gradient map Dψ is a bijection on
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[0, 1]m. In fact, by changing the variable from x to y = Dψ(x), we obtain∫
[0,1]m

det(D2ψ(x))dx =

∫
[0,1]m

det

(
∂y

∂x

)
dx =

∫
[0,1]m

dy = 1.

It is known that any probability density function on [0, 1]m (actually on Rm) is

written as (1). This fact is deeply connected to the theory of optimal transport

(see e.g. Villani [2003]). The bijective gradient map Dψ, called the Brenier map,

is the optimal-transport plan from the density (1) to the uniform density. In this

paper, we call ψ the potential function. Furthermore, as explained in Section 2, most

density functions on [0, 1]m are characterized by the Fourier series of ψ. When ψ is

represented by the Fourier series, we will call the model (1) the structural gradient

model and refer to it as SGM. Unknown parameters are the Fourier coefficients of the

potential function ψ. SGM can describe not only two-dimensional correlations but

also the three-dimensional interactions and heteroscedastic structures, unlike the

graphical Gaussian model. We examine this flexibility by simulation and real-data

analysis.

The maximum likelihood estimation of SGM is reduced to a determinant maxi-

mization problem with a robust convex feasible region. In practice, this region is

not directly used because it is described by infinitely many constraints. We give two

different approaches to overcome this difficulty. First we give a sequence converg-

ing to the feasible region from the inner side. Secondly we give a L1-conservative

region. These approaches enable us to calculate the estimator by the determinant

maximization algorithm (Vandenberghe et al. [1998]). As a by-product of the sec-

ond approach we have a lasso-type estimator for SGM. A related estimator is the

lasso-type estimator for graphical Gaussian models (Meinshausen and Bühlmann

[2006], Yuan and Lin [2007], Bunea et al. [2007], Banerjee et al. [2008]).

We consider only the case in which the sample space is a hypercube. However,

this is not a strong assumption because we can transform any real-valued data into

[0, 1]-valued data by a fixed sigmoid function. Unlike the copula models (Nelsen

[2006]), the marginal density of SGM does not need to be uniform. Our model can

still adjust the marginal densities after the sigmoid transform. Another approach

to deal with unbounded data is given by the author’s past papers (Sei [2006], Sei

[2007]), where optimal transport between the standard normal density and other

densities is considered. In this paper, we use the uniform density instead of the

normal density because the former is analytically simpler than the latter.

This paper is organized as follows. In Section 2, we define SGM and give various

examples of it. In Section 3, we investigate the maximum likelihood estimation

and propose a lasso-type estimator. In Section 4, we compare SGM with graphical
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Gaussian models and mixture models by numerical experiments. Finally we have

some discussions in Section 5. All mathematical proofs are given in Appendix.

2 The structural gradient model (SGM)

In this section, we first give the formal definition and some theoretical properties of

SGM. Then various examples follow.

2.1 Definition and basic facts

Let m be a fixed positive integer. Denote the gradient operator on [0, 1]m by D =

(∂/∂xi)
m
i=1 and the Hessian operator by D2 = (∂2/∂xi∂xj)

m
i,j=1. The determinant of

a matrix A is denoted by detA. The notation A ≻ B (resp. A ≽ B) means that

A − B is positive definite (resp. positive semi-definite). Let Z≥0 be the set of all

non-negative integers.

Definition 1 (SGM). Let U be a finite subset of Zm
≥0. We define the structural

gradient model (abbreviated as SGM) by Eq. (1) with the potential function

ψ(x|θ) =
1

2
x⊤x−

∑
u∈U

θu

π2

m∏
j=1

cos(πujxj), (2)

where x = (xj) ∈ [0, 1]m and θ = (θu) ∈ RU . We call U the frequency set. The

parameter space of SGM is

Θ =
{
θ ∈ RU | D2ψ(x|θ) ≽ 0, ∀x ∈ [0, 1]m

}
. (3)

A vector θ ∈ RU is called feasible if θ ∈ Θ. We also call Θ the feasible region.

The following lemma is fundamental.

Lemma 1. If θ is feasible, then p(x|θ) is a probability density function on [0, 1]m.

SGM has sufficient flexibility for multivariate modeling because the following the-

orem by Caffarelli [2000] holds. To state the theorem, we prepare some notations.

Denote the 2m faces of [0, 1]m by F b
j = {x ∈ [0, 1]m | xj = b} for j ∈ {1, . . . ,m} and

b ∈ {0, 1}. For a smooth function ψ on [0, 1]m, we consider a Neumann condition

∂ψ(x)

∂xj

= b for any x ∈ F b
j . (4)

It is easily confirmed that the function ψ defined by (2) satisfies the Neumann condi-

tion (4). Conversely, if ψ(x) satisfies the Neumann condition (4), then it is expanded

3



by an infinite cosine series in L2 sense (see e.g. page 300 of Zygmund [2002]). In

other words, the function (2) approximates any potential function satisfying (4) if

we make the frequency set U large. Now we describe the Caffarelli’s theorem. Here

we put a slightly stronger assumption than his.

Theorem 1 (Theorem 5 of Caffarelli [2000]). Let p(x) be a strictly positive and

continuously differentiable function on [0, 1]m. Assume that p(x) satisfies a Neumann

condition ∂p(x)/∂xj = 0 for any x ∈ F b
j . Then there exists a twice-differentiable

convex function ψ(x) such that (1) and (4) hold.

Since the conditions for p(x) in the above theorem are differentiability and a

boundary condition, we can construct sufficiently many statistical models by SGM.

In the following subsection, we enumerate various examples of SGM. In Section 5,

we discuss removal of the boundary condition for p(x) by removing the twice-

differentiability condition for ψ(x).

For the one-dimensional case (m = 1), SGM becomes a mixture model as will

be explained in the following subsection. For the multi-dimensional case (m > 1),

SGM is not a mixture model except for essentially one-dimensional case.

Lemma 2. SGM is not a mixture model unless there exists some i ∈ {1, . . . ,m}
such that U ⊂ Zi, where Zi = {u ∈ Zm

≥0 | uj = 0 ∀j ̸= i}.

We use the following mixture model as a reference.

Definition 2 (MixM). Let U be a finite subset of Zm
≥0. We define a structural

mixture model (referred to as MixM) by

p̃(x|θ) = 1 +
∑
u∈U

θu∥u∥2

m∏
j=1

cos(πujxj), (5)

where x = (xj) ∈ [0, 1]m, θ = (θu) ∈ RU and ∥u∥2 =
∑m

j=1 u
2
j . The feasible region is

Θ̃ := {θ ∈ RU | p̃(x|θ) ≥ 0 ∀x ∈ [0, 1]m}.

In the following lemma, we prove that SGM and MixM have a common score

function at the origin θ = 0 of the parameter space. The Fisher information matrix

at the origin is also calculated.

Lemma 3. The score vector at the origin θ = 0 of both SGM and MixM is equal to

(∥u∥2
∏m

j=1 cos(πujxj))u∈U . The Fisher information matrix (Juv)u,v∈U at the origin

θ = 0 of both the models is given by

Juv =
∥u∥41{u=v}

2|σ(u)| ,

where σ(u) = {j ∈ {1, . . . ,m} | uj > 0}. In particular, Juv is diagonal.
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The Fisher information matrix J at the origin is useful if we deal with the testing

of hypothesis θ = 0. Under this hypothesis, the maximum likelihood estimator θ̂

is approximated by a Gaussian random vector with mean 0 and variance (nJ)−1.

In Section 4, we will use the scaled maximum likelihood estimator J1/2θ̂ to detect

which components of θ̂ are significant. A method of computation for the maximum

likelihood estimator is given in Section 3. In general, it seems difficult to calculate

the Fisher information at the other points θ ̸= 0. Exceptional cases will be stated

in the following examples.

2.2 Examples

We enumerate examples of SGM. We mainly compare SGM with MixM defined in

Definition 2. For SGM, the following sufficient condition for feasibility of θ is useful

to deal with the examples. In Theorem 3, we will show that θ is feasible if

1 −
∑
u∈U

|θu|u2
j ≥ 0 (6)

for any j = 1, . . . ,m. This condition is also necessary if, for example, U is a one-

element set (see Theorem 3 for details).

Example 1 (1-dimensional case). If m = 1, then the probability density of SGM is

given by the Fourier series

p(x1|θ) = 1 +
∑
u∈U

θuu
2 cos(πux1).

This coincides with MixM (Definition 2). The model is considered as a particular

case of the circular model proposed by Fernández-Durán [2004]. If U = {u} with

some u ∈ Z>0, then the Fisher information Juu(θ) is explicitly expressed for any

feasible θ = θu. In fact,

Juu(θ) =
1 −

√
1 − θ2u4

θ2
√

1 − θ2u4
. (7)

The proof is given in Appendix.

Example 2 (Independence). Let m = 2 and

U = {(u1, 0) | u1 ∈ U1} ∪ {(0, u2) | u2 ∈ U2},

where Ui (i = 1, 2) is a finite subset of Z≥0. Then SGM becomes an independent

model

p(x1, x2|θ) =

(
1 +

∑
u1∈U1

θ(u1,0)u
2
1 cos(πu1x1)

)(
1 +

∑
u2∈U2

θ(0,u2)u
2
2 cos(πu2x2)

)
.
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Independence of higher-dimensional variables is similarly described. On the other

hand, if we consider MixM

p̃(x1, x2|θ) = 1 +
∑

u1∈U1

θ(u1,0)u
2
1 cos(πu1x1) +

∑
u2∈U2

θ(0,u2)u
2
2 cos(πu2x2),

then x1 and x2 are not independent except for trivial cases.

Example 3 (Correlation). Let m = 2 and U = {(1, 1)}. Then a pair (X1, X2) drawn

from p(x1, x2|θ) has positive or negative correlation if θ(1,1) > 0 or < 0, respectively

(see Figure 1). We confirm this observation by explicit calculation. We denote

θ = θ(1,1), c(ξ) = cos(πξ) and s(ξ) = sin(πξ) for simplicity. The density is

p(x1, x2|θ) = det

(
1 + θc(x1)c(x2) −θs(x1)s(x2)
−θs(x1)s(x2) 1 + θc(x1)c(x2)

)
= 1 + 2θc(x1)c(x2) +

θ2

2
(c(2x1) + c(2x2)).

By the condition (6), the feasible region for θ is [−1, 1]. The marginal density of Xi

(i = 1, 2) is exactly calculated as

p(xi|θ) = 1 +
θ2

2
c(2xi).

The mean and variance of Xi (i = 1, 2) are 1/2 and (1/12) + θ2/(4π2), respectively.

The correlation is

Cov[X1, X2]√
V[X1]V[X2]

=
8θ/π4

(1/12) + θ2/(4π2)
=

96θ/π4

1 + 3θ2/π2
.

The maximum correlation over θ ∈ [−1, 1] is 96/(π4 + 3π2) ≃ 0.7558 at θ = 1. In

contrast, if we consider MixM

p̃(x1, x2|θ) = 1 + 2θc(x1)c(x2),

then the feasible region (i.e. the set of θ that assures p̃(x1, x2|θ) ≥ 0) is |θ| ≤ 1/2.

The correlation is 96θ/π4 and its maximum value is 48/π4 ≃ 0.4928 at θ = 1/2.

Thus SGM can describe a distribution with higher correlation than MixM. The

Fisher information Juu(θ) is explicitly expressed for any feasible θ, where u = (1, 1).

The formula is

Juu(θ) =
2(1 −

√
1 − θ2)

θ2
√

1 − θ2
. (8)

The proof is given in Appendix.
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x1 x2

density

x1 x2

density

(a) θ = 0.5. (b) θ = −0.5.

Figure 1: The probability density p(x|θ) for U = {(1, 1)} and θ = θ(1,1) = ±0.5. The
correlation coefficient is about ±0.458 for θ = ±0.5, respectively.

Example 4 (Heteroscedasticity). Letm = 2 and U = {(1, 2)}. Then a pair (X1, X2)

drawn from p(x1, x2|θ) has the following property: the conditional mean of X2 given

X1 does not depend on X1 but the conditional variance does (see Figure 2). In other

words, X2 has heteroscedasticity in terms of regression analysis. We confirm this

fact. The joint density is

p(x1, x2|θ) = det

(
1 + θc(x1)c(2x2) −2θs(x1)s(2x2)
−2θs(x1)s(2x2) 1 + 4θc(x1)c(2x2)

)
= 1 + 5θc(x1)c(2x2) + 2θ2c(2x1) + 2θ2c(4x2)

where we put c(ξ) = cos(πξ), s(ξ) = sin(πξ), and θ = θ(1,2). The marginal density

of X1 is p(x1) = 1 + 2θ2c(2x1). The conditional density of X2 given X1 is

p(x2|x1, θ) = 1 +
5θc(x1)c(2x2) + 2θ2c(4x2)

1 + 2θ2c(2x1)

The conditional mean of X2 given X1 is exactly 1/2, and therefore the correlation

between X1 and X2 is zero. However, the conditional variance of X2 given X1 is not

constant: ∫ 1

0

(x2 − 1/2)2p(x2|x1, θ)dx2 =
1

12
+

10θc(x1) + θ2

4π2{1 + 2θ2c(2x1)}
.

In order to measure the dependency of X1, let us consider the quantity

β122(θ) =
E[(X1 − 1/2)(X2 − 1/2)2]

{V[X1]}1/2V[X2]
.

=
−5θ/π4

{(1/12) + θ2/π2}1/2{(1/12) + θ2/(4π2)}
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The maximum value of β122(θ) over the feasible region θ ∈ [−1/4, 1/4] is β122(−1/4) ≃
0.5047. In contrast, for MixM p̃(x1, x2|θ) = 1 + 5θc(x1)c(2x2), the maximum of

β122(θ) over the feasible region θ ∈ [−1/5, 1/5] is β̃122(−1/5) ≃ 0.4267. Thus SGM

can describe more heteroscedastic distributions than MixM. The heteroscedasticity

appears in regression analysis, where explanatory and response variables are a priori

selected. Remark that our model does not need a priori selection of variables.

x1 x2

density

Figure 2: The probability density for U = {(1, 2)} and θ = 0.2. The conditional
density p(x2|x1) is unimodal if x1 is close to 1, and bimodal if x1 is close to 0.

Example 5 (three-dimensional interaction). Let m = 3 and U = {(1, 1, 1)}. Then

the triplet (X1, X2, X3) has the three-dimensional interaction although the marginal

two-dimensional correlation for any pair vanishes. We confirm this. The joint prob-

ability density is

p(x1, x2, x3|θ) = 1 + 3θc1c2c3 + 3θ2c21c
2
2c

2
3 + θ3c31c

3
2c

3
3

−2θ3c1s
2
1c2s

2
2c3s

2
3 − (1 + θc1c2c3)θ

2(c21s
2
2s

2
3 + s2

1c
2
2s

2
3 + s2

1s
2
2c

2
3),

where ci = cos(πxi) and si = sin(πxi) for i = 1, 2, 3. The density is symmetric

with respect to permutation of axes. The feasible region is |θ| ≤ 1 by (6). The 2-

dimensional and 1-dimensional marginal densities are p(x1, x2|θ) = 1+θ2(4c21c
2
2−1)/2

and p(x1|θ) = 1+θ2(2c21−1)/2, respectively. In particular, the mean of Xi is 1/2 and

the correlation of Xi and Xj (i ̸= j) is zero. However, there exists three-dimensional

interaction between (X1, X2, X3). We calculate

β123(θ) :=
E[(X1 − EX1)(X2 − EX2)(X3 − EX3)]√

V[X1]V[X2]V[X3]
.
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The result is

β123(θ) =
−24θ/π6 − 1944θ3/729π6

(1/12 + θ2/(4π2))3/2
.

The maximum value of β123(θ) over the feasible region |θ| ≤ 1 is β123(−1) ≃ 0.7743.

In contrast, for MixM p̃(x1, x2, x3|θ) = 1+3θc1c2c3, we have β123(θ) = −288
√

12θ/π6.

Its maximum value over the feasible region |θ| ≤ 1/3 is about 0.3459 at θ = −1/3.

Example 6 (Approximately conditional independence). Letm = 3 and (X1, X2, X3)

be drawn from a probability density p(x1, x2, x3). In general, conditional indepen-

dence of X1 and X2 given X3 is described by p(x1, x2, x3) = p(x3)p(x1|x3)p(x2|x3)

or, equivalently, the conditional mutual information

I12|3 =

∫
p(x1, x2, x3) log

p(x1, x2|x3)

p(x1|x3)p(x2|x3)
dx1dx2dx3

vanishes. A log-linear model exp(f(x1, x3) + g(x2, x3)) satisfies this condition. Al-

though SGM does not represent any conditional-independence model, we can con-

struct an approximately conditional-independence model. Let m = 3 and U =

{(1, 0, 1), (0, 1, 1)}. Then, by putting ci = cos(πxi), si = sin(πxi), θ = θ(1,0,1) and

ϕ = θ(0,1,1), we have

p(x1, x2, x3|θ, ϕ)

= det

 1 + θc1c3 0 −θs1s3

0 1 + ϕc2c3 −ϕs2s3

−θs1s3 −ϕs2s3 1 + θc1c3 + ϕc2c3


= 1 + 2θc1c3 + 2ϕc2c3 + 3θϕc1c2c

2
3 + θ2(c21c

2
3 − s2

1s
2
3) + ϕ2(c22c

2
3 − s2

2s
2
3)

+θ2ϕ(c21c
2
3 − s2

1s
2
3)c2c3 + θϕ2(c22c

2
3 − s2

2s
2
3)c1c3

Now assume that ϵ := max(|θ|, |ϕ|) is close to zero. Then the conditional mutual

information is, after tedious calculations,

I12|3 =
3

16
θ2ϕ2 + O(ϵ5).

On the other hand, MixM p̃(x1, x2, x3|θ, ϕ) = 1+2θc1c3 +2ϕc2c3 has the conditional

mutual information I12|3 = (3/4)θ2ϕ2 + O(ϵ5). The leading term is 4 times larger

than that of SGM.

We summarize the above examples in Table 1.

Example 7. We can construct more complicated densities by combining the pre-

ceding ones. For example, let m = 3 and U = {(1, 2, 0), (0, 1, 1), (1, 1, 1)}. Let the

corresponding parameter vector be θ = (0.1, 0.3, 0.2). The vector θ is feasible since

(6) is satisfied. The marginal and conditional 2-dimensional densities are illustrated

in Figure 3.
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Table 1: Summary of the examples. For each example, the characteristics of SGM
and MixM are compared.

# Model name m Characteristic SGM MixM
1 1-dim. 1 (SGM=MixM) — —
2 independence 2 ‘is independent’ TRUE FALSE
3 correlation 2 maximum correlation 0.7558 0.4928
4 heteroscedasticity 2 maximum β122 0.5047 0.4267
5 3-dim. interaction 3 maximum β123 0.7743 0.3459
6 conditional independence 3 leading coefficient of I12|3 3/16 3/4

x1

x2

density

x1

x3

density

x2
x3

density

(a) p(x1, x2) (b) p(x1, x3) (c) p(x2, x3)

x1

x3

density

x1

x3

density

(d) p(x1, x3|x2 = 3/4) (e) p(x1, x3|x2 = 1/4)

Figure 3: The marginal and conditional densities for U = {(1, 2, 0), (0, 1, 1), (1, 1, 1)}.
The figures (a), (b) and (c) are the marginal density p(xi, xj) for each pair (i, j).
The figures (d) and (e) are the conditional density p(x1, x3|x2) for specific values of
x2.
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3 Maximum likelihood estimation of SGM

Let x(1), . . . , x(n) be independent samples drawn from the true density p0(x) whose

support is [0, 1]m. From the definition of SGM, the maximum likelihood estimation

of SGM is formulated as a convex optimization program:

maximize
n∑

t=1

log det

(
I +

∑
u∈U

θuHu(x(t))

)
,

subject to θ ∈ Θ =

{
θ ∈ RU

∣∣∣∣∣ I +
∑
u∈U

θuHu(ξ) ≽ 0 ∀ξ ∈ [0, 1]m

}
,

where we put Hu(x) = D2(−π−2
∏m

ρ=1 cos(πuρxρ)). Recall that D2 is the Hessian

operator and U is a finite subset of Zm
≥0.

It is hard to write down Θ explicitly. The difficulty follows from the statement

“for any ξ ∈ [0, 1]m” in the definition of Θ. In general, for a set of feasible regions

Θα indexed by α, the region ∩αΘα is called a robust feasible region (see Ben-tal and

Nemirovski [1998]).

We consider two approaches to solve this problem. We will first give a sequence

Θ◦
M of regions converging to Θ◦, the interior of Θ, as M → ∞. Hence the maximum

likelihood estimator is calculated with arbitrary accuracy in principle. However,

Θ◦
M has about Mm constraints on θ and therefore it is usually expensive if m ≥ 3.

For the second approach, we give a proper subset Θlit of Θ, which consists of only

m constraints. As a by-product of the second approach, we obtain a lasso-type

estimator because Θlit is compatible with L1-constraints. We call the maximizer of

the log-likelihood over these constrained regions the constrained maximum likelihood

estimator. The constrained maximum likelihood estimator is calculated via the

determinant maximization algorithm (Vandenberghe et al. [1998]).

If m = 1, the feasible region is the set of Fourier coefficients of non-negative

functions. To deal with the feasible region, Fernández-Durán [2004] used Fejér’s

characterization: the Fourier series of any non-negative function is written as the

square of a Fourier series. More specifically, for any r(x) =
∑∞

u=0 ru cos(πux), its

square r(x)2 is of course non-negative and written by a Fourier series. The Fourier

coefficients of r(x)2 are written by quadratic polynomials of (ru)
∞
u=0. However, it is

hard to use this representation for our problem because we assume θu = 0 for u /∈ U
and this restriction is not affine in ru.
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3.1 Inner approximation of feasible region

Let Θ◦ be the interior of Θ. We give a sequence of tractable sets Θ◦
M that converges

to Θ◦ from inside as M → ∞. We first remark the following lemma.

Lemma 4. The set Θ◦ is equal to
{
θ ∈ RU | D2ψ(x|θ) ≻ 0 ∀x ∈ [0, 1]m

}
.

We prepare some notations for constructing Θ◦
M . We consider the lattice points

Lm
M , where LM = { 0

M
, 1

M
, · · · , M

M
}. Let ∥u∥∞ = maxj |uj| and Umax = maxu∈U ∥u∥∞.

Define a linear operator KM on RU by (KMθ)u = θu/
∏m

j=1(1 − uj/M) for θ ∈ RU .

Finally, we define Θ◦
M for each M ≥ Umax + 1 by

Θ◦
M =

{
θ ∈ RU ∣∣ D2ψ(ξ|KMθ) ≻ 0, ∀ξ ∈ Lm

M

}
.

Remark that Θ◦
M is written in a finite number of constraints, in contrast to Θ◦ and

Θ. We have the following theorem.

Theorem 2. For any M ≥ Umax + 1, we have Θ◦
M ⊂ Θ◦ and

Θ◦ = lim sup
M→∞

Θ◦
M ,

where lim supM→∞ Θ◦
M is defined by ∩M ′≥1 ∪M≥M ′ Θ◦

M .

The constrained maximum likelihood estimator of θ over Θ◦
M is calculated via the

determinant maximization algorithm (Vandenberghe et al. [1998]). Hence, in prin-

ciple, we can calculate the maximum likelihood estimator with arbitrary accuracy.

However, the region Θ◦
M consists of |Lm

M | = (M + 1)m constraints. This number is

usually expensive if m ≥ 3. In the following subsection, we give a proper subset of

Θ which consists of only m constraints.

Example 8. Let m = 2 and U = {(1, 1), (2, 2)}. The approximated regions Θ◦
M

(M = 5, 10, 20, 40) are illustrated in Figure 4 (a). For this case, we can give a precise

expression of Θ. The two eigenvalues of the Hessian matrix D2ψ(x|θ) are given by

λ± = 1 + θ(1,1) cos(π(x1 ± x2)) + 4θ(2,2) cos(2π(x1 ± x2)).

In the theory of time-series analysis, the function f(z) := 1 +
∑

k ρk cos(kz) of z is

the spectral density of a MA(k) process with the autocorrelation coefficients (ρj)
k
j=1.

In particular, for MA(2), it is known that f(z) is non-negative for any z if and only

if |ρ1|+ |ρ2| ≤ 1 or ρ2
1 ≤ 4ρ2(1− ρ2) holds (see Box and Jenkins [1976], Section 3.4).

Therefore the feasible region for U = {(1, 1), (2, 2)} is given by

|θ(1,1)| + |4θ(2,2)| ≤ 1 or (θ(1,1))
2 ≤ 4(4θ(2,2))(1 − 4θ(2,2)).

The region Θ◦
M shown in Figure 4 (a) is close to this region. We also illustrate the

approximated regions for another example U = {(1, 1), (3, 1)} in Figure 4 (b).
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(a) U = {(1, 1), (2, 2)}. (b) U = {(1, 1), (3, 1)}.

Figure 4: The approximated region Θ◦
M (solid line; M = 5, 10, 20, 40 from inner

side) and the little parameter space Θlit (dashed line) defined in Subsection 3.2.

We remark that the feasible region for MixM (Definition 2) is approximated from

the inner side by

Θ̃◦
M :=

{
θ ∈ RU | p̃(ξ|KMθ) > 0, for ξ ∈ Lm

M

}
The proof is similar to that of Theorem 2 and omitted here.

3.2 A conservative region and Lasso-type estimation

We give a sufficient condition such that θ ∈ Θ. Define a set Θlit by

Θlit =

{
θ ∈ RU

∣∣∣∣∣ 1 −
∑
u∈U

|θu|u2
j ≥ 0 (∀j = 1, . . . ,m)

}
.

We call Θlit the little parameter space. It is an intersection of m constraints. In

the following theorem, we show that the little parameter space Θlit is a subset of

the feasible region Θ. In other words, Θlit is more conservative than Θ in the sense

of robustness. We say that a subset V of U is linearly independent modulo 2 if a

linear map ℓ : {0, 1}V 7→ {0, 1}m defined by ℓ(ϵ) =
∑

u∈V ϵuu (mod 2) has the kernel

{0}. For each V ⊂ U , the set of vectors that have only V-components is denoted by

RV = {θ ∈ RU | θu = 0 ∀u /∈ V}.

Theorem 3. For any U , Θlit ⊂ Θ. Furthermore, if a subset V of U is linearly

independent modulo 2, then we have Θlit ∩ RV = Θ ∩ RV . In particular, if U itself

is linearly independent modulo 2, then Θlit = Θ.

13



By letting V be a one-element set {u}, we have the relation Θlit∩R{u} = Θ∩R{u}.

This shows that Θlit contains at leat 2|U| boundary points of Θ. The little parameter

space for U = {(1, 1), (2, 2)} and U = {(1, 1), (3, 1)} is indicated in Figure 4 (a) and

(b), respectively.

The constrained maximum likelihood estimator of θ over Θlit is computed via the

determinant maximization algorithm by introducing non-negative slack variables

θ+
u and θ−u such that θu = θ+

u − θ−u and |θu| = θ+
u + θ−u . The estimator is usually

sparse. This sparsity is closely related to the lasso estimator Tibshirani [1996] in that

the regression method is executed with L1-constraints. Our little parameter space

Θlit is also represented by L1-constraints. Hence we call the constrained maximum

likelihood estimator of θ over Θlit the lasso-type estimator for SGM. Furthermore,

we will use an indexed set Θlit
τ with a tuning parameter τ ∈ [0, 1] by

Θlit
τ =

{
θ ∈ RU

∣∣∣∣∣ τ −∑
u∈U

|θu|u2
j ≥ 0 (∀j = 1, . . . ,m)

}
.

In particular, Θlit
0 = {0} and Θlit

1 = Θlit. The tuning parameter τ can be selected by

cross validation.

We remark that the feasible region for MixM (Definition 2) has the following

conservative region

Θ̃lit :=

{
θ ∈ RU

∣∣∣∣∣ 1 −
∑
u∈U

|θu|∥u∥2 ≥ 0

}
.

Furthermore, if a subset V of U is linearly independent modulo 2, then we have

Θ̃lit ∩ RV = Θ̃ ∩ RV . The proof is similar to that of Theorem 3 and is omitted here.

Recently, lasso-type estimators for graphical Gaussian models are proposed by

several authors: Yuan and Lin [2007], Banerjee et al. [2008] and Friedmann et al.

[2008]. On the other hand, a sparse density estimation (SPADES) for mixture

models is considered in Bunea et al. [2007]. Our MixM is considered as a version of

SPADES although the estimation procedure is different. In Section 4, we compare

SGM with MixM and the graphical Gaussian model by numerical examples.

4 Numerical examples

We give numerical examples on simulated and real datasets. We calculate the con-

strained maximum likelihood estimator and study its predictive performance. We

compare SGM with the graphical Gaussian model (with lasso) and MixM (Defini-

tion 2).
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We describe some notations and assumptions. We use the following frequency set

for SGM throughout this section:

U =
{
u ∈ Zm

≥0 | ∥u∥∞ ≤ 2, ∥u∥1 ≤ 3
}
, (9)

where ∥u∥∞ = maxj |uj| and ∥u∥1 =
∑

j |uj|. The elements of U are given by

(1, 0, . . . , 0), (2, 0, . . . , 0), (1, 1, 0, . . . , 0), (2, 1, 0, . . . , 0), (1, 1, 1, 0, . . . , 0) and their

permutations of the components. The cardinality of U is m(m + 1)(m + 5)/6. Let

θ̂◦M = (θ̂◦M,u)u∈U and θ̂lit
τ = (θ̂lit

τ,u)u∈U denote the constrained maximum likelihood

estimators of θ over the regions Θ◦
M and Θlit

τ , respectively (see Section 3 for the

definition of Θ◦
M and Θlit

τ ). We call θ̂lit
τ the lasso-type estimator of SGM. The same

notations on the estimators are used also for MixM.

The graphical Gaussian lasso estimator Ĉ = Ĉ(τ) of the concentration matrix

(Yuan and Lin [2007]) is formulated as follows

min. {log det(C) + tr(Σ̂C)} s.t.
∑
i<j

|Cij| ≤ τ
∑
i<j

|(Σ̂−1)ij|,

where Σ̂ is the sample correlation and the tuning parameter τ ranges over [0, 1]. If

τ = 1, the graphical Gaussian lasso estimator coincides with the maximum likelihood

estimator (this is not the case for the lasso-type estimators of SGM and MixM). The

partial correlation coefficient of xi and xj is estimated by ρ̂ij = −Ĉij/
√
ĈiiĈjj.

For given raw data (Dti)1≤t≤n,1≤i≤m, we preprocess it before estimation. For Gaus-

sian models, we use the data D̃ti scaled by the standard way:

D̃ti =
Dti − D̄·i

sd(D·i)
, D̄·i =

1

n

n∑
t=1

Dti, sd(D·i) =

√√√√ 1

n

n∑
t=1

(Dti − D̄·i)2.

For SGM and MixM, the data is further transformed into Xti = Φ(D̃ti), where Φ is

the standard normal cumulative distribution function, in order that Xti ranges over

[0, 1]. By the transform Φ, the standard normal density as the null Gaussian model

is transformed into the uniform density as the null SGM and the null MixM.

We used the package SDPT3 for solving the determinant-maximization problem

on MATLAB (Toh et al. [2006]).

4.1 Simulation

We first confirm that the maximum likelihood estimator is actually computed by

the method described in Section 3. Consider Example 7 of Subsection 2.2. The true

parameter is θ(1,2,0) = 0.1, θ(0,1,1) = 0.3 and θ(1,1,1) = 0.2 with the true frequency
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set U0 = {(1, 2, 0), (0, 1, 1), (1, 1, 1)}. The frequency set (9) we use for estimation is

written in a matrix form

U =

 1 2 0 1 2 0 1 0 1 2 0 1 0 0 1 0
0 0 1 1 1 2 2 0 0 0 1 1 2 0 0 1
0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2

 . (10)

The columns are arranged according to the lexicographic order. A result of estima-

tion is given in Figure 5. The sample size is n = 100 and the number of experiments

is 100. The samples were generated by the exact method of Sei [2006]. Both esti-

mators actually distribute around the true parameter.
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(a)
√
Juuθ̂

◦
M,u (M = 5). (b)

√
Juuθ̂

lit
τ,u (τ = 1).

Figure 5: A simulation of estimation of SGM. The box-plot shows each component of
the constrained maximum likelihood estimators (a) θ̂◦M for M = 5 and (b) θ̂lit

τ for τ =
1. The values are normalized by the square root

√
Juu of the Fisher information. The

horizontal axis denotes u ∈ U arranged according to (10). The dashed line denotes
the true parameter. The sample size is n = 100 and the number of experiments is
100.

We next compare SGM with MixM and Gaussian models. We consider a five-

dimensional example. Let ϕ(x|µ,Σ) denote the normal density with mean µ and

covariance Σ. Let m = 5 and define the true density p0(x) by

p0(x) = ϕ(x1|0, 1)ϕ(x2|x1, 1)ϕ(x3|0, σ2
3(x2))ϕ(x4, x5|0,Σ45(x3)), (11)

where

σ2
3(x2) = 1 + tanh(x2) and Σ45(x3) =

(
1 tanh(x3)

tanh(x3) 1

)
.

By the definition, the set of variables (x1, x2) has positive correlation, the vari-

able x3 has heteroscedasticity against x2, and the set of variables (x3, x4, x5) has

three-dimensional interaction. Remark that the density does not belong to SGM.

A numerical result is shown in Table 2. The sample size is n = 40 and the number
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of experiments is 200. All of the three models detected the correlation of the pair

(x1, x2). However, only SGM effectively detected the heteroscedasticity of (x2, x3)

and the three-dimensional interaction (x3, x4, x5). The estimator of MixM was too

sparse, and did not effectively detect them.

For the same true density, we also computed the predictive performance of the esti-

mators of SGM, MixM and Gaussian. We use the expected predictive log-likelihood

as the index of the predictive performance. The arbitrary constant of the log-

likelihood is determined in such a way that the log-likelihood of the null model is

zero. The sample size is n = 40 for observation and 10 for prediction. The number

of experiments is 200. The maximum mean predictive log-likelihood of SGM is esti-

mated as 3.37(±0.33) at τ = 1.0, where the confidence interval is based on the 95%

interval with the normal approximation. For MixM and Gaussian, the maximum

value is estimated as 1.99(±0.15) at τ = 1.0 and 2.72(±0.26) at τ = 0.32, respec-

tively. Hence SGM has better predictive performance than MixM and Gaussian.

4.2 Real dataset

We consider the digoxin clearance data reported in Halkin et al. [1975] (see also

Edwards [2000]). The data consists of creatinine clearance (x1), digoxin clearance

(x2) and urine flow (x3) of 35 patients. In Table 3, we compare the lasso-type

estimators of SGM, MixM and the Gaussian model. The result shows that for

the data our SGM gives slightly better predictive performance than MixM and the

Gaussian models. As stated in Edwards [2000], partial correlation of (x1, x3) is not

significant. However, our model suggests a heteroscedastic effect of x1 (creatinine

clearance) against x3 (urine flow).

5 Discussion

We defined SGM as a set of the potential functions ψ and studied its feasible region

to calculate the constrained maximum likelihood estimator. SGM was applied to

both simulated and real dataset. We discuss remaining mathematical and practical

problems.

We used the finite Fourier expansion to define the potential function ψ as Eq. (2).

It is sometimes hard to describe local behavior of the density function if we use this

expansion. For such purposes, we can use wavelets instead of the cosine functions

as long as the resultant potential function satisfies the Neumann condition (4). For

example, assume that we want to describe tail behavior of two-dimensional data
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Table 2: Mean value of the lasso-type estimators for the five-dimensional data. The
tuning parameter τ is set to 1. The sample size is n = 40 and the number of
experiments is 200. The confidence interval is based on the 95% interval with the
normal approximation. For SGM and MixM, only top ten values of

√
Juuθ̂

lit
τ,u are

shown. For the Gaussian model, u is the indicator vector of a pair (i, j).

SGM MixM Gaussian
u E[

√
Juuθ̂lit

τ,u] u E[
√

Juuθ̂lit
τ,u] u E[ρ̂ij(τ)]

(1, 1, 0, 0, 0) 0.510 (±0.013) (1, 1, 0, 0, 0) 0.123 (±0.006) (1, 1, 0, 0, 0) 0.706 (±0.011)
(0, 0, 1, 1, 1) -0.297 (±0.017) (0, 1, 2, 0, 0) -0.031 (±0.005) (1, 0, 0, 0, 1) -0.023 (±0.023)
(0, 1, 2, 0, 0) -0.232 (±0.015) (0, 0, 1, 1, 1) -0.007 (±0.003) (0, 1, 1, 0, 0) 0.014 (±0.023)
(0, 0, 2, 0, 0) -0.106 (±0.014) (0, 0, 2, 0, 0) -0.006 (±0.002) (1, 0, 0, 1, 0) -0.010 (±0.022)
(2, 0, 0, 0, 0) -0.095 (±0.011) (0, 2, 0, 0, 0) -0.002 (±0.001) (0, 1, 0, 0, 1) 0.008 (±0.024)
(0, 2, 0, 0, 0) -0.084 (±0.010) (1, 0, 2, 0, 0) -0.002 (±0.001) (0, 0, 0, 1, 1) -0.007 (±0.028)
(0, 0, 0, 0, 2) -0.043 (±0.013) (2, 0, 0, 0, 0) -0.001 (±0.001) (0, 1, 0, 1, 0) 0.007 (±0.024)
(0, 0, 0, 2, 0) -0.043 (±0.010) (0, 2, 0, 1, 0) -0.000 (±0.001) (0, 0, 1, 1, 0) -0.006 (±0.023)
(1, 0, 2, 0, 0) -0.036 (±0.009) (0, 0, 1, 0, 2) -0.000 (±0.001) (1, 0, 1, 0, 0) -0.004 (±0.021)
(0, 0, 0, 2, 1) -0.015 (±0.015) (0, 0, 0, 0, 2) -0.000 (±0.001) (0, 0, 1, 0, 1) 0.004 (±0.023)

Table 3: A result for the digoxin data. The lasso-type estimators of SGM, MixM and
the graphical Gaussian model are shown. Only non-zero values are displayed. For
the Gaussian model, the estimated partial correlation of the pairs {1, 2}, {1, 3}, {2, 3}
is displayed on the row u = (1, 1, 0), (1, 0, 1), (0, 1, 1), respectively. The cross-
validated predictive log-likelihood (referred to as CV prediction) is put on the bot-
tom. For each model, the asterisk ‘∗’ indicates the optimal tuning parameter selected
by CV prediction.

SGM MixM Gaussian
τ = 0.5 τ = 1.0∗ τ = 0.5 τ = 1.0∗ τ = 0.25∗ τ = 1.0

(1, 1, 0) 0.351 0.558 0.177 0.354 0.480 0.758
(0, 1, 1) 0.149 0.301 0.217 0.485
(2, 0, 1) -0.166
(1, 0, 1) 0.149 0.148 -0.191

u (0, 0, 2) -0.070 -0.147
(0, 2, 0) -0.088
(1, 0, 2) 0.072
(0, 0, 1) 0.073 0.050
(0, 1, 2) -0.039

CV prediction 11.19 14.54 6.95 12.26 14.49 -0.92
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around x = (1, 1). Then we can use a function

ψ(x|θ, a) = (x2
1 + x2

2)/2 + π−2θ(2 + cos(πx1) + cos(πx2))
a,

where a > 1/2. A typical shape of the density function p(x|θ, a) = det(D2ψ(x|θ, a))
is given in Figure 6. One can confirm that the gradient map Dψ is continuous on

[0, 1]2 and satisfies the Neumann condition (4). A sufficient condition for convexity

of ψ is 0 ≤ θ ≤ 21−2a/a. If a < 1, then the tail behavior of p(x|θ, a) is

p(x|θ, a) ≃ θ2a2(2a− 1)

(
π2

2
{(1 − x1)

2 + (1 − x2)
2}
)2(a−1)

as (x1, x2) → (1, 1). The proofs of these facts are omitted. Although estimation of θ

is described by the determinant maximization, that of a is not. Further investigation

is needed.

x1 x2

density

Figure 6: The density function p(x|θ, a) for a = 0.75 and θ = 21−2a/a.

If any covariates are available together with given data, we can include the co-

variates in the parameter θ of SGM. However, since the parameter space Θ of SGM

is not the whole Euclidean space, its use is restricted.

The author recently proved an inequality on Efron’s statistical curvature, in that

the curvature of SGM at the origin θ = 0 is always smaller than that of MixM (5).

This fact is not so practical but it supports SGM. Since the statement and the proof

of this inequality are rather complicated, we will present them in a forthcoming

paper.

We constructed a lasso-type estimator on SGM as a byproduct of the conservative

feasible region in Section 3. Performance of the estimator is numerically studied in

Section 4. For the existing lasso estimators, some asymptotic results are known
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when the sample size n and/or the number m of variates increase (Knight and

Fu [2000], Meinshausen and Bühlmann [2006], Yuan and Lin [2007], Bunea et al.

[2007], Banerjee et al. [2008]). We think it is important to compare our SGM with

the Gaussian, mixture and exponential models on the asymptotic argument.

A Proofs

A.1 Proof of Lemma 1

Let ψ have the form (2) and choose any θ such that D2ψ(x|θ) ≽ 0 for every x ∈
[0, 1]m. We prove that the gradient map Dψ(·|θ) is a bijection on [0, 1]m. If θ = 0,

then the bijectivity of Dψ(x|θ) = x is clear. Therefore we assume θ ̸= 0. We can

extend the domain of ψ(·|θ) from [0, 1]m to whole Rm by using Eq. (2), and denote

the extended function by ψ̃(x) = ψ̃(x|θ) for x ∈ Rm. Since ψ̃(x) is a periodic and

even function along each axis, the convexity condition D2ψ̃ ≽ 0 holds over x ∈ Rm.

We will prove that (i) Dψ̃ is a bijection on Rm and (ii) Dψ̃ is a bijection on each

hyperplane {x | xj = b}, where j ∈ {1, . . . ,m} and b ∈ {0, 1}. We first show that the

bijectivity on [0, 1]m follows from the conditions (i) and (ii). Indeed, if (i) and (ii) are

fulfilled, then for each j ∈ {1, . . . ,m} the sandwiched region {x ∈ Rm | 0 ≤ xj ≤ 1}
between two hyperplanes is mapped onto itself because Dψ̃ is continuous. Therefore

[0, 1]m is injectively mapped onto itself. To prove (i), it is sufficient to show that ψ̃ is

strictly convex and co-finite: limλ→∞ ψ̃(λx)/∥x∥ = 0 whenever x ̸= 0 (see Theorem

26.6 of Rockafeller [1970]). We define a function f(z) of z ∈ R by f(z) = ψ̃(x0 +ze),

where x0 ∈ Rm and e ∈ Rm \ {0} are arbitrary. Then f ′′(z) ≥ 0 for any z since

D2ψ̃(x) ≽ 0 for any x ∈ Rm. However, since f ′′(z) is a non-constant analyitc

function (recall that θ ̸= 0), f ′′(z) must be positive except for a finite number of

z for each bounded interval. Hence f , and therefore ψ̃, is strictly convex. The

co-finiteness of ψ̃ is immediate because ψ̃ is sum of x⊤x/2 and a bounded function.

Hence (i) was proved. Next we prove the condition (ii). We consider the hyperplane

{x | xm = b}, where b ∈ {0, 1}, without loss of generality. Denote the restriction of

ψ̃ to {x | xm = b} by ψ̃m−1. Then ψ̃m−1 has the following expression

ψ̃m−1(x1, . . . , xm−1) =
b2

2
+

1

2

m−1∑
i=1

x2
i −

∑
u∈U

π−2θu(−1)ujb

m−1∏
i=1

cos(πujxj).

This function is the same form as Eq. (2) with the dimension m− 1. The convexity

condition (∂2ψ̃m−1/∂xi∂xj) ≽ 0 is also satisfied because ψ̃m−1 is a restriction of ψ̃.

Thus (ii) is proved in the same manner as the proof of (i).
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A.2 Proof of Lemma 2

A statistical model is a mixture model if and only if all the second derivatives of the

density function with respect to the parameter vanish. Hence we calculate the second

derivative of the density function of SGM. Put Zi := {u ∈ Zm
≥0 | uj = 0 ∀j ̸= i}. If

U ⊂ Zi for some i, then it is easy to confirm that SGM becomes a mixture model

p(x|θ) = 1 +
∑
u∈U

θuu
2
i cos(πuixi).

Hence we assume that U ̸⊂ Zi for any i. Then there exist u, v ∈ U (the case u = v

is available) such that |σ(u) ∪ σ(v)| ≥ 2, where σ(u) = {j | uj > 0}. Putting

Au = {D2ψ(x|θ)}−1{∂/∂θu(D
2ψ(x|θ))} we have

∂2p(x|θ)
∂θu∂θv

= trAu trAv − tr[AuAv].

Since Au|θ=0,x=0 = diag(u2
1, . . . , u

2
m), we have

∂2p(x|θ)
∂θu∂θv

∣∣∣∣
θ=0,x=0

= ∥u∥2∥v∥2 −
∑

i

u2
i v

2
i =

∑
i

∑
j ̸=i

u2
i v

2
j > 0,

where the last inequality follows from |σ(u)∪σ(v)| ≥ 2. Thus SGM is not a mixture

model as long as U ̸⊂ Zi for any i.

A.3 Proof of Lemma3

The score function of SGM at θ = 0 is directly calculated as

Lu :=
∂

∂θu

log p(x|θ)
∣∣∣∣
θ=0

= ∥u∥2

m∏
j=1

cos(πujxj).

The score function of MixM is also easily proved to be Lu. Then the Fisher infor-

mation matrix of both the models is

Juv =

∫
p(x|0)LuLvdx = ∥u∥2∥v∥2

m∏
j=1

∫ 1

0

cos(πujxj) cos(πvjxj)dxj.

Here the integral is calculated by the following formula

∫ 1

0

cos(πujxj) cos(πvjxj)dxj =


1 if uj = vj = 0,
1/2 if uj = vj > 0,
0 if uj ̸= vj.
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A.4 Proof of Equations (7) and (8)

We first prove Eq. (7). Let m = 1 and U = {u}. We only consider the case u = 1.

The other cases are similarly proved. Put θ = θ1. Since p(x1|θ) = 1 + θ cos(πx1),

we have

Juu(θ) =

∫ 1

0

cos2(πx1)

1 + θ cos(πx1)
dx1.

By putting z = exp(iπux1), we obtain

Juu(θ) =
1

2πi

∮
|z|=1

(z + z−1)2/4

1 + θ(z + z−1)/2

dz

z
=

1

4πi

∮
|z|=1

(z2 + 1)2

z2(θz2 + 2z + θ)
dz.

The poles of the integrand inside the unit circle are 0 and z+, where z± := (−1 ±√
1 − θ2)/θ. By the residue theorem, we obtain

Juu(θ) =
1

2

(
−2

θ2

)
+

1

2

(z2
+ + 1)2

z2
+θ(z+ − z−)

=
1 −

√
1 − θ2

θ2
√

1 − θ2
.

This proves Eq. (7).

We next prove Eq. (8). Put u = (1, 1) and θ = θu. We use the following identity

p(x|θ) = det

(
1 + θ cos(x1) cos(x2) −θ sin(x1) sin(x2)
−θ sin(x1) sin(x2) 1 + θ cos(x1) cos(x2)

)
= (1 + θ cos(π(x1 − x2)))(1 + θ cos(π(x1 + x2))).

The Fisher information is

Juu(θ) =

∫
[0,1]2

(
cos2(π(x1 − x2))

1 + θ cos(π(x1 − x2))
+

cos2(π(x1 + x2))

1 + θ cos(π(x1 + x2))

)
dx1dx2

=
1

4

∫
[−1,1]2

(
cos2(π(x1 − x2))

1 + θ cos(π(x1 − x2))
+

cos2(π(x1 + x2))

1 + θ cos(π(x1 + x2))

)
dx1dx2

=
1

4

∫
[−1,1]2

(
cos2(πy1)

1 + θ cos(πy1)
+

cos2(πy2)

1 + θ cos(πy2)

)
dy1dy2

where the last equality follows from the transformation y1 = x1−x2 and y2 = x1+x2,

and from the periodicity of the integrand. Then (8) is proved in the same manner

as the proof of (7).

A.5 Proof of Lemma 4

We use the following elementary lemma. Put S = {A ≽ 0 | trA = 1}. Note that S
is compact.

Lemma 5. Let X be a real symmetric matrix. Then the minimum eigenvalue of X

is given by minA∈S tr(AX).
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Proof. Let X =
∑

i ξie(i)e(i)
⊤ be the spectral decomposition of X, where ξ1 ≤ · · · ≤

ξm and e(i)⊤e(i) = 1. For any A ∈ S,

tr(AX) =
∑

i

ξi(e(i)
⊤Ae(i)) ≥ ξ1

∑
j

(e(j)⊤Ae(j)) = ξ1.

The equality is attained at A = e(1)e(1)⊤.

Let Hu(x) = D2(−π−2
∏m

j=1 cos(πujxj)). Then

D2ψ(x|θ) = I +
∑
u∈U

θuHu(x).

The minimum eigenvalue ρmin(θ) of D2ψ(x|θ) minimized over x ∈ [0, 1]m is

ρmin(θ) = 1 + min
x∈[0,1]m,A∈S

∑
u∈U

θu tr(AHu(x)).

Recall that the parameter space Θ is expressed as Θ = {θ ∈ RU | ρmin(θ) ≥ 0}. We

prove that the interior of Θ is Θ◦ = {θ ∈ RU | ρmin(θ) > 0}. Put

µ = max
u∈U

max
x∈[0,1]m

max
A∈S

| tr(AHu(x))| < ∞.

We first prove that if ρmin(θ) > 0, then θ ∈ Θ◦. Indeed, if η ∈ RU is sufficiently

small, then

ρmin(θ + η) ≥ ρmin(θ) − µ
∑
u∈U

|ηu| ≥ 0.

We next prove that if ρmin(θ) = 0, then θ ∈ Θ \ Θ◦. Since ρmin(θ) = 0, there exist

some A ∈ S and some x ∈ [0, 1]m such that tr(AD2ψ(x|θ)) = 0. For such an x,

there exists some v ∈ U such that θv tr(AHv(x)) < 0. Define a vector η ∈ RU by

ηu = θv1{u=v}. Then, for any ϵ > 0, we have

ρmin(θ + ϵη) ≤ tr(AD2ψ(x|θ + ϵη)) = ϵθv tr(AHv(x)) < 0.

This implies that θ is a boundary point of Θ. Hence Lemma 4 was proved.

A.6 Proof of Theorem 2

We first recall some notations. We use [m] = {1, . . . ,m} and LM = { 0
M
, 1

M
, · · · , M

M
}.

The supremum norm of s ∈ Zm is defined by ∥s∥∞ := maxj |sj|. Recall that

Umax = maxu∈U ∥u∥∞. We denote U = Umax for simplicity. Recall that KM is a

linear map on RU defined by KMθ = (θu/
∏m

j=1(1 − uj/M))u∈U .

Define a set K−1
M Θ◦ by

K−1
M Θ◦ := {K−1

M θ | θ ∈ Θ◦} = {θ | D2ψ(x|KMθ) ≻ 0 ∀x ∈ [0, 1]m}.

Then we have K−1
M Θ◦ ⊂ Θ◦

M by the definition of Θ◦
M . Hence, the theorem follows

from the following two claims.
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(i) lim sup
M→∞

K−1
M Θ◦ = Θ◦.

(ii) Θ◦
M ⊂ Θ◦ for any M .

We first prove (i). Put S = {A ≽ 0 | trA = 1} and f(x|θ, A) = tr[AD2ψ(x|θ)].
By Lemma5 and compactness of [0, 1]m × S, a vector θ belongs to Θ◦ if and only if

min
x∈[0,1]m,A∈S

f(x|θ, A) > 0.

Now it is sufficient to prove that, for any θ ∈ RU , f(x|KMθ, A) converges to f(x|θ, A)

uniformly in x ∈ [0, 1]m and A ∈ S. Let Hu(x) := D2(−π−2
∏m

j=1 cos(πujxj)). Then

we have f(x|θ, A) = 1 +
∑

u∈U θu tr[AHu(x)] and therefore

|f(x|KMθ, A) − f(x|θ, A)| ≤
∑
u∈U

|{(KMθ)u − θu} tr[AHu(x)]| . (12)

Since the function tr[AHu(x)] of (x,A) ∈ [0, 1]m × S is bounded and since (KMθ)u

converges to θu for each u ∈ U as M → ∞, the right hand side of (12) converges to

0 uniformly in x and A.

Next we prove (ii). Let RM = {−M−1
M

, . . . , M−1
M

, M
M
}. We extend the domain of

ψ from [0, 1]m to Rm as done in the proof of Lemma 1, and denote it again by ψ.

If θ ∈ Θ◦
M , then D2ψ(ξ|KMθ) is positive definite for any ξ ∈ Rm

M because ψ(x|θ) is

an even function with respect to each coordinate xj. Then it is sufficient to prove

that D2ψ(x|θ) for any x is written as a convex combination of {D2ψ(ξ|KMθ)}ξ∈Rm
M

.

Define a Fejér-type kernel QM by

QM(z) =
1

2M2

M−1∑
a=0

M−1∑
b=0

eiπ(a−b)z =
1

2M2

(
sin(πMz/2)

sin(πz/2)

)2

.

Then the following lemma holds.

Lemma 6. For any M ≥ U + 1, we have

D2ψ(x|θ) =
∑

ξ∈Rm
M

D2ψ(ξ|KMθ)
m∏

j=1

QM(xj − ξj).

The right hand side is a convex combination of {D2ψ(ξ|KMθ)}ξ∈Rm
M

.

Proof. For each j ∈ {1, . . . ,m}, define an operator KM,j on RU by

(KM,jθ)u =
θu

1 − uj/M
.

Then we have KM =
∏m

j=1KM,j from the definition. It is sufficient to show that

D2ψ(x|θ) =
∑

ξj∈RM

D2ψ(ξj, x\j|KM,jθ)QM(xj − ξj), (13)
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where x\j = (x1, . . . , xj−1, xj+1, . . . , xm). In fact, if (13) is proved, then

D2ψ(x|θ) =
∑

ξ1∈RM

D2ψ(ξ1, x2, . . . , xm|KM,1θ)QM(x1 − ξ1)

=
∑

ξ1∈RM

∑
ξ2∈RM

D2ψ(ξ1, ξ2, . . . , xM |KM,1KM,2θ)
2∏

j=1

QM(xj − ξj)

= · · ·

=
∑

ξ∈Rm
M

D2ψ(ξ|KMθ)
m∏

j=1

QM(xj − ξj).

We prove (13) for j = 1 without loss of generality. We first describe D2ψ(x|θ) in

terms of {eiπs⊤x}s∈Zm . For each s ∈ Zm, we define a m×m matrix

Fs =


I if s = 0,
θu2

−|σ(u)|ss⊤ if |sj| = uj for all j ∈ [m] for some u ∈ U ,
0 otherwise.

Recall that σ(u) = {j ∈ [m] | uj > 0}. Then, by applying the Euler’s formula

cos(πujxj) = (eiπujxj − e−iπujxj)/2 to Eq. (2), we can show that

D2ψ(x|θ) =
∑

∥s∥∞≤U

Fse
iπs⊤x.

Recall that U = maxu∈U ∥u∥∞. The right hand side of (13) with j = 1 is∑
ξ1∈RM

D2ψ(ξ1, x\1|KM,1θ)QM(x1 − ξ1)

=
∑

ξ1∈RM

 ∑
∥s∥∞≤U

Fse
iπ(s1ξ1+s⊤\1x\1)

1 − |s1|/M

( 1

2M2

M−1∑
a=0

M−1∑
b=0

eiπ(a−b)(x1−ξ1)

)

=
M−1∑
a=0

M−1∑
b=0

∑
∥s∥∞≤U

Fse
iπ((a−b)x1+s⊤\1x\1)

M − |s1|
1

2M

∑
ξ1∈RM

eiπ(s1−a+b)ξ1

=
M−1∑
a=0

M−1∑
b=0

∑
∥s∥∞≤U

Fse
iπs⊤x

M − |s1|
1{s1≡a−b mod 2M}.

For any s1 with |s1| ≤ U < M , the cardinality of the set

{(a, b) ∈ {0, . . . ,M − 1}2 | s1 = a− b}

is M − |s1|. Hence we have∑
ξ1∈RM

D2ψ(ξ1, x\1|KM,1θ)QM(x1 − ξ1) =
∑

∥s∥∞≤U

Fse
iπs⊤x = D2ψ(x|θ).
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Therefore (13) was proved.

Now we prove that {
∏m

j=1QM(xj−ξj)}ξ∈Rm
M

becomes a probability vector. In fact,

non-negativity follows from the definition of QM and the total mass is 1 because

∑
ξ1∈RM

QM(x1 − ξ1) =
1

2M2

M−1∑
a=0

M−1∑
b=0

∑
ξ1∈RM

eiπ(a−b)(x1−ξ1) =
1

M

M−1∑
a=0

M−1∑
b=0

1{a=b} = 1.

Therefore the lemma and Theorem 2 are proved.

A.7 Proof of Theorem 3

Let θ ∈ Θlit. We show that D2ψ(x|θ) ≽ 0 for all x ∈ [0, 1]m. By Euler’s formula, we

obtain
m∏

j=1

cos(πujxj) = 2−m
∑

α∈{−1,1}m

cos(πα⊤d(u)x),

where d(u) is the m × m diagonal matrix with the diagonal vector u. Note that

2−m
∑

α∈{−1,1}m αα⊤ = I. Then

D2ψ(x|θ) = I +
∑
u∈U

θu

2m

∑
α∈{−1,1}m

cos(πα⊤d(u)x)d(u)αα⊤d(u)

≽ I −
∑
u∈U

|θu|
2m

∑
α∈{−1,1}m

d(u)αα⊤d(u)

= I −
∑
u∈U

|θu|d(u)2

≽ 0.

This implies that θ ∈ Θ.

Next we assume that V ⊂ U is linearly independent modulo 2. Since Θlit ⊂ Θ,

it is sufficient to prove that Θ ∩ RV ⊂ Θlit ∩ RV . Let θ ∈ Θ ∩ RV . We evaluate

D2ψ(x|θ) at lattice points ξ ∈ {0, 1}m. For any ξ ∈ {0, 1}m and any v ∈ Zm, we

have

D2

(
−π−2

m∏
j=1

cos(πvjxj)

)∣∣∣∣∣
x=ξ

= (−1)v⊤ξd(v)2.

Since V is linearly independent modulo 2, we can choose ξ ∈ {0, 1}m such that

v⊤ξ = 1{θv>0} (mod 2) for all v ∈ V . Then

0 ≼ D2ψ(x|θ)
∣∣
x=ξ

= 1 +
∑
v∈V

θv(−1)v⊤ξd(v)2 = 1 −
∑
v∈U

|θv|d(v)2.

This means θ ∈ Θlit ∩ RV .
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