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Abstract

This paper presents a non-interior point method for a frictionless contact problem in the large
deformation, where we can exploit the warm start condition in an incremental path-following
method such as the arc-length method. We propose a novel reformulation of the nonlinear
complementarity problem based on the smoothed Fischer–Burmeister function, in which the
smoothing parameter is considered as an independent variable, and we add a nonlinear equation
so that the smoothing parameter behaves as a measure of the residual of the complementarity
conditions. The reduced system of nonlinear equations is solved by using a conventional method
for nonlinear equations with a fast local convergence from the initial point which is defined by
using the solution of the previous loading stage. Throughout numerical examples it is shown that
in many cases the solution can be found within four iterations.
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1 Introduction

Contact problems in large deformations are of particular importance in wide range of engineering
application [20, 38]. In this paper we investigate a new formulation for an equilibrium path-following
method of unilateral frictionless contacts from the view point of a sequence of perturbed comple-
mentarity problems where the solution to an old problem can be used as a good initial point for a
new one.

Various numerical methods have been presented for contact problems. A continuation method
was presented by Miersemann and Mittelmann [23] which traces an equilibrium path with limit
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points in frictionless contact problems. Zavarise et al. [40] solved contact problems by a combination
of penalty and barrier methods. Augmented Lagrangian methods have been studied extensively for
large deformation contact problems [20, 27].

It is known that frictionless/frictional contact problems can be formulated as complementar-
ity problems. Hence, solution methods for complementarity problems may be applicable to contact
problems. Roughly speaking, numerical algorithms for complementarity problems fall into three cat-
egories. The first class is known as the nonsmooth method [7, 8, 25, 26, 30], in which a complemen-
tarity problem is reformulated as a system of nondifferentiable equations and solved by using a nons-
mooth Newton method. Pang [25] proposed a B-differentiable Newton method, which was applied to
frictional/frictionless contact problem [1, 5]. Christensen [4] solved elasto-plastic frictional contact
problems by using a semismooth Newton method [6]. The second class is the so-called smoothing
method [2, 16, 22, 29, 31, 43], in which we solve a sequence of differentiable approximations to
the original nondifferentiable problem. Algorithms based on smoothing methods were proposed for
frictional contacts [14, 21, 41, 42]. The third one is the interior-point method [17, 28, 35–37, 44],
in which a sequence of perturbed complementarity problems is solved. The step size is determined
so that the inequality constraints are satisfied at each iteration. Christensen et al. [5] applied the
interior-point method for constrained equation [37] to frictional contacts. The authors performed
frictionless contact analysis of cable networks by using the interior-point method for second-order
cone programs [15].

This paper discusses a smoothing method for frictionless contacts in large deformations. Partic-
ularly we focus on a warm start condition, when we solve a sequence of perturbed complementarity
problems. Such a situation arises in the procedure of the incremental path-tracing analysis of fric-
tionless contacts: it is natural to expect that the solution at the equilibrium state corresponding to
the previous loading stage can be utilized as a good initial point for the complementarity problem
corresponding to the current loading stage. This motivates us to propose a new reformulation of
the complementarity problem which is suitable for a warm start condition.

Consider a complementarity problem

y = f(x), (1)

xi ≥ 0, yi ≥ 0, xiyi = 0, i = 1, . . . , N, (2)

where f : RN → RN is continuously differentiable. For solving the complementarity problem
the major difficulty is to deal with the complementarity conditions, (2). We call ψ : R2 → R a
complementarity function if ψ(a, b) = 0 holds if and only if a ≥ 0, b ≥ 0, and ab = 0 [9]. There are
many choices for the function ψ. It is immediate that (2) is reduced to

ψ(xi, yi) = 0, i = 1, . . . , N. (3)

In nonsmooth methods, with a choice of nonsmooth ψ, the system of (1) and (3) is solved by using
a nonsmooth Newton method. In contrast, in smoothing methods (2) is replaced with

ψ̂(xi, yi; ε) = 0, i = 1, . . . , N, (4)

where ε > 0 is a constant, ψ̂( · ; 0) : R2 → R is a complementarity function, and ψ̂( · ; ε) is contin-
uously differentiable for any ε > 0. Then the system of differentiable nonlinear equations, (1) and
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(4), is solved sequentially by gradually decreasing ε to zero from a sufficiently large initial value. In
most of interior-points we perturb (2) as

xiyi = ε, i = 1, . . . , N, (5)

xi > 0, yi > 0, i = 1, . . . , N. (6)

By gradually decreasing ε from a sufficiently large initial value, we solve a sequence of differentiable
equations, (1) and (5), to obtain the search directions, where the line search is performed so that
(6) is satisfied at each iteration.

In the incremental path-tracing method, as mentioned above, the solution at the previous loading
stage may be expected to be close to the solution at the current stage, but is not an interior solution
in general. In such a case, an interior-point method should be started from a quite large value of ε
in order to recover (6). Even if (6) is satisfied at an initial point, it is close to the boundary of the
feasible set, because the complementarity conditions, (2), are satisfied at the previous equilibrium
state. In such a case the step size of an interior-point method has to be very small in order to
retain (6). Thus, it is not easy to exploit a warm start condition of this point with the interior-point
method, which motivates us to investigate a non-interior point method.

Among non-interior point methods we focus on a smoothing method so that we can utilize
standard commercial software for differentiable nonlinear equations. However, in (4), there exists
only a heuristic way to choose an initial value for ε compatible to the given initial values of x and
y. Moreover, it is desired to decrease the amount of ε adequately, because too rapid reduction
of ε is not suitable for avoiding the nonsmooth property of ψ̂(·; 0), and too slow reduction causes
unnecessary iterations. To deal with these issues we propose to reformulate (2) as

ψ̂(xi, yi; ε) = 0, i = 1, . . . , N, (7)

η1(xTy/N) = η2(ε) (8)

with differentiable η1, η2 : R → R satisfying some conditions, where ε is considered as an inde-
pendent variable; see section 3 for details. This idea corresponds to a natural extension of implicit
reformulation approaches proposed for the mathematical program with equilibrium constraints in
the complementarity form [11–13]. Then we solve (2N + 1) nonlinear equations, (1), (7), and (8), in
the (2N + 1) variables by using a conventional method for differentiable equations with a fast local
convergence, e.g. the Newton method, the trust-region method, etc. We impose some conditions on
η1 and η2 so that (8) makes ε proportional to the residual of complementarity conditions, xTy. This
is our key idea to exploit a warm start condition for a perturbed complementarity problem. Hence,
an adequate initial value for ε can be assigned by using (8). Moreover, |ε| is decreased automatically
as |xTy| decreases in a usual procedure of a solution method for nonlinear equations.

This paper is organized as follows. As preliminaries, section 2 formulates the frictionless contact
problem in large deformation as a complementarity problem. In section 3 we present an essential
idea for reformulating a complementarity problem into an implicit formulation with an auxiliary
variable. Section 4 describes details of our non-interior point approach to the arc-length method,
in which we exploit a warm start condition. Numerical results are shown in section 5; convergence
properties from an initial point far from the solution is investigated in section 5.1, and the efficiency
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of the warm start strategy is examined in sections 5.2 and 5.3. Finally, conclusions are drawn in
section 6.

A few words regarding our notation: all vectors are assumed to be column vectors. The (m+n)-
dimensional column vector (uT,vT)T consisting of u ∈ Rm and v ∈ Rn is often written simply as
(u,v). We write p ≥ 0 for p = (pi) ∈ Rn if pi ≥ 0 (i = 1, . . . , n). For q : Rn → R we denote
by ∇g(x) its gradient at x, i.e. ∇g(x) = (∂gi/∂xj | i, j = 1, . . . , n). We denote by 1 the vector
(1, . . . , 1)T ∈ Rn without specifying n, unless it is not clear from the context.

2 Formulation as nonlinear complementarity problem

Consider an elastic body which is loaded and may possibly make frictionless unilateral contact with
some fixed rigid obstacles. The body is discretized to finite elements so that its deformed state is
represented by the displacement vector u ∈ Rd, where d is the number of degrees of freedom of
displacements.

Let π : Rd → R denote the strain energy function, which is assumed to be twice continuously
differentiable. The internal forces are given by −∇π(u). We denote by λf the external load, where
f ∈ Rd is a specified vector of the force pattern, and λ ∈ R is a loading parameter. Consequently,
the total potential energy is written as π(u)− λfTu.

Let Pc denote by the set of indices of contact candidate nodes, and let nc = |Pc|. We assume
that the obstacle, or rigid surface, corresponding to each contact candidate node is to be known.
More precisely, for each p ∈ Pc, the interior of the corresponding obstacle in the dim-dimensional
(dim ∈ {2, 3}) space is identified by

{
x ∈ Rdim | ϕp(x) > 0

}
,

where x is the position vector with respect to a fixed orthonormal reference frame, and the given
function ϕp : Rdim → R is assumed to be twice continuously differentiable. We deal with only
possible contact between a candidate node and the corresponding obstacle, and the self-contact of
the elastic body is not considered.

At the deformed state corresponding to u, we denote by xp(u) ∈ Rdim the position vector of the
pth node with respect to the reference frame. Then the admissible set of u is given by

{
u ∈ Rd | ϕp(xp(u)) ≤ 0 (p ∈ Pc)

}
.

We may assume without loss of generality that ϕp satisfies ‖∇ϕp(x)‖ = 1 on {x ∈ Rdim | ϕp(x) = 0}.
Then, at a point x on the obstacle we see that the vector

np(x) = ∇ϕp(x)

corresponds to the unit inner normal vector as illustrated in Figure 1.
Define φ : Rd → Rnc by

φ(u) =
(
ϕ1(x1(u)), . . . , ϕnc(xnc(u))

)T
.

The non-penetration condition is written as

g := −φ(u) ≥ 0,
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Figure 1: Contact candidate node p with the curved obstacle ϕp.

where gp corresponds to the nodal gap.
The frictionless assumption implies that the contact reaction force at each candidate node acts in

the normal direction of the rigid surface. We denote by rp such a reaction force at the pth node, and
then the reaction force vector is written as rpnp(xp(u)). From the unilateral contact assumption
we have rp ≤ 0, which means the no-adhesion condition. By using the definition of φ, the vector of
generalized reactions is given by ∇φ(u)Tr.

Consequently, our problem is to find the continuation of the solution (u, r, λ) to the mixed
complementarity problem

∇π(u) = λf +∇φ(u)Tr, (9)

g = −φ(u), (10)

gp ≥ 0, rp ≤ 0, gprp = 0, p = 1, . . . , nc. (11)

3 Implicit reformulation of complementarity conditions

Let ψFB : R2 → R denote the Fischer–Burmeister function defined by

ψFB(a, b) =
√
a2 + b2 − (a+ b).

It is known that ψFB satisfies

ψFB(a, b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0.

Define ψ : R3 → R by

ψ(a, b, ρ) =
√
a2 + b2 + 2ρ2 − (a+ b), (12)

which is the smoothed Fischer–Burmeister function proposed in [16] for solving linear complemen-
tarity problems.
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Proposition 3.1. ψ(a, b, ρ) = 0 if and only if

a ≥ 0, b ≥ 0, ab = ρ2. (13)

Proof. It is easy to see that (13) implies ψ(a, b, ρ) = 0. Conversely, suppose ψ(a, b, ρ) = 0. We have

a+ b =
√
a2 + b2 + 2ρ2. (14)

Squaring both sides of (14) yields

ab = ρ2. (15)

Moreover, we obtain a + b ≥ 0 and ab ≥ 0 from (14) and (15), respectively, and hence a, b ≥ 0.
Consequently, (13) is satisfied.

Let η1, η2 : R→ R be smooth functions satisfying the following property:

Assumption 3.2. The equation η1(c2) = η2(c) has the unique solution at c = 0.

Proposition 3.3. Suppose that Assumption 3.2 is satisfied. Then y, z ∈ Rn and ρ ∈ R satisfy

ψ(yi, zi, ρ) = 0, i = 1, . . . , n, (16)

η1(yTz/n) = η2(ρ) (17)

if and only if

y ≥ 0, z ≥ 0, yTz = 0, ρ = 0. (18)

Proof. It is easy to show that (16) and (17) hold if (18) is satisfied. Conversely, suppose (16) and
(17). If ρ = 0, then (18) follows immediately from Proposition 3.1. Hence, it remains to show that
(16) and (17) imply ρ = 0. It follows from Proposition 3.1 that (16) implies yizi = ρ2 (i = 1, . . . , n).
Hence, we obtain

yTz/n = ρ2. (19)

Substituting (19) into (17) yields η1(ρ2) = η2(ρ), from which and Assumption 3.2 we obtain ρ =
0.

It follows from Proposition 3.3 that (9)–(11) is equivalently rewritten as

∇π(u) = λf +∇φ(u)Tr, (20)

g = −φ(u), (21)

ψ(gp,−rp, ρ) = 0, p = 1, . . . , nc, (22)

η1(−gTr/nc) = η2(ρ), (23)

where u, g, r, and ρ are the variables.
Our basic idea is to solve (20)–(23) by using a conventional Newton method for smooth nonlinear

equations. Note that the left-hand side of (22) is continuously differentiable at any point except
(gp, rp, ρ) = 0. Since the set of such non-differentiable points, {(u, g, r, ρ) | ∃p̌ : gp̌ = rp̌ = ρ = 0},
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has measure zero, with probability one (22) is continuously differentiable at an intermediate solution
attained by the Newton method.

It is emphasized that the smoothing parameter ρ is considered as an independent variable in
(20)–(23). Roughly speaking, |ρ| indicates the ‘level’ of smoothing, which is adjusted automatically
to the residual of the complementarity conditions, gTr, as discussed in Remark 4.4 below. As the
residual of a given initial point is larger, the initial value for ρ is chosen so that its absolute value is
larger. As the residual becomes smaller, |ρ| automatically becomes smaller. Thus, ρ is not treated as
an outer parameter controlled irrespective of the solution at each Newton step but as a variable in the
nonlinear equations in our approach, which distinguishes our method from conventional smoothing
methods, non-interior point methods, and interior-point methods in the literature.

4 Warm-start approach via implicit formulation

We trace the equilibrium path numerically in a stepwise manner, by continuing from a known
solution (uk, rk, λk) to a new solution (uk+1, rk+1, λk+1) along the path. Let

∆u = uk+1 − uk,
∆λ = λk+1 − λk.

In the following, we distinguish the quantities evaluated at the kth loading step k by superscript k,
while those at the (k + 1)th step are not marked explicitly, unless it is not clear from the context.

4.1 Discretized governing equations for arc-length method

We use the scheme of conventional arc-length methods in order to deal with limit points of the load
factor along the equilibrium path [3]. We regard λ as an additional variable by considering the
additional constraint condition

‖(∆u, r,∆λ)‖H = θ̄,

where H and θ̄ > 0 are a given matrix and constant scalar, respectively, and ‖ · ‖H is the generalized
vector norm defined with the given matrix H as ‖ξ‖H = ‖Hξ‖2.

Consequently, the system of governing equations, (9)–(11), is discretized as

∇π(uk + ∆u) = (λk + ∆λ)f +∇φ(uk + ∆u)Tr, (24)

g = −φ(uk + ∆u), (25)

gp ≥ 0, rp ≤ 0, gprp = 0, p = 1, . . . , nc, (26)

‖(∆u, r,∆λ)‖H = θ̄, (27)

where ∆u, r, g, and ∆λ are the unknown variables. Typically, we simply choose H in (27) as
‖(∆u, r,∆λ)‖H = ‖(∆u,∆λ)‖2.

4.2 Implicit nonlinear equations

Besides Assumption 3.2 we impose a further restriction to η1 and η2 as follows.
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Assumption 4.1. c = 0 is a nondegenerate solution of η1(c2) = η2(c).

Assumption 4.1 is equivalent to the regularity condition of the Jacobian, i.e. dη1(c2)/dc 6=
dη2(c)/dc at c = 0 [24, Chap. 11]. As discussed in detail in Remark 4.2 below, Assumption 4.1 is
necessary to ensure a fast local convergence property in the solution.

For a constant γ ∈]0, 1], let

η1(c) = γ2c+ 1, η2(c) = eγc, (28)

which satisfy Assumption 3.2 and Assumption 4.1. By using (28) we reformulate the complemen-
tarity problem (24)–(27) into a system of nonlinear equations which is to be solved by using a
conventional Newton method. It follows from Proposition 3.3 that (24)–(27) are equivalent to

∇π(uk + ∆u)− (λk + ∆λ)f −∇φ(uk + ∆u)Tr = 0, (29)

g + φ(uk + ∆u) = 0, (30)

ψ(gp,−rp, ρ) = 0, p = 1, . . . , nc, (31)

− γ2gTr − nc(eγρ − 1) = 0, (32)

‖(∆u, r,∆λ)‖2H − θ̄2 = 0, (33)

which is our goal formulation. Note that the system of equations (29)–(33) consists of (d+ 2nc + 2)
equations in the same number of unknown variables ∆u, r, g, ∆λ, and ρ.

Remark 4.2. For an implicit reformulation it is sufficient that η1 and η2 satisfy Assumption 3.2 as
discussed in section 2. For example, a pair of

η1(c) = c/2, η2(c) = c2, (34)

satisfies Assumption 3.2, which implies that (32) can be replaced with

−gTr − 2ncρ
2 = 0

without changing the solution. As a solution technique we attempt to solve the obtained nonlinear
equations by using a conventional Newton method. In this procedure Assumption 3.2 is required
to ensure a fast local convergence of the Newton method [24, Chap. 11]. Indeed, in section 5.1 we
will show through numerical experiments that for the implicit formulation with (34) the Newton
method converges to the solution only with a linear convergence property.

Another example satisfying Assumption 3.2 and Assumption 4.1 is the pair of

η1(c) = c, η2(c) = c+ c3, (35)

which yields

−gTr − nc(ρ+ ρ3) = 0

instead of (32). Numerical experiments in section 5.1 demonstrate that the both implicit formula-
tions with (28) and (35) can enjoy a fast local convergence property of the Newton method.
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As discussed in section 4.3 below in detail, γ plays a role of the scaling parameter to obtain
the initial solution satisfying the warm start condition. Suppose that g(0) and r(0) are given as the
initial values for g and r, respectively. If

gT
(0)r(0) < nc (36)

is satisfied, then we simply set γ = 1. Then we choose an initial value ρ(0) for ρ so that (32) with
γ = 1 is satisfied. If g(0) and r(0) do not satisfy (36), then the equation −gT

(0)r(0) = nc(eρ(0) − 1) in
the variable eρ(0) does not have a solution. We relax the condition (36) as

gT
(0)r(0) < nc(1− γ)

in order to avoid that too small value is assigned as ρ(0), where γ ∈]0, 1[ is a constant tolerance, e.g.
γ = 10−2. Conversely, if gT

(0)r(0) ≥ nc(1− γ), then we choose γ so that

γ2gT
(0)r(0) = nc(1− γ)

is satisfied, and choose ρ(0) so that (32) is satisfied. Thus, we define γ by

γ =





1 if gT
(0)r(0) < nc(1− γ),[

nc(1− γ)/(gT
(0)r(0))

]1/2
if gT

(0)r(0) ≥ nc(1− γ),
(37)

which guarantees that (32) has a solution, ρ(0), for any g(0) and r(0).

4.3 Warm start condition

In the process of arc-length method we solve (29)–(33) successively from a known equilibrium state
(uk, gk, rk, λk) at the kth loading stage to a new solution (∆uk, gk+1, rk+1,∆λk) corresponding to
the (k+ 1)th loading stage. In many cases we may expect that there exists only small perturbation
of the governing equations (29)–(33) from the kth stage to the (k + 1)th stage. Hence, it is natural
to expect that the solution

∆uk−1, gk, rk, ∆λk−1

at the previous stage is considerably close to the solution at the current stage, and hence we aim
at exploiting the previous solution to construct an initial point which may be expected to satisfy a
warm start condition.

We propose to assign an initial solution for solving (29)–(33) as follows. Firstly, we simply use
the previous solution as the initial values for ∆u, r, and ∆λ, i.e.

∆u(0) := ∆uk−1, (38)

r(0) := rk, (39)

∆λ(0) := ∆λk−1. (40)

Then the initial value for g is naturally given by

g(0) := −φ(uk + ∆u(0)). (41)
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We next compute the scaling parameter γ by substituting g0 and r0 into (37). Finally, it is natural
to choose the initial value, ρ(0), for ρ so that

η1(−gT
(0)r(0)/nc) = η2(ρ(0))

is satisfied. Explicitly we give ρ(0) by

ρ(0) :=




ρ∗ if |ρ∗| > ρ,

ρ otherwise,
(42)

ρ∗ =
1
γ

log
(

1− γ

nc
gT

(0)r(0)

)
, (43)

where ρ > 0 is a small constant, e.g. ρ = 10−3, in order to ensure the smoothing of Fischer–
Burmeister function at the initial point. Note again that γ is a scaling parameter with which the
right-hand side of (42) is always well-defined.

It is emphasized that the initial point (∆u(0), r(0), g(0),∆λ(0), ρ(0)) defined by (38)–(42) satisfies
(30), (32), and (33), and hence it is regarded as a good initial point for solving the system (29)–(33)
so that the conventional Newton method can enjoy the warm start condition.

Remark 4.3. As discussed in Remark 4.2, we can obtain an alternative implicit formulation by using
(35) instead of (28). In that case, the initial value ρ(0) compatible with g(0) and r(0) may be obtained
by solving a nonlinear equation

−gT
(0)r(0) − nc(ρ(0) + ρ3

(0)) = 0 (44)

instead of (42). However, we prefer not to solve an additional nonlinear equation (44) numerically
to find an initial point, which is the reason why we present the formulation yielded by (35).

Remark 4.4. The role of ρ can be captured more clearly by rewriting (32) as

ρ =
1
γ

log
(
− γ

nc
gTr + 1

)
,

from which we may regard ρ as a measure of the residual of the complementarity conditions, −gTr =
0. Since we define ρ(0) by (42), as the residual |gT

(0)r(0)| at the initial point is larger, we choose ρ(0)

such that |ρ(0)| is larger. This means that we assign a large value to the smoothing parameter ρ
for a ‘cold start’ problem in order to avoid numerical instabilities which may possibly arise from
the nonsmoothness of the Fischer–Burmeister function. In the procedure of the Newton method we
may expect that the residual |gTr| decreases gradually, because gTr = 0 should be satisfied at the
solution of (29)–(33). As the residual |gTr| becomes smaller, ρ automatically approaches zero. This
mechanism also helps to prevent the Newton method to hitting an intermediate solution at which
(31) is not continuously differentiable, because in most cases gTr 6= 0 at an intermediate solution
and hence ρ 6= 0 is expected.

Remark 4.5. As discussed in Remark 4.4 the auxiliary variable ρ in our formulation is regarded as
a measure of the residual of the complementarity conditions. Alternatively we may choose

ρ = − 1
nc
gTr (45)
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as a measure of the residual, which is yielded by

η1(c) = c, η2(c) = c. (46)

Indeed, many path-following methods for complementarity problems, e.g. [17, 36, 37, 39], are
designed based on

ρ = −gprp, p = 1, . . . , nc, (47)

which implies (45). Here, ρ > 0 is not considered as a variable but as a constant parameter, which
is decreased gradually to zero. However, (45) is not accepted in our implicit formulation, because
η1 and η2 in (46) does not satisfy Assumption 3.2.

Remark 4.6. The initial point constructed by (38)–(42) is not an interior point in general, and hence
it is not easy to exploit a warm start condition of this point with the interior-point method. This
motivates us to develop a non-interior point method.

4.4 Detection of nonsmooth equilibrium point

Along the equilibrium path there exists a point at which the set of contact nodes changes. In general,
such a point corresponds to a nonsmooth point on the equilibrium path. Based on the formulation
(29)–(33), we show that such a nonsmooth point can be computed easily.

Firstly, we compare the kth and (k+1)th equilibrium states computed in order to check whether
there exists a node whose contact condition changes in the interval, i.e. the condition changes either
from on contact to free or from free to on contact. If exists, we denote by p̂ the index of such a node.
The nonsmooth point associated with the p̂th node is characterized by gp̂ = rp̂ = 0. This relation
can be replaced with a equation

gp̂ − rp̂ = 0, (48)

because the complementarity condition, gp̂rp̂ = 0, is always required to hold. Consequently, the
nonsmooth point is found by solving the following system of nonlinear equations:

∇π(uk + ∆u)− (λk + ∆λ)f −∇φ(uk + ∆u)Tr = 0, (49)

g + φ(uk + ∆u) = 0, (50)

φ(gp,−rp, ρ) = 0, ∀p = 1, . . . , nc, (51)

− γgTr − nc(eγρ − 1) = 0, (52)

gp̂ − rp̂ = 0. (53)

Then we solve (49)–(53) by using a conventional Newton method, as in the case of a usual step of
the arc-length method. Compared to (29)–(33), the constraint condition on the arc-length, (33), is
replaced with the degenerate condition of the pth complementarity condition, (53).

In section 5.2 and section 5.3 we illustrate through numerical examples that we can find nons-
mooth limit points of the load factor by solving (49)–(53).
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5 Numerical experiments

Frictionless contact problems are solved by using the arc-length method with the warm start condi-
tion described in section 4. In the numerical experiments we choose the parameters as γ = 10−2 in
(37) and ρ = 10−3 in (42). Computation has been carried out on Core2 Duo P8400 (2.26 GHz with
4.0 GB memory) with MATLAB R2008b [34].

5.1 Linear elastic body

In this section we solve a small deformation problem with the cold start condition of a given initial
point in order to demonstrate that our formulation can enjoy a fast local convergence property and a
global convergence property when a conventional method for smooth nonlinear equations is applied.

Consider an isotropic linear elastic body in the plane stress as shown in Figure 2, where its
thickness is 10 mm and W = 2 m. The elastic modulus and Poisson’s ratio are taken to be 100 MPa
and 0.3, respectively. The solid is discretized into 50×50 four-node quadrilateral (Q4) elements. All
the nodes on the left and lower boundaries are supposed to be contact candidates, and be in contact
with the obstacles without reactions. The right boundary is subjected to the uniformly distributed
load consisting of 0.5 MPa in the negative directions of the x- and y-axes.

We solve some different formulations for this problem by using a Matlab built-in function
fsolve, which is a conventional trust-region dogleg method with ‘TolFun’= 10−7 and otherwise
the default settings. (20)–(23), where φ is a linear function. Figure 3 illustrates the obtained
equilibrium configuration. To compare the convergence properties, we consider four cases:

• Case 1: (20)–(23) with η1(c) = γ2c+ 1 and η2(c) = eγc;

• Case 2: (20)–(23) with η1(c) = c and η2(c) = c+ c3;

• Case 3: (20)–(23) with η1(c) = c/2 and η2(c) = c2;

12
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Figure 3: Deformed configuration of the square elastic body at the equilibrium state (displacements
amplified 10 times).

• Case 4: (20)–(22) with ρ = 0.

Here, Case 1 corresponds to the formulation proposed in section 4 for large deformations. We
see that η1 and η2 in Case 1, Case 2, and Case 3 satisfy Assumption 3.2, while Assumption 4.1
is satisfied only in Case 1 and Case 2 (see Remark 4.2). Case 4 corresponds to the nonsmooth
equations formulation based on the Fischer–Burmeister function without smoothing.

In order to examine the cold start condition, we give an initial point for the trust-region method
by u(0) = 0, g(0) = −1, and r(0) = 1. We obtain γ = 1 from (37) and ρ(0) = 0.6931 from
(42) in Case 1. For ρ(0) in Case 2 we solve the nonlinear equation gT

(0)r(0)/nc = ρ(0) + ρ3
(0) to

find ρ(0) = 0.6823. In Case 3, we put ρ(0) = 0.7071 which is obtained from gT
(0)r(0)/(2nc) = ρ2

(0).
Consequently, Case 1, Case 2, and Case 3 share the same residuals at their initial points. However,
in Case 3 the trust region method does not converge within 1000 iterations. The initial point in
Case 4 consists of u(0), g(0), and r(0) defined above, because ρ is not a variable but is always equal
to zero. It is emphasized that those initial points are not interior points.

Figure 4 illustrates the convergence history of the sum-of-squares of the residuals of the nonlinear
equations. The CPU time required in Case 1 is 50.4 sec. Note again that the algorithm fails to
converge in Case 3 from the initial point given above. Hence, in Figure 4 we show the result from
another initial point which is sufficiently near from the solution for comparison of local convergence
properties. It is observed from Figure 4 that Case 1 and Case 2 enjoy fast local convergence in the
neighborhood of the solution as expected (see Remark 4.2), while Case 3, which does not satisfy
Assumption 4.1, has a linear convergence property. Although Case 4 also has a fast local convergence
property, the number of iterations required in Case 4 is very large compared with Case 1 or Case 2.
This confirms that using the smoothing scheme of the Fischer–Burmeister function decreases the
number of iterations drastically.
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Figure 4: Convergence histories of the sum-of-squares of the residuals in the trust-region dogleg
method for different η1 and η2. ‘�’: Case 1, η1(c) = γ2c + 1, η2(c) = eγc with γ = 1; ‘◦’: Case 2,
η1(c) = c, η2(c) = c + c3; ‘M’: Case 3, η1(c) = c/2, η2(c) = c2 (an initial point near the solution is
given); ‘/’: Case 4, a nonsmooth formulation using the Fischer–Burmeister function.
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Figure 5: A plane arch truss with flat obstacles.

5.2 Large deformation with flat obstacles

In this and the following sections we solve large deformation problems of linear elastic trusses in
order to demonstrate that our warm-start strategy reduces the number of iterations of each loading
step in the arc-length method. At almost all loading steps a conventional Newton method converges
to the solution within four iterations, and in some cases it finds the solution in two iterations. We
solve the system of nonlinear equations (29)–(33) by using csolve [33], which is an improvement of
the Matlab built-in function fsolve and based on the quasi-Newton method with BFGS update
of the inverse of Hessian.

Consider a plane arch shown in Figure 5, where W = 7.5 m, H1 = 2.3225 m, and H2 = 0.1 m.
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Figure 7: Equilibrium path of the plane truss with flat obstacles.

The truss consists of 61 nodes located on two circles sharing the common centers. The nodes
of the upper layer are located on the circle with the half open angle ω = 20 deg and the radius
W/ sinω (m). The nodes of the lower layer are located on the circle with the same center and the
radius (W/ sinω) + 1 (m). The displacement of the node (a) in the y-direction is constrained, while
the node (b) is pin-supported, and hence d = 119. The truss is located between two rigid obstacles
with horizontal flat surfaces, where the nodes (a) and (b) are on the upper one.

Since the nodes of the lower layer may also contact with the upper obstacle, we consider nc =
31 × 2 + 28 = 90 contact candidates. The geometrical nonlinearity is considered by using the Biot
strain. The proportional load 5λ (kN) is applied at the node (a) in the x-direction. The arc-length
constraint is given by ‖(∆u,∆λ)‖2 = θ̄ with θ̄ = 0.1. The elastic modulus is 20 GPa. The cross-
sectional areas of members in groups (1), (2), (3), (4), . . . shown in Figure 6 are given as 0.33 m2,
0.31 m2, 0.29 m2, 0.27 m2, . . . , respectively.

The obtained equilibrium path is plotted in Figure 7, which shows the variation (A)→(B)→(C)→(D)
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Figure 8: Deformed configuration (solid line) of the plane truss with flat obstacles at the equilibrium
state (D) in Figure 7; dotted line: undeformed configuration.

Table 1: Number of iterations required at each loading step of the plane truss with flat obstacles.

# of iterations 2 3 4 5 6 7 8 9 10 ≤ n ≤ 16

frequency 273 836 139 79 26 8 2 1 5

obstacle

obstacle

λf
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x

y

(b)

W

H1

H2

Figure 9: A plane arch truss with curved obstacles.

of the loading parameter λ with respect to the displacement of the node (a). Along the equilibrium
path 129 nonsmooth points are found by using the method presented in section 4.4.

Figure 8 depicts the deformed configuration at the equilibrium state (D) in Figure 7. Since (D)
exists beyond the bifurcation point (C), the configuration at (D) is not symmetric, while all the
configurations between (A) and (C) are symmetric. It is observed that the equilibrium state (B) is
an angular limit point due to a change of contact conditions.

The number of iterations required at each loading step is listed in Table 1, which means, e.g.,
the solution is found with two iterations in 273 loading stages. We can see that the Newton method
converges within four iterations at almost all loading steps. Thus, in many cases, the solution at the
previous loading step can be used as a good initial point for the current step to solve our implicit
formulation.

5.3 Large deformation with curved obstacles

Consider a linear truss shown in Figure 9, where W = 75 m and H1 = 2.6363 m. The truss consists
of 141 nodes located on two circles with the common centers and half open angles, ω = 5 deg.
The nodes of the upper layer are located on the circle with the radius W/ sinω (m), while those
of the lower layer are on the circle with the same origin and the radius (W/ sinω) + 1 (m). The
displacement of the node (a) in the y-direction is constrained, while the node (b) is pin-supported,
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Figure 10: Equilibrium path of the plane truss with curved obstacles.

Figure 11: Deformed configuration (solid line) of the plane truss with curved obstacles at the
equilibrium state (C) in Figure 10; dotted line: undeformed configuration.

and hence d = 279. The truss is located between two fixed rigid obstacles. The upper obstacle has a
flat horizontal surface, on which the nodes (a) and (b) are located. The surface of the lower obstacle
is defined as a circle with the radius of 100 m, and at the initial configuration there exists a gap
of H2 = 0.1 m between the lower obstacle and the center node of the lower layer. Since the nodes
of the lower layer may also contact with the upper obstacle, we consider nc = 71 × 2 + 68 = 210
contact candidates.

The proportional load λ kN is applied at the node (a) in the x-direction. The arc-length constraint
is given by ‖(∆u,∆λ)‖2 = θ̄ with θ̄ = 0.1. The elastic modulus is 20 GPa. The cross-sectional areas
of members in groups (1), (2), (3), (4), . . . shown in Figure 6 are given as 0.73 m2, 0.71 m2, 0.69 m2,
0.67 m2, . . . , respectively.

The obtained equilibrium path is plotted in Figure 10, which shows the variation (A)→(B)→(C)
of the loading parameter λ with respect to the displacement of the node (a). The equilibrium
state (B) corresponds to a nonsmooth limit point. Figure 10 depicts the deformed configuration at
the equilibrium state (C) in Figure 10.

The number of iterations required at each loading step is listed in Table 2. It is observed that the
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Table 2: Number of iterations required at each loading step of the plane truss with curved obstacles.

# of iterations 3 4 5 6 7 8 9 10 12

frequency 1081 379 100 6 7 10 9 10 2

solution is found within four iterations at almost all loading steps, and hence our implicit formulation
can enjoy warm start conditions.

6 Conclusions

A non-interior point method has been proposed for frictionless contact problems which can exploit
the warm start condition in the arc-length method. We have proposed an implicit formulation of
complementarity problems based on the smoothed Fischer–Burmeister function, where the smooth-
ing parameter ρ is considered as an independent variable. By adding a nonlinear equation so that
ρ vanishes automatically at the solution of the implicit formulation, we have reduced the governing
equations of frictionless contact to a system of nonlinear equations which are continuously differen-
tiable at almost all points. It has been shown that the solution at the previous loading stage in the
arc-length method can be used as a good initial point for the current loading stage with a warm
start condition. In numerical examples we have demonstrated that in many cases a conventional
solver of nonlinear equations converges to the solution within four iterations.
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