
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Improvement of the Method for Making Quad
Meshes through Temperature Contours

Minori OKABE, Shinji IMAHORI
and Kokichi SUGIHARA

METR 2009–05 March 2009

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html



The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.



Improvement of the Method for Making Quad

Meshes through Temperature Contours

Minori Okabe∗ Shinji Imahori∗ Kokichi Sugihara∗

March 12, 2009

Abstract

There are several methods to reconstruct quad meshes from trian-
gular meshes. In this article, we improve the method using temper-
ature contours. We discuss how to avoid boundary conditions being
ill posed and assure injectivity of the parameterization by controlling
the weights on edges. The proposed method will be one step toward
a fully automatic system, because the result of automatic partition of
the surface into patches can be used.

1 Introduction

Triangular meshes are often used for representing surfaces of objects in com-
puter graphics and simulation. Whereas quad meshes have the advantage of
triangular meshes in many applications such as texture mapping in computer
graphics, FEM in simulation and NURBS in modeling.

Constructing quad meshes directly from point clouds is difficult because
we do not have efficient tools such as Voronoi diagrams in case of creating
triangular meshes. Thus most of methods reconstruct triangular meshes
into quad meshes.

One major trend is following some vector fields on the mesh. Principal
directions are often chosen as the vector fields. One approach with vector
fields is tracing them by numeric integration [1]. Another approach is defin-
ing functions on the mesh whose isolines follow the vector fields [7, 6]. This
approach needs solving non-linear optimization instead of numeric integra-
tion. Another trend is defining functions on the given triangular mesh by
parameterization [3, 8], which only needs linear computation and gives pure
quad meshes.

We propose a new method to generate quad meshes, which is based on
and improves the method by tong et al. [8]. In this method, quad meshes

∗Graduate School of Information Science and Technology, The University of Tokyo,
{minori okabe, imahori, sugihara} @mist.i.u-tokyo.ac.jp

1



are obtained through temperature contouring. It is simple and efficient
in calculation, but not enough from a practical viewpoint. We discuss the
feasibility of an optimization problem appearing in the algorithm and assure
injectivity of the parameterization by controlling the weights on edges.

2 Outline of the proposed method

We describe the outline of our algorithm, which is similar to that of tong’s
method [8].

To achieve quad meshes, we give each vertex of the given triangular mesh
u and v values, and draw integer contour lines from them. Assigning two
values is equivalent to planar parameterization. Because the given mesh
is not homeomorphic to a disk in general, we have to divide it into some
patches homeomorphic to disks. However, if patches are mapped into the
plane independently, the continuity of contours is not assured, which is a
requirement for quad meshes. For this purpose, some conditions of “jump”
and “rotation” on patch boundaries are necessary. In case that the function
value of a continuous contour line changes across a patch boundary, it should
jump by a certain integer value. Moreover, in case that a contour line
changes its function and direction, that is, it switches from u to v, u to −u
and so on, the rotating angle of the u-v coordinates should be equal to an
integral multiple of π

2 .
Now, the outline of our method is as follows:
1. Divide the mesh into patches.
2. Decide the connectivity conditions between patches — jump values

and rotating angles.
3. Solve a linear system to obtain u and v values for each vertex and

draw contours.
Hereafter, we call the mesh derived from the division of the original mesh

into patches meta-mesh, and vertices, edges and facets of the meta-mesh
meta-vertices, meta-edges and meta-facets respectively. A vertex meeting
three or more patches corresponds to a meta-vertex. To make pure quad
meshes, whose facets have just four vertices, u and v values of meta-vertices
should be integer in each adjacent patches. We note that meta-vertices
are the candidates of singular vertices of the resulting quad meshes, where
singular vertices mean vertices adjacent to other than four facets.

3 Details of each procedure

3.1 Division into patches

The first procedure is to divide the original triangular mesh into patches
homeomorphic to disks. As this division may affect the resulting quad

2



meshes, it should reflect some geometric features of the mesh. Here we
use VSA method [2], in which each divided region is designed to approxi-
mate the plane through alternate update of the approximate planes and the
patch division.

In VSA method, the patches tend to meet where the curvature is rela-
tively large. This is a desirable property for quad meshes. Moreover, we can
roughly control the number of singular vertices by adjusting the number of
patches.

It is to be noted that some inputs from VSA method are rejected since
some patches are not homeomorphic to disks. It is because VSA method
guarantee each patch to be connected, but not to be homeomorphic to a
disk. To resolve this problem, patches should be cut into subpatches home-
omorphic to disks.

3.2 Solving a linear system

We explain the last procedure before the second one for understanding.
Similar to the ordinary planar parameterization, u and v values of a vertex
is set to the weighted average of u and v values of the neighboring vertices:

∑

j∈ni

wij

(
ui − uj

vi − vj

)
= 0,

where ni is the set of the neighboring vertices of vertex i. Here, we use the
mean value coordinates [5] as weights wij (see Section 3.4 ).

But for vertices on boundaries between patches, this formula is not suf-
ficient because we admit jumps on u and v values and rotation of the u-v
coordinates. Let vertex i be on the patch named ‘−’, and patch ‘+’ be one
of adjacent patches of patch ‘−’. n+

i (resp., n−i ) means the partial set of ni

on patch ‘+’ (resp., ‘−’).
For example, if u values differ by p1 from one patch to another and v by

p2, the condition is as follows:

∑

j∈n−i

wij

(
ui − uj

vi − vj

)
+

∑

j∈n+
i

wij

(
ui − (uj + p1)
vi − (vj + p2)

)
= 0.

In case of rotation, when the contours of u switched into contours of v
and v to −u and the jump values are r1 and r2, the condition can be written
down as follows:

∑

j∈n−i

wij

(
ui − uj

vi − vj

)
+

∑

j∈n+
i

wij

(
ui + (vj − r1)
vi − (uj + r2)

)
= 0.

Conditions for other rotations (i.e., 180◦ and 270◦) can be written down
similarly.

3



u and v values of meta-vertices are given in advance by the second pro-
cedure. This is corresponding to boundary conditions of planar parameter-
ization. Injectivity of this mapping is referred later in Section 3.4.

3.3 Deciding parameters

We decide the jump values and rotating angles for meta-edges and u and
v values of meta-vertices. Once the region on the u-v plane to which each
patch is mapped is assigned, the connectivity of patches is automatically
derived.

When two meta-vertices are adjacent on the meta-mesh, they should be
connected by a contour line. That is, each meta-vertex is on a lattice point
of the u-v plane and each meta-facet is mapped into a polygon with right
angles on the u-v plane. By this condition, determining the shape results in
simple calculations. In addition to the method in [8], we restrict the shape
to a rectangle in order to avoid self intersection and assure injectivity. Thus
what should be done is to decide the angles of meta-vertices on each patch
and the lengths of meta-edges.

The angles for each patch is set to minimize the difference of the length
of facing edges. Here, we use the shortest path length on the original mesh
instead of the actual path length of the boundaries in order to make quad
meshes equilateral.

Next we determine the length of each meta-edge. For each facet, the sums
of the lengths of facing meta-edges must be equal. This can be represented
as a linear condition Ax = 0, where x is the variants vector corresponding
to the lengths of meta-edges. We consider minimizing the difference from
the shortest path length of corresponding two vertices on original mesh
represented by c:

min ‖x− c‖,
s.t. Ax = 0,

x ∈ Zn
+,

where n is the number of meta-edges and Z+ is the set of positive intergers.
By using 1-norm, this problem can be represented as a linear programming
problem with integer conditions:

min t1 + t2 + · · ·+ tn,

s.t. Ax = 0,

− ti ≤ ci − xi ≤ ti (i ∈ {1, . . . , n}), (∗)
x ∈ Zn

+,

ti ≥ 0 (i ∈ {1, . . . , n}).

The feasibility of this problem is discussed later in Section 5.

4



If the shape of each patch is obtained through the angles of meta-vertices
and the lengths of meta-edges, u and v values of meta-vertices are specified
by fixing arbitrarily u and v values for one meta-vertex and the direction of
one meta-edge. After doing this for each patch, jump values and rotating
angles between patches are automatically obtained.

3.4 Guarantee for injectivity

Since injectivity is not guaranteed, triangles may flip, which results in no
pure quad meshes. In addition, the triangles around singular vertices have
a tendency to flip and this hurts the quality of the resulting quad mesh.

In ordinary planar parameterization, a theorem in [5] is known to guar-
antee the injectivity. From this theorem, a mapping is guaranteed to be
injective if (1) a triangular mesh homeomorphic to a disk is 3-connected, (2)
the weights on edges have positive values, and (3) the boundary is mapped
into a convex polygon. To apply this theorem to each patch, we examine
the three conditions — 3-connectedness, positivity and convexity.

3-connectedness: For a mesh homeomorphic to a disk, the graph derived
from it is 3-connected if there exists no edge which is not on any patch
boundary but whose adjacent vertices are both on patch boundaries. When
such an edge exists, we insert a vertex on the edge and divide the two
adjacent triangles accordingly.

Moreover we do the following procedure in advance. We check whether
edges whose two adjacent vertices are on the same patch boundary exist or
not. If there exist, we convert the boundary to use these edges. This modifi-
cation does not change the topology of the meta-mesh. It has some smooth-
ing effect on the resulting quad mesh because the boundaries of patches may
be the edges of the resulting quad mesh.

Positivity: The mean value coordinates [4] are chosen as weights because
of its positivity.

Convexity: When boundaries are mapped into convex polygons, each patch
is mapped into a rectangle because convex polygons with right angles are
surely rectangles. Weights of edges on patch boundaries are set to extremely
large values. Then the vertices on patch boundaries are placed on the line
between two meta-vertices. In result, the vertices on the boundaries are
positioned into a convex shape.

Under these conditions injectivity of the mapping is guaranteed. But
this hurts the quality of the resulting quad mesh because the seams become
visible. To avoid this, we decrease the weights of the edges on the patch
boundaries toward the original weights unless there exist flipped triangles.
If triangles are flipped by the decreasing to the original weight, we use a
binary search to find smaller weights under the condition that any triangle

5



is not flipped.

4 Experimental results

In this section we show some experimental results. We first show results
along the overall process in Figure 1. The original triangular mesh has
about 7000 vertices (Figure 1(a)). It is divided into 7 patches as shown
in Figure 1(b). Figure 1(c) shows the contour lines of u and v values and
Figure 1(d) shows the resulting quad mesh.

Red points in Figure 1 mean meta-vertices. The whole calculation needs
a few minutes on an ordinary personal computer.

(a) original mesh (b) patch division

(c) contours (d) quad mesh

Figure 1: Process from a triangular mesh to a quad mesh

Next we show the effect of controlling the weights of edges on patch
boundaries. In Figure 2(a), the mean value coordinates are used as weights.

6



The meta-vertex in the middle has only one contour because some of trian-
gles around this are flipped. On the other hand, the weights of the edges
on the patch boundaries are added by a sufficiently large value in Figure
2(b). In this case no triangle is flipped and all the meta-vertices have the
appropriate numbers of contours.

(a) (b)

Figure 2: The comparison of contours between original weights and increased
weights

Finally, we show how increased weights damage the quality of the re-
sulting quad meshes and it is refined by adjusting weights. The weights of
the edges on the patch boundaries are added by a sufficiently large value
in Figure 3(a). On the other hand, these weights are cut down as long as
there exists no flipping triangle in Figure 3(b). It is found that smoothness
increases as a result of cutting the weights down.

(a) (b)

Figure 3: The comparison of quad meshes between increased weights and
adjusted weights

7



5 Discussion on the feasibility

In this section we discuss on the feasibility of the optimization problem(∗)
appearing when deciding the length of meta-edges (Section 3.3). This prob-
lem may not have feasible solutions. See Figure 4 as an example.

Figure 4: An example of edges with 0 length — if gray boundaries are set to
be facing on the u-v plane, the length of the upper left boundary is inevitably
equal to 0.

One solution is to divide patches until each patch has four meta-vertices
because there is at least one feasible solution (i.e., all meta-edges have the
same length). If a patch has even meta-vertices, it is possible by inserting
meta-edges. In contrast, in case of a patch with odd meta-vertices, it is
impossible without inserting meta-vertices. In this case, by inserting meta-
vertices on meta-edges derived from a path of patches from a patch with
odd meta-vertices to other patch with odd meta-vertices, patches with odd
meta-vertices can be converted to have even meta-vertices without changing
the parity of other patches (see Figure 5). It is possible because the number
of patches with odd meta-vertices is surely even.

Figure 5: An example of inserting meta-vertices — each patch at both ends
has an odd number of meta-vertices. By inserting two gray meta-vertices,
all the patches have even meta-vertices and are divided so as to have four
meta-vertices.

6 Conclusion

In this article, we improved the method for constructing quad meshes using
temperature contours from a practical viewpoint. We discussed on the fea-
sibility of the optimization problem and proposed an approach of splitting
meta-facets. Moreover we assured injectivity of the mapping by adjusting

8



the weights of edges on patch boundaries. Increased weights assure injec-
tivity but also damage the quality of the resulting quad meshes. In order
to adjust weights, we used a bisection algorithm which requires iterative
solving of linear systems. Working out more efficient methods for weight
adjustment is an issue in the future.

Acknowledgments

We would like to thank CGAL library. The model in the figures is courtesy
of AIM@SHAPE. This work is supported by the Grant-in-Aid for Scientific Re-
search(b) (No. 20360044) and for Exploratory Research (No. 19650003) of the
Japanese Society for Promotion of Science.

References

[1] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, and M. Desbrun. Anisotropic
polygonal remeshing. ACM Trans. Graph., 22(3):485–493, 2003.

[2] D. Cohen-Steiner, P. Alliez, and M. Desbrun. Variational shape approximation.
ACM Trans. Graph., 23(3):905–914, 2004.

[3] S. Dong, P.-T. Bremer, M. Garland, V. Pascucci, and J. C. Hart. Spectral
surface quadrangulation. ACM Trans. Graph., 25(3):1057–1066, 2006.

[4] M. S. Floater. Mean value coordinate. Comput. Aided Geom. Des., 20(1):19–27,
2003.

[5] M. S. Floater. One-to-one piecewise linear mappings over triangulations. Math.
Comput., 72(242):685–696, 2003.

[6] F. Kälberer, M. Nieser, and K. Polthier. Quadcover - surface parameterization
using branched coverings. Computer Graphics Forum, 26(3):375–384, Sept.
2007.

[7] N. Ray, W. C. Li, B. Lévy, A. Sheffer, and P. Alliez. Periodic global parame-
terization. ACM Trans. Graph., 25(4):1460–1485, 2006.

[8] Y. Tong, P. Alliez, D. Cohen-Steiner, and M. Desbrun. Designing quadrangu-
lations with discrete harmonic forms. In SGP ’06: Proceedings of the fourth
Eurographics symposium on Geometry processing, pages 201–210, Aire-la-Ville,
Switzerland, Switzerland, 2006. Eurographics Association.

9


