
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Online Minimization Knapsack Problem

Xin HAN and Kazuhisa MAKINO

METR 2009–04 Feb. 2009

DEPARTMENT OF MATHEMATICAL INFORMATICS

GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO

BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

Online Minimization Knapsack Problem

Xin Han Kazuhisa Makino

Department of Mathematical Informatics, Graduate School of Information and Technology,

University of Tokyo, Tokyo, 113-8656, Japan

hanxin.mail@gmail.com, makino@mist.i.u-tokyo.ac.jp

Feb. 17th, 2009∗

Abstract

In this paper, we address the online minimization knapsack problem, i. e., the items are
given one by one over time and the goal is to minimize the total cost of items that covers a
knapsack. We study the removable model, where it is allowed to remove old items from the
knapsack in order to accept a new item. We obtain the following results.

(i) We propose an 8-competitive deterministic algorithm for the problem, which contrasts to
the result for the online maximization knapsack problem that no online algorithm has a
bounded competitive ratio [7].

(ii) We propose a 2e-competitive randomized algorithm for the problem.

(iii) We derive a lower bound 2 for deterministic algorithms for the problem.

(iv) We propose a 1.618-competitive deterministic algorithm for the case in which each item
has its size equal to its cost, and show that this is best possible.

1 Introduction

Knapsack problem is one of the most classical and studied problems in combinatorial optimization

and has a lot of applications in the real world [8]. The (classical) knapsack problem is given a set

of items with profits and sizes, and the capacity value of a knapsack, to maximize the total profit

of selected items in the knapsack satisfying the capacity constraint. This problem is also called the

maximization knapsack problem (Max-Knapsack). Many kinds of variants and generalizations of

the knapsack problem have been investigated so far [8]. Among them, the minimization knapsack

problem (Min-Knapsack) is one of the most natural ones (see [1, 2, 3, 4] and [8, pp. 412-413]), that is

given a set of items associated with costs and sizes, and the size of a knapsack, to minimize the total

cost of selected items that cover the knapsack. Note that Min-Knapsack can be transformed into

Max-Knapsack in polynomial time (and vice versa), i.e., they are polynomially equivalent. However,

Min-Knapsack and Max-Knapsack exhibit relevant differences in approximation factors for the

algorithms. For example, a polynomial time approximation scheme (PTAS) for Max-Knapsack

does not directly lead to a PTAS for Min-Knapsack.

∗Original version written on Jan. 30th, 2009

1

In this paper, we focus on the online version of problem Min-Knapsack. To our best knowledge,

this is the first paper on online minimization knapsack problem. Here, “online” means that items

are given over time, i.e., after a decision of rejection or acceptance is made on the current item,

the next item is given, and once an item is rejected or removed, it cannot be considered again.

The goal of the online minimization knapsack problem is the same as the offline version, i.e., to

minimize the total cost.

Related work: It is well-known that offline Max-Knapsack and Min-Knapsack both admit a

fully polynomial time approximation scheme (FPTAS) [1, 4, 8]. As for the online maximization

knapsack problem, it was first studied on average case analysis by Marchetti-Spaccamela and Ver-

cellis [11]. They proposed a linear time approximation algorithm such that the expected difference

between the optimal and the approximation solution value is O(log3/2 n) under the condition that

the capacity of the knapsack grows proportionally to n, the number of items. Lueker [10] further

improved the expected difference to O(log n) under a fairly general condition on the distribution.

Recently, Iwama and Taketomi [6] studied the problem on worst case analysis. They obtained a

1.618-competitive algorithm for the online Max-Knapsack under the removable condition, if each

item has its size equal to its profit. Here the removable condition means that it is allowed to re-

move some items in the knapsack in order to accept a new item. They also showed that this is best

possible by providing a lower bound 1.618 for this case. For the general case, Iwama and Zhang [7]

showed that no algorithm for online Max-Knapsack has a bounded competitive ratio, even if the

removal condition is allowed. Some generalizations of the online Max-Knapsack such as resource

augmentations were also investigated [7, 13].

Our results: In this paper, we study the online minimization knapsack problem. We first show

that no algorithm has a bounded competitive ratio, if the removable condition is not allowed. Under

the removable condition, we propose two deterministic algorithms for the online Min-Knapsack.

The first one is simple and has competitive ratio Θ(log ∆), where ∆ is the ratio of the maximum

size to the minimum size in the items, and the second one has competitive ratio 8. This constant-

competitive result for the online Min-Knapsack contracts to the result for the online Max-Knapsack

that no online algorithm has a bounded competitive ratio [7], which is surprising, since problems

Max-Knapsack and Min-Knapsack are expected to have the same behavior from a complexity

viewpoint (see Table 1).

The first algorithm is motivated by the observation: if all the items have the same size, then a

simple greedy algorithm (called Lowest Cost First strategy) of picking items with the lowest cost

first provides an optimal solution. The algorithm partitions the item set into ⌈log ∆⌉ + 1 subsets

Fj by their size. When a new item dt is given, the algorithm guesses the optimal value within O(1)

approximation factor, by using only the items in the knapsack together with the new item dt, and

for each class Fj , chooses items by Lowest Cost First strategy. Since each class Fj has cost at most

O(1) times the optimal value, we have an O(log ∆)-competitive algorithm, where we also provide

a lower bound of the algorithm to show that it is Θ(log ∆)-competitive.

Note that the first algorithm keeps too many extra items in the knapsack to guess the optimal

value of the Min-Knapsack. In order to obtain an O(1)-competitive online algorithm, we again

represent the knapsack as the union of subsets Fj (j ≥ 0). Here classes Fj ’s are defined by their

cost rather than their size. We then guess the optimal value by solving fractional Max-Knapsack

2

problems for classes Fj . Since each class Fj has cost at most 22−j times the optimal value, we have

an 8-competitive algorithm.

We also show that no deterministic online algorithm achieves competitive ratio less than 2, and

provides a randomized online algorithm with competitive ratio 2e ≈ 5.44. We finally consider the

case in which each item has its cost equal to its size. Similarly to the Max-Knapsack problem, we

show that the online Min-Knapsack problem admits 1.618-competitive algorithm which matches

the lower bound.

Table 1 summarizes the current status of the complexity of problems Max-Knapsack and Min-

Knapsack, where the bold letters represent the results obtained in this paper.

Table 1: The current status of the complexity of problems Max-Knapsack and Min-Knapsack

Max-Knapsack Min-Knapsack
lower bound upper bound lower bound upper bound

offline FPTAS [5] FPTAS [1]

online
non-removable

general case unbounded [6] unbounded
size = cost unbounded [6] unbounded

removable
general case unbounded [7] 2

8
2e (randomized)

size = cost 1.618 [6] 1.618 [6] 1.618 1.618

The rest of the paper is organized as follows. Section 2 gives definitions of the online Min-

Knapsack problem, and show that the “removable” condition is necessary for the online Min-

Knapsack problem. Section 3 presents algorithms for the online Min-Knapsack problem, and Sec-

tion 4 gives a lower bound 2 for the online Min-Knapsack problem. Finally, in Section 5, we consider

the case where each item has its cost equal to its size.

2 Preliminaries

In this section, we first give the definition of the online Min-Knapsack problem and show that why

the removable condition is necessary for the problem.

Let us first define the offline minimization knapsack problem.

Problem Min-Knapsack

Input: A set of items D = {d1, . . . , dn} associated with cost c : D → R+ and size
s : D → R+.

Output: A set of items F ⊆ D that minimizes
∑

f∈F c(f) subject to
∑

f∈F s(f) ≥ 1.

Here we assume w.l.o.g. that the size of the knapsack is 1. For a set U ⊆ D, let c(U) =
∑

u∈U c(u)

and s(U) =
∑

u∈U s(u).

In the online model, the objective is the same with the offline version. But the input is given

over time. Namely, the knapsack of size 1 is known beforehand, and after a decision is made on

3

the current item dt associated with c(dt) and s(dt), the next one dt+1 is given. Once items are

discarded, they cannot be used again, even for estimating an optimal value of the problem. We

analyze online algorithms by using one of the standards: the competitive ratio. Given an input

sequence L and an online algorithm A, the competitive ratio of algorithm A is defined as follows:

RA = sup
L

A(L)

OPT (L)
,

where OPT (L) and A(L) denotes the costs obtained by an optimal algorithm and the algorithm

A, respectively. If A(L) has no feasible solution, then we define A(L) = +∞. If A is a randomized

algorithm, then we have RA = supL
E[A(L)]
OPT (L) .

In this paper, we consider removable condition for the online Min-Knapsack, i.e., it is allowed

to remove or discard old items in the knapsack. It follows from the following lemma that removable

condition is necessary to have a bounded competitive ratio.

Lemma 1 If at least one of the following conditions is not satisfied, then no algorithm has a

bounded competitive ratio for the online Min-Knapsack problem.

(i) Before the total size of the items given so far is smaller than 1 (the size of the knapsack), no
item is rejected.

(ii) It is allowed to remove old items in the knapsack when a new item is given.

Proof. For (i), let us see the following instance. Given two items d1 and d2 with size 0.9 and 0.1,

respectively. If an online algorithm does not accept both items, then the adversary stops the input

after the second round. The online algorithm is infeasible, while the optimal algorithm does have

a feasible solution. Thus, the competitive ratio of the online algorithm is unbounded.

For (ii), let us see the following input instance. The first item d1 has its size M and cost M ,

where M is arbitrarily large. Note that by (i) any online algorithm has to accept the item and

keep it in the knapsack. After keeping the first one in the knapsack, the second item d2 with size 1

and cost 1 is given. If it is not allowed to remove the first item, the online algorithm has a solution

whose value is at least M . However, the optimal value is at most 1 by keeping the second item.

When M goes to infinity, the competitive ratio is unbounded. 2

From Lemma 1, in the subsequential sections, we consider the online Min-Knapsack problem

under the removable condition.

3 Algorithms for the general case

In this section, we present algorithms for the online Min-Knapsack problem under the removable

condition. Note that in our model, once an item is removed or rejected, it cannot be used again,

even for estimating the optimal value. Therefore, we have to keep items in the knapsack so that

they adjust any forthcoming input sequence.

To construct an online algorithm with small competitive ratio, there are two points that we

have to keep in mind: (I) keep feasible any time (i.e., the total size in the knapsack is at least 1),

after the total size of the items given so far is at least 1, and (II) the total cost in the knapsack is

not too far from the optimal cost, where (I) follows from (i) in Lemma 1.

4

3.1 A simple deterministic algorithm

In this subsection, we give a simple online algorithm with a competitive ratio Θ(log ∆), where

∆ is the ratio of the maximum size to the minimum size. The online algorithm is motivated by

the observation: if all the items have the same size, then the greedy algorithm (Lowest Cost First

selection strategy) of picking items with the lowest cost first provides an optimal solution.

For a nonnegative integer t, let D(t) denote the set of the first t items, i.e., D(t) = {d1, . . . dt},

and let F (t) denote the set of items that our algorithm keeps in the knapsack after the t-round.

Let t0 be the first time when there is a feasible solution for D(t), i.e., t0 = min{t |
∑t

i=1 s(di) ≥ 1}.

By Lemma 1 (i), for t < t0, our algorithm keeps all the items, i.e., F (t) = D(t).

Let us then consider when t ≥ t0. For an integer −∞ < j < +∞, define

Sj = {d ∈ D | 2j < s(d) ≤ 2j+1},

Dj(t) = D(t) ∩ Sj and Fj(t) = F (t) ∩ Sj.

Our algorithm keeps F (t) as the union of ⌈log2 ∆ + 1⌉ classes Fj(t). When a new item dt is

given, the algorithm computes a guessed value β(t) for the optimal cost OPT (D(t)) for the input

D(t) such that β(t) = O(1)OPT (D(t)), by using only the items in the knapsack F (t − 1) together

with the new item dt, and then for each j, we construct Fj(t) from Fj(t − 1) by keeping the items

with the total cost at most 3β(t) by the Lowest Cost First strategy.

Formally, the algorithm when t ≥ t0 is described as follows.

Algorithm A

1. E(t) := F (t − 1) ∪ {dt}.

2. Guess: Compute a value α(t) by an approximation algorithm (e.g., [1, 2]) with E(t)
as the input. Set β(t) := min{β(t − 1), α(t)}.

3. For each j, Fj(t) := E(t)∩Sj and if c(Fj(t)) > 3β(t) then repeatedly remove an item
with the highest cost until c(Fj(t)) ≤ 3β(t).

4. F (t) :=
⋃

j Fj(t)

Note that, for any time t, the total number of classes Fj(t) needed in the algorithm is bounded

by ⌈log2 ∆+1⌉. Therefore, the algorithm is O(log ∆)-competitive, if we have s(F (t)) ≥ 1 (i.e., F (t)

is feasible) and β(t) = O(1)OPT (D(t)) for all t ≥ t0. We shall show them by a series of lemmas.

Lemma 2 Let j be an integer. At time t ≥ t0, we have c(p) ≥ c(q) for all p ∈ Dj(t) − Fj(t) and

q ∈ Fj(t).

Proof. For a fixed j, we prove this lemma by induction. It is easy to see that the lemma holds for

time t = t0, since Step 3 repeatedly removes an item with the highest cost until c(Fj(t)) ≤ 3β(t).

Assume that the lemma holds for time t1 ≥ t0 and consider time t = t1 + 1. If dt 6∈ Fj(t), then

he inductive hypothesis implies that the lemma holds, since Step 3 always removes the item with

the highest cost. If dt ∈ Fj(t), let γ be the cost of a cheapest item in Dj(t) − Fj(t). We show that

5

c(dt) ≤ γ, which together with the inductive hypothesis implies that the lemma is true for this

case.

To prove c(dt) ≤ γ, let t′ (≤ t) be the maximum time when an item with cost γ is discarded.

Since all the items in Fj(t
′) have costs at most γ, from the definitions of γ and t′, we have

Fj(t
′) ⊆ Fj(t).

Thus, if c(dt) > γ, then t′ < t holds by dt ∈ Fj(t), and the monotonicity of β, we have

c(Fj(t)) ≥ c(Fj(t
′)) + γ > 3β(t′) ≥ 3β(t),

which is a contradiction. 2

Let F ∗(t) denote an optimal solution for an input D(t) and F ∗
j (t) = F ∗(t) ∩ Sj.

Lemma 3 For a time t ≥ t0, assume that there is a feasible solution in F (t), i.e., s(F (t)) ≥ 1.

Then, for all j, we have c(Fj(t)) ≥ 2β(t) if F ∗
j (t) 6⊆ Fj(t).

Proof. Assume that F ∗
j (t) 6⊆ Fj(t) for some j and t ≥ t0. Let γ be the cost of a cheapest item

in Dj(t) − Fj(t), and let t′ (≤ t) be the maximum time when an item with cost γ is discard. As

mentioned in the proof of Lemma 2, we have Fj(t
′) ⊆ Fj(t). This implies c(Fj(t

′)) ≤ c(Fj(t)). Since

c is nonnegative and F ∗
j (t) 6⊆ Fj(t), we also have

γ ≤ c(F ∗
j (t)) ≤ OPT (D(t)) ≤ β(t),

where the last inequality holds from the assumption. This implies c(Fj(t
′)) ≥ 3β(t′)−β(t) ≥ 2β(t),

and hence c(Fj(t)) ≥ 2β(t). 2

Lemma 4 At any time t ≥ t0, F (t) contains a feasible solution for D(t) with cost at most

2OPT (D(t)).

Proof. Remember that F ∗(t) denotes an optimal solution for an input D(t) and F ∗
j (t) = F ∗(t)∩Sj .

For each j, we show that there exists Gj in Fj(t) such that

s(Gj) ≥ s(F ∗
j (t)) and c(Gj) ≤ 2c(F ∗

j (t)).

This completes the proof, since
⋃

j Gj is a feasible solution for D(t) with cost at most 2OPT (D(t)).

Let us construct Gj as follows.

If F ∗
j (t) ⊆ Fj(t), then Gj := F ∗

j (t). Otherwise, we construct Gj from F ∗
j (t) ∩ Fj(t) by adding

the cheapest 2|F ∗
j (t) \ Fj(t)| items from Fj(t) \ F ∗

j (t).

Since by Lemma 2 c(p) ≥ c(q) holds for all p ∈ Dj(t) − Fj(t) and q ∈ Fj(t), we have

c(Gj) ≤ 2c(F ∗
j (t)).

By the definition of Sj, we have s(p)/2 ≤ s(q) for any items p and q in Sj, which implies s(Gj) ≥

s(F ∗
j (t)). These prove the lemma if we can show |Fj(t) \ F ∗

j (t)| ≥ 2|F ∗
j (t) \ Fj(t)|.

6

We prove this by induction on time t ≥ t0. At time t = t0, we have β(t) ≥ OPT (D(t)) since

before t0 all the items are accepted in the knapsack. If F ∗
j (t) 6⊆ Fj(t), by Lemma 3, we have

c(Fj(t)) ≥ 2β(t) ≥ 2OPT (D(t)) ≥ 2c(F ∗
j (t)),

and hence we have

c(Fj(t) \ F ∗
j (t)) ≥ 2c(F ∗

j (t) \ Fj(t)).

By Lemma 2, we have c(p) ≤ c(q) for any two items p ∈ Fj(t) \ F ∗
j (t) and q ∈ F ∗

j (t) \ Fj(t). This

implies that the lemma is true for t = t0.

Assume that |Fj(t) \ F ∗
j (t)| ≥ 2|F ∗

j (t) \ Fj(t)| holds for t = t1 (≥ t0) and consider time t =

t1 + 1. By the inductive hypothesis, F (t1) contains a feasible solution for D(t1). Thus we have

β(t) ≥ OPT (D(t)). By Lemma 3, we have

c(Fj(t)) ≥ 2β(t) ≥ 2OPT (D(t)) ≥ 2c(F ∗
j (t)).

Then by applying the same argument for t = t0 to this case, we can prove that |Fj(t) \ F ∗
j (t)| ≥

2|F ∗
j (t) \ Fj(t)|. 2

Lemma 5 Algorithm A is O(log ∆)-competitive.

Proof. By Lemma 4, F (t) contains a feasible solution for D(t) with cost at most 2OPT (D(t)).

Since (offline) Min-Knapsack problem admits a FPTAS [1],

β(t) ≤ (1 + ǫ)OPT (F (t)) ≤ 2(1 + ǫ)OPT (D(t))

for some ǫ > 0 and the cost by algorithm A satisfies

A(D(t)) ≤ 3(⌈log2∆⌉ + 1)β(t),

and hence we have A(D(t)) ≤ O(log ∆)OPT (D(t)). 2

The next lemma shows that the analysis of the competitive ratio for algorithm A is tight.

Lemma 6 Algorithm A is Ω(log ∆)-competitive.

Proof. To prove this lemma, we present an instance D such that A(D) ≥ log ∆ · OPT (D).

For 0 ≤ i ≤ k, let bi be an item with s(bi) = c(bi) = 2−i, and we construct an input sequence D

by D = D(0),D(1), . . . ,D(k), where D(i) is a sequence consisting of 2i bi’s. Note that this instance

has an optimal solution F ∗ = {b0} whose cost is OPT (D) = 1. On the other hand, algorithm A

keeps all the items, and hence A(D) = k + 1 > log2 ∆ · OPT (D), where ∆ = 2k is the ratio of the

largest size to the smallest size. 2

By Lemmas 5 and 6, we have the following theorem.

Theorem 1 Algorithm A is Θ(log ∆)-competitive.

7

3.2 An improved deterministic algorithm

Note that the first algorithm keeps too many extra items in the knapsack to keep a feasible solution

and to guess the optimal value of the Min-Knapsack. In order to obtain an O(1)-competitive online

algorithm, for any time t (≥ t0), we represent the knapsack F (t) as the union of subsets Fj(t) (j ≥ 0)

which satisfy the following three conditions.

• A guessed value β(t) satisfies β(t) ≤ r · OPT (D(t)) for some constant r > 1.

• For each j ≥ 0, c(Fj(t)) ≤ 2β(t)/rj .

• F (t) :=
⋃

j Fj(t) satisfies the feasibility, i.e., s(F (t)) ≥ 1.

It is not difficult to see that the algorithm has constant competitive ratio if it satisfies all the

conditions above. We now show how to construct such Fj ’s.

Let F (t−1) denotes a set of items in the knapsack at time t−1, and let E(t) := F (t−1)∪{dt}.

For a guessed value β(t), let Ej(t) = {di ∈ E(t) | c(di) ≤ β(t)/rj} and construct Fj(t) from Ej(t)

by repeatedly removing an item e with the highest unit cost c(e)
s(e) , until the total cost becomes at

most 2β(t)/rj . Clearly this construction assures the second condition above.

To assure the first and third conditions, we first initialize β(t) by β(t) := c(E(t)) if t = t0;

otherwise β(t) := β(t−1). We check if s(Fj(t)) ≥ 1 for each j. Let ℓ be the maximum number j such

that s(Fj(t)) ≥ 1. Then we have OPT (D(t)) ≤ c(Fj(t)) ≤ 2β(t)/rℓ. If OPT (D(t)) > 2β(t)/rℓ+1

holds in addition, then 2β(t)/rℓ is a good guessed value for OPT (D(t)). However, in general this

is not true, since some item in D(t) has been already discard before round t, and hence 2β(t)/rℓ

may not be a good guessed value for OPT (D(t)). In order to overcome this difficulty, we solve the

following (offline) fractional maximization knapsack problem for each class Fj(t).

max
∑

f∈Fj(t)

s(f) · x(f)

s.t.
∑

f∈Fj(t)

c(f) · x(f) ≤ β(t)/rj ; (1)

0 ≤ x(f) ≤ 1, f ∈ Fj(t).

Let FKP(Fj(t), β(t)/rj) denote the optimal value of (1), where the second argument β(t)/rj denotes

the capacity of the knapsack. It is well-known [8] that the fractional knapsack problem can be solved

by a greedy approach for s(f)/c(f). Let ℓ = max{j | FKP(Fj(t), β(t)/rj) ≥ 1}. Then we can see

below that β(t)/rℓ is a good guessed value and Fℓ(t) is feasible for our problem.

Formally, the algorithm is described as follows.

8

Algorithm B for t ≥ t0

1. E(t) := F (t − 1) ∪ {dt}. If t = t0, then α(t) := c(E(t)); otherwise α(t) := β(t − 1).

2. For each integer j ≥ 0, construct a class Fj(t) as follows.

2.1 Let Ej(t) := {di ∈ E(t) | c(di) ≤ α(t)/rj} where Ej(t) is not constructed if
Ej(t) = ∅.

2.2 Construct Fj(t) from Ej(t) by repeatedly removing an item e with the highest

unit cost c(e)
s(e) , until the total cost becomes at most 2α(t)/rj .

3. Let ℓ = max{j | FKP(Fj(t), α(t)/rj) ≥ 1}, let F (t) :=
⋃

j≥ℓ Fj(t) and β(t) :=

α(t)/rℓ.

Observe that in Step 2.1 of the algorithm Ej(t) is empty for all j with α(t)/rj < min{c(d) |

d ∈ D(t)}, and we have α(t) ≤ t max{c(d) | d ∈ D(t)}. Hence, the number of nonempty Ej(t) is

bounded by O
(

log t max{c(d)|d∈D(t)}
min{c(d)|d∈D(t)}

)

.

Lemma 7 At any time t ≥ t0, the index ℓ in Step 3 must exist.

Proof. We prove this lemma by induction on t. When t = t0, we have α(t) = c(E(t)) (= c(D(t)))

and E0(t) = D(t). After Step 2.2, we have F0(t) = E0(t), since c(E0(t)) = α(t) < 2α(t). We also

have FKP(F0(t), α(t)) = s(D(t)) ≥ 1, where the last inequality follows from the definition of t0.

Therefore, the lemma holds for t = t0.

Assume that the lemma holds for time t = t1(≥ t0), i.e., FKP(F0(t1), α(t1)) ≥ 1, and consider

time t = t1 + 1.

At time t, if the new item dt is not selected in F0(t) at Step 2.2, then we have F0(t) = F0(t1).

Then by the inductive hypothesis, we have FKP(F0(t), α(t)) ≥ 1, where we note that α(t) = β(t1).

On the other hand if dt is selected in F0(t) at Step 2.2, we have

FKP(F0(t), α(t)) = FKP(F0(t), β(t1)) ≥ FKP(F0(t1), β(t1)) ≥ 1,

where the first inequality FKP(F0(t), β(t1)) ≥ FKP(F0(t1), β(t1)) follows from the greedy con-

struction of F0(t) from E0(t). Hence the lemma holds for t = t1 + 1. 2

For a U ⊆ D and a positive integer p, let KP(U, p) denote the optimal value for the knapsack

problem that maximize
∑

u∈U s(u) · x(u) subject to
∑

u∈U c(u) · x(u) ≤ p and x(u) ∈ {0, 1} for all

u ∈ U . By definition, we have KP(U, p) ≤ FKP(U, p).

Lemma 8 At any time t (≥ t0), we have FKP(Fj(t), α(t)/rj) ≥ KP(D(t), α(t)/rj) for all j ≥ 0.

Proof. At time t(≥ t0), let Dj(t) denote the set of items with cost at most α(t)/rj in D(t). We

shall prove that

FKP
(

Fj(t),
α(t)

rj

)

= FKP
(

Dj(t),
α(t)

rj

)

.

Observe that: i) β(t) and α(t) are non-increasing functions, ii) if Dj(t) ≥ α(t)/rj then the total

cost of Fj(t) is at least α(t)/rj (= 2α(t)/rr − α(t)/rj), since every item in Fj(t) has cost at most

9

α(t)/rj , and iii) s(p)/c(p) ≤ s(q)/c(q) holds for any items p ∈ (Dj(t) − Fj(t)) and q ∈ Fj(t) such

that q is contained in an optimal solution of FKP
(

Fj(t),
α(t)
rj

)

, by the greedy construction of Fj(t)

in Step 2. Therefore, we have

FKP
(

Fj(t),
α(t)

rj

)

= FKP
(

Dj(t),
α(t)

rj

)

.

This implies

FKP
(

Fj(t),
α(t)

rj

)

= FKP
(

Dj(t),
α(t)

rj

)

≥ KP
(

Dj(t),
α(t)

rj

)

= KP
(

D(t),
α(t)

rj

)

.

2

Lemma 9 At any time t (≥ t0) β(t) satisfies β(t) < r · OPT (D(t)).

Proof. Assume this lemma does not hold, i.e., β(t) ≥ r · OPT (D(t)). Then we have

FKP(F1(t), β(t)/r) ≥ KP(D(t), β(t)/r) ≥ KP(D(t),OPT (D(t))) ≥ 1,

where the first inequality follows from Lemma 8, the second one follows from assumption β(t) ≥

r ·OPT (D(t)), and the last one holds for t ≥ t0. This contradicts the maximality of ℓ at Step 3. 2

Theorem 2 Algorithm B is 8-competitive, i.e., B(D(t)) ≤ 8OPT (D(t)) for any t ≥ t0.

Proof. By Lemma 7 and the definition of F0(t), we have

s(F0(t)) ≥ FKP(F0(t), β(t)) ≥ 1,

i.e., F0(t) is a feasible solution for the Min-Knapsack with the input D(t), and hence F (t) =
⋃

j≥0 Fj(t) is also feasible. The total cost in the knapsack F (t) satisfies

c(F (t)) ≤ 2β(t)
∑

i=0

r−j <
2rβ(t)

(r − 1)
≤

2r2

r − 1
OPT (D(t)),

where the last inequality follows from Lemma 9. Since 2r2

r−1 = 8 if r = 2, this completes the proof.

2

3.3 A randomized algorithm

Observe that the worst case of algorithm B is when the optimal cost OPT (D(t)) is sufficiently close

to β(t)/r. We find that a randomized technique in [9] can foil the worst case. Namely, let ξ be

a random variable uniformly distributed in [0, 1). Then the competitive ratio can be improved if

algorithm B uses α(t0) = rξc(E(t0)) instead of α(t0) = c(E(t0)) in Step 1, i.e., if we shift α(t0) by

multiplying a factor rξ. Let us call this randomized algorithm RB.

We shall below show that E[RB(D)]/OPT (D) ≤ 2e for all D, where we deal with the oblivious

online randomized algorithms [12].

Theorem 3 For r = e, algorithm RB is 2e-competitive.

10

Proof. For any t ≥ t0, we note that the guessed value β(t) and the cost RB(D(t)) by algorithm

RB are random variables, while OPT (D(t)) is not. For simplicity, in this proof we write OPT

instead of OPT (D(t)). Let us compare β(t) with OPT. There are two cases: β(t) < OPT and

β(t) ≥ OPT . We first prove that E[β(t) | β(t) ≥ OPT] ≤ (e − 1)OPT . We rewrite β(t) and OPT

as

OPT = eln OPT and β(t) = eξ+i+δ,

where i is an integer and 0 ≤ δ < 1. By Lemma 9 and by assumption β(t) ≥ OPT , we have

1 ≤ βt/OPT < e (= r), ⇒ 0 ≤ ξ + i + δ − ln OPT < 1.

Since ξ is uniformly distributed in [0, 1), the random variable x = ξ+i+δ−ln OPT is also uniformly

distributed in [0, 1). Thus, we have

E
[β(t)

OPT
| β(t) ≥ OPT

]

=

∫ 1

0
exdx = e − 1.

Since OPT is a fixed number, we have E[β(t)
OPT

| β(t) ≥ OPT] = E[β(t) | β(t) ≥ OPT]/OPT . Hence

we obtain E[β(t) | β(t) ≥ OPT] = (e − 1)OPT .

Define

Pr[β(t) < OPT] = p,

where 0 ≤ p ≤ 1. Then we have

E[RB(D(t))] = E

[

+∞
∑

j=0

2β(t)e−j

]

≤
2e

e − 1
E[β(t)]

≤
2e

e − 1

(

pE[β(t) | β(t) < OPT] + (1 − p)E[β(t) | β(t) ≥ OPT]
)

≤
2e

e − 1

(

pOPT + (1 − p)(e − 1)OPT
)

≤ 2e · OPT .

2

4 A lower bound on the online Min-Knapsack problem

In this section, we give a lower bound 2 for the competitive ratio for the online Min-Knapsack

problem. The main idea of our proof is given as follows. Assume that an online algorithm has

competitive ratio smaller than 2. After t ≥ t0, if a small item with a small cost is given, the

algorithm has to accept it, since otherwise the adversary can kill the algorithm by giving an

item with large size and zero cost, i.e., the adversary will cause the online algorithm to have

competitive ratio at least 2. However, after accepting small items, the total cost in the knapsack

would be arbitrarily close to twice the total cost before accepting small items, This implies that

the competitive ratio is at least 2.

Theorem 4 Any deterministic algorithm for the online Min-Knapsack problem has competitive

ratio at least 2.

11

Proof. Assume an online algorithm A has competitive ratio r < 2. Let us represent an item dt by

dt = (s(dt), c(dt)).

The first item d1 = (1, 1) is given, by Lemma 1, algorithm A accepts it. We have a feasible

solution with cost 1 in the knapsack at time t = 0. We then consider the sequence of items

(1/22, 1/2), (1/23 , 1/22), · · · , (1/2k+1, 1/2k).

If the second item (1/22, 1/2) is given, then algorithm A has to accept it, since otherwise the

adversary gives the third item (1 − 1/22 (= 3/4), 0) and stop the input sequence. In this case,

algorithm A has a feasible solution with cost 1 while the optimal cost is 1/2. This contradicts the

assumption r < 2.

After algorithm A accepts the second item (1/22, 1/2), the item (1/23, 1/22) is given. Then

algorithm A has to keep all the items given so far, i.e., (1, 1), (1/22, 1/2), and (1/23, 1/22). (1, 1)

is kept by Lemma 1. If (1/23, 1/22) is not accepted, then the adversary will give the next item

(1 − 1/23 (= 7/8), 0) and stop the input sequence. Then algorithm A would have the competitive

ratio at least 2, which is a contradiction. On the other hand, if (1/22, 1/2) is removed, then the

adversary will give the next item (1 − 1/22 (= 3/4), 0) and stop the input. In this case, since the

two items with sizes 1/8 and 3/4 do not form a feasible solution, algorithm A has to keep the first

item (1,1) and hence the total cost is at least 1, while the optimal cost is 1/2 by keeping two items

(1/4, 1/2) and (3/4, 0), which is again a contradiction.

In general, after algorithm A accepts items (1, 1) and (1/22, 1/2), (1/23 , 1/22), . . . , (1/2k , 1/2k−1),

the next item (1/2k+1, 1/2k) is given. Then by applying a similar argument, algorithm A has to

keep all the items given so far.

We finally prove that the total cost in knapsack will exceed r after some rounds, while the

optimal cost is 1, by keeping only item (1, 1). Let k be an integer with 2 − 2−k > r. Then after

(k + 1)-round, the total cost by algorithm A is

1 + 1/2 + 1/4 + · · · + 2−k = 2 − 2−k > r.

This contradicts the assumption. 2

5 A special case where the cost equals the size

In this section, we focus on the case where every item has its cost equal to its size. We first give a

lower bound 1.618 and then propose an online algorithm which matches the lower bound.

Lemma 10 If any item has its cost equal to its size, then no deterministic algorithm for the online

Min-Knapsack problem has competitive ratio r < 1 + q (≈ 1.618), where q is the golden ratio, i.e.,

q is the positive root for q2 + q = 1

Proof. Assume an online algorithm A has its competitive ratio r < 1 + q. The first item with size

1 + q is given, by Lemma 1, algorithm A has to accept the item. Let ǫ = 1 + q − r. Then the

second item with size 1− ǫ is given. If algorithm A accepts the second item, then the total cost by

algorithm A is 2 + q − ǫ and its competitive ratio is (2 + q − ǫ)/(1 + q) > 1 + q − ǫ.

12

On the other hand, if algorithm A rejects the second item, then the adversary will give the third

item with size ǫ and stop the input sequence. In this case, we can see that the cost by algorithm

A is at least 1 + q, while the optimal cost is 1 by keeping two items with size 1 − ǫ and ǫ.

In either case, algorithm A has competitive ratio larger than 1 + q− ǫ(= r), which contradicts

the assumption. 2

Let us then construct an online algorithm. Note that any optimal cost is at least 1, since any

item has its cost equal to its size. Thus to design an online algorithm with the competitive ratio

1.618, we exploit the following strategies:

i) if there is a feasible solution with the cost at most 1.618, then keep it and reject all the others

(including the forecoming items);

ii) Otherwise (i.e., if any feasible solution has the cost larger than 1.618), then keep a feasible

solution such that the cost is not too far from the optimal cost.

An item d is called x-large, large, medium, and small if s(d) > 1 + q, 1 ≤ s(d) ≤ 1 + q,

q < s(d) < 1, and 0 < s(d) ≤ q, respectively. Let us denote by XL, L, M, S the set of x-large,

large, medium and small items,s respectively. In other words,

XL = {d ∈ D | s(d) > 1 + q}, L = {d ∈ D | 1 ≤ s(d) ≤ 1 + q},

M = {d ∈ D | q < s(d) < 1}, S = {d ∈ D | s(d) ≤ q}.

Similarly to the previous sections, let D(t) = {d1, . . . , dt} and let F (t) denote the set of items in

the knapsack after the t-th round. Let t0 be the first time when D(t) has a feasible solution.

By Lemma 1, our algorithm accepts all the items before t0, i.e., F (t) = D(t). At time t (≥ t0),

our algorithm keeps at most two medium items and at most one x-large item, i.e., |F (t) ∩ M | ≤ 2

and |F (t) ∩ XL| ≤ 1. If two medium items are contained in the knapsack, no x-large item is kept

in the knapsack, i.e., if |F (t) ∩ M | = 2 then F (t) ∩ XL = ∅. Moreover, once we find a feasible

solution U with the cost within [1, 1 + q], then our algorithm only keeps this feasible solution in

the knapsack and reject all the forthcoming items, i.e., F (t′) = U for t′ ≥ t. For example, if dt is

large and c(F (t − 1)) 6∈ [1, q], then F (t′) = {dt} for t′ ≥ t. Our algorithm always accepts the small

items before finding a feasible solution with the cost within [1, 1 + q]. The following table shows

three possible patterns for the number of x-large, large, medium and small items in the knapsack.

Table 2: Three possible patterns for the number of x-large, large, medium and small items in the
knapsack

pattern small medium large x-large

1 0 0 1 0

2 ≥ 0 2 0 0

3 ≥ 0 ≤ 1 0 ≤ 1

Let us now describe our algorithm.

13

Algorithm C for t ≥ t0

1. If 1 ≤ c(F (t − 1)) ≤ 1 + q, then F (t) := F (t − 1) and halt.

2. If dt ∈ XL, /* we have three cases */

(a) If s(F (t − 1)) < 1, then F (t) := F (t − 1) ∪ {dt}.

(b) If |F (t − 1) ∩ M | = 2, then F (t) := F (t − 1).

(c) If F (t − 1) ∩ XL = {e}, then construct F (t) from F (t − 1) ∪ {dt} by removing
the largest x-large item f (i.e., f = dt if s(dt) ≥ s(e); otherwise, f = e)

3. If dt ∈ L, then F (t) := {dt} and halt. /* we have only one case */

4. If dt ∈ M , /* we have four cases */

(a) if s(dt) + s(F (t − 1) ∩ S) ≥ 1 then let F (t) be a feasible solution with cost at
most 1 + q.

(b) if |F (t − 1) ∩M | = 2, then construct F (t) from F (t − 1) ∪ {dt} by removing the
smallest medium item f .

(c) if |F (t − 1) ∩ M | = 1, then F (t) := (F (t − 1) ∪ {dt}) \ XL.

(d) if F (t − 1) ∩ M = ∅, then F (t) := F (t − 1) ∪ {dt}.

5. If dt ∈ S, /* we have three cases */

(a) If F (t − 1) ∩ M = ∅ and s(F (t − 1) ∩ S) + s(dt) ≥ 1, then let F (t) be a feasible
solution with cost at most 1 + q.

(b) If F (t − 1) ∩ M 6= ∅ and s(e) + s(F (t − 1) ∩ S) + s(dt) ≥ 1 for some medium
e ∈ F (t − 1), then let F (t) be a feasible solution with cost at most 1 + q.

(c) Otherwise, F (t) := F (t − 1) ∪ {dt}.

We first prove several properties of the online algorithm to analyze the competitive ratio of the

algorithm.

Lemma 11 For U ⊆ D, if s(U ∩ S) ≥ 1 or s(U ∩ S) + s(e) ≥ 1 for some u ∈ U , then U contains

a feasible solution with the cost at most 1 + q.

Proof. Let us consider the case s(U ∩ S) ≥ 1 only, since the other case can be treated similarly.

Let U ′ = U ∩ S. If s(U ′) > 1 + q, then a feasible solution can be constructed by repeatedly

removing an item from U ′ until the cost is at most 1 + q. It is always possible since a small item

has size at most q. 2

The above lemma ensures that Steps 4a, 5a, and 5b are always possible. By the same reason,

Step 2 has only three cases.

Lemma 12 At any time t ≥ t0, we have s(F (t)) ≥ 1.

14

Proof. We prove this lemma by induction on t. At time t = t0, s(F (t − 1)) < 1 and hence the

execution of the algorithm for time t passes through either Step 2a, 3, 4a, 4c, 4d or 5. It is not

difficult to see that s(F (t)) ≥ 1 when the execution passes through Step 2a, 3, 4a, 4d, or 5. Finally,

if Step 4c is passed, then we have s(F (t)) ≥ 1, since F (t − 1) has no x-large item.

Assume the theorem holds for any time t1 ≥ t0, i.e., s(F (t1)) ≥ 1. Consider the next time

t = t1 + 1. It is not diffcult to see that s(F (t)) ≥ 1 holds if the execution of the algorithm for

t passes through Steps 1, 2, 3, 4a, 4d, or 5. If the execution passes through Step 4b or 4c, then

|F (t) ∩ M | ≥ 2 and hence s(F (t)) ≥ 1. 2

Lemma 13 At any time t ≥ t0, algorithm C satisfies the following three conditions.

(i) |F (t) ∩ M | ≤ 2, and furthermore if F (t) ∩ M 6= ∅, then F (t) contains the largest item in

D(t) ∩ M .

(ii) |F (t) ∩ XL| ≤ 1, and furthermore if F (t) ∩ XL 6= ∅, then F (t) contains the smallest item in

D(t) ∩ XL.

(iii) If |F (t) ∩ M | = 2, then F (t′) ∩ XL = ∅ for any t′ ≥ t.

Since it is not difficult to have the above claims, we skip the proof.

Lemma 14 Let t be an integer with t ≥ t0. if the execution of algorithm C for t + 1 does not pass

through Step 1, then we have

(i) F (t) ∩ L = ∅ holds.

(ii) s(f) + s(F (t) ∩ S) < 1 holds for any medium item f in F (t).

(iii) s(F (t) ∩ S) < 1 holds, and furthermore we have F (t) ∩ S = D(t) ∩ S.

(iv) If F (t) ∩XL 6= ∅, then F (t) ∩ M = D(t) ∩ M with |F (t) ∩ M | ≤ 1.

(v) If |F (t) ∩ M | = 2, then s(F (t)) < 2 and OPT (D(t)) ≥ 2q.

Proof. It is not difficult to see Claims (i) ∼ (iv), we only prove Claim (v).

If |F (t) ∩ M | = 2, then F (t) ∩ XL = ∅ by Lemma 13 (iii). From (i) and (ii) in the lemma,

we have s(F (t)) < 1 + 1 = 2. Let us finally show OPT (D(t)) ≥ 2q. By (i) in the lemma, no

optimal solution contains a large item. If an optimal solution contains an x-large item, then we

have OPT (D(t)) ≥ 1 + q > 2q. On the other hand, if an optimal solution contains two medium

items, then we have OPT (D(t)) ≥ 2q. Thus if OPT (D(t)) < 2q, then any optimal solution consists

of at most 1 medium item and small items. However, by Lemma (ii) and (iii) in the lemma, this is

impossible. 2

Theorem 5 Algorithm C has competitive ratio 1.618, which matches the lower bound.

15

Proof. Let Rt be the competitive ratio after the tth round. We prove that Rt ≤ 1 + q for any time

t ≥ t0.

By Lemma 12, there is always a feasible solution in the knapsack F (t), i.e., Rt < +∞. If the

execution of the algorithm passes through Step 3, 4a, 5a or 5b, then we have Rt ≤ 1.618 by Lemma

11.

Let us consider the remaining cases: 2a, 2b, 2c, 4b, 4c, 4d and 5c.

Case 2a (i.e., the execution passes through Step 2a). Then t = t0 holds by Lemma 12. This

implies

s(F (t0))/OPT (D(t0)) < (1 + s(dt0))/s(dt0) < 1 + q.

Cases 2b, 4b, and 4c. In either case, F (t) contains two medium items. Thus by Lemma 14 (v),

we have

s(F (t))/OPT (D(t)) < 2/2q = 1 + q.

Case 2c. Then F (t) contains an x-large item. By Lemma 14 (i), (iii) and (iv), it holds that

F (t)∩ (S ∪M ∪L) = D(t)∩ (S ∪M ∪L), F (t)∩L = ∅ and |F (t)∩M | ≤ 1. Then by Lemma 14 (ii),

we have s(D(t) ∩ (S ∪ M)) = s(F (t) ∩ (S ∪ M ∪ L)) < 1, which implies that an optimal solution

consists of a smallest x-large item only. Let x be such an item. Then by Lemma 13 (ii), x ∈ F (t),

and hence we have

s(F (t)) = s(x) + s(F (t) ∩ (S ∪ M ∪ L)) < OPT (D(t)) + 1 ≤ (1 + q)OPT (D(t)),

where the last inequality follows from OPT (D(t)) ≥ 1 + q.

Case 4d. Note that F (t) contains an x-large item, since otherwise we have s(F (t)) < 1, a

contradiction with Lemma 12. Similarly to Case 1c, we can show that the competitive ratio is at

most 1 + q.

Case 5c. Since s(F (t)) ≥ 1, F (t) must contain two medium items or one x-large item. Thus by

applying a similar argument above, we can bound competitive ratio by 1 + q. 2

Acknowledgments The first author wishes to thank Chao Peng for his useful comments on

improving the presentation of the paper.

References

[1] L.G. Babat, Linear functions on the N-dimensional unit cube, Dokl. AKad. Nauk SSSR 222, pp.761-762,
1975. (Russian)

[2] J. Csirik, J.B.G. Frenk, M. Labbé, S. Zhang, Heuristics for the 0-1 Min-Knapsack problem, Acta
Cybernetica, 10(1-2):15-20, 1991.

[3] M.M. Güntzer, D. Jungnickel, Approximate minimization algorithms for the 0/1 knapsack and subset-
sum problem, Operations Research Letters, 26:55-66, 2000.

[4] G. Gene, E. Levner, Complexity of approximation algorithms for combinatorial problems: a survey,
ACM SIGACT News Volume 12, Issue 3:52-65, 1980.

[5] O.H. Ibarra and C.E. Kim, Fast approximation algorithms for the knapsack and sum of subset problems,
Journal of the ACM, 22:463-468,1975.

16

[6] K. Iwama and S. Taketomi, Removable online knapsack problems, Proc. ICALP2002, LNCS 2380,
pp.293-305, 2002.

[7] K. Iwama, G. Zhang, Optimal resource augmentations for online knapsack, APPROX-RANDOM 2007,
pp.180-188 (2007).

[8] H. Kellerer, U. Pferschy, D. Pisinger, Knapsack Problems, Springer, 2004.

[9] M.-Y. Kao, J.H. Reif and S.R. Tate, Searching in an unknown environment: An optimal randomized
algorithm for the cow-path problem, Information and Computation, 131(1), pp 63-80, 1996. (Preliminary
version appeared in SODA 1993)

[10] G.S. Lueker, Average-case analysis of off-line and on-line knapsack problems, Proc. Sixth Annual ACM-
SIAM SODA, pp.179-188, 1995.

[11] A. Marchetti-Spaccamela and C. Vercellis, Stochastic on-line knapsack problems, Math. Programming,
Vol. 68 (1, Ser. A), pp.73-104, 1995.

[12] R. Motwani, P. Raghavan, Randomized algorithms, chap. 13, (online algorithms), Cambridge, 2005.

[13] J. Noga, V. Sarbua, An online partially fractional knapsack problem, ISPAN 2005, pp. 108-112, 2005.

17

