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Abstract

Time evolutions of some important control targets such as quan-
tum sate or attitude of a rigid body are described by matrix-valued
differential equations. In this report, we introduce “Lie product of
matrix functions” as a new tool for differential geometric approach to
analysis of such systems. A direct and efficient way to calculate the
Lie product of matrix functions is provided, which enables us to study
important properties of the systems such as reachability or controllabil-
ity with clear perspective. The effectiveness of the proposed method is
confirmed by analysis examples of quantum state control and attitude
control of a rigid body.

1 Introduction

In typical cases, time evolution of a control target is described by a differ-
ential equation whose variable is a real number vector x(t) ∈ Rd. However,
some important quantities such as quantum states of quantum mechanical
systems and attitude of rigid body dynamics are described by matrices. In
such cases, time evolution of a control target is described by a matrix-valued
differential equation. For example, the time evolution of a class of quantum
mechanical systems is described by the following differential equation (Lind-
blad master equation) whose state variable is an n × n Hermitian matrix
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X(t) [5]:

dX

dt
=

q∑
r=1

(LrXL∗
r −

1
2
L∗

rLrX − 1
2
XL∗

rLr) − i[H,X],

X(0) = X0, (1)

where H is an n×n Hermitian matrix (Hamiltonian) and Lr, r = 1, ..., q are
n × n complex matrices. The initial value X0 is positive semidefinite and
unital-trace, or Tr [X0] = 1.

In this report we consider the following differential equation whose state
variable is a matrix X(t) ∈ Xn, which is a generalization of the equation
(1):

dX

dt
= F(X) +

m∑
i=1

Gi(X)ui,

X(0) = X0 ∈ Xn, (2)

where Xn is the set of all n × n Hermitian matrices denoted by Hn or
the set of all n × n real matrices denoted by Mn(R). F ,Gi, i = 1, ...,m
are nonlinear C∞ functions from Xn to Xn which are called C∞ matrix
functions in this report, and ui(t) ∈ R, i = 1, ...,m represents the control
inputs. We consider not only linear functions but also nonlinear functions
in this report, because we need to treat them in a class of quantum control
problems [9]. Furthermore, the equation (2) unifies the equations defined on
Hn and Mn(R) 1. This is possible because Hn and Mn(R) can be treated
essentially in a same manner as seen in the next section.

Differential geometric approach to nonlinear control is useful to ana-
lyze important properties of nonlinear systems such as reachability and con-
trollability [8], and it has been used to study controlled quantum systems
[1, 11, 10]. However, in these works, differential geometric approach has
been applied after representing the equations in a vector-valued form by
transforming the variable into a real number vector. A more direct method
without such variable transformation is naturally desirable.

In this report, we define “Lie product of matrix functions” as a new
tool for differential geometric approach to analyze the systems described
by equation (2), and provide an efficient calculation rule which does not
require any variable transformation nor elementwise calculation with coor-
dinate expression. Application of the Lie product of matrix functions with
the calculation rule simplifies reachability or controllability analysis for the
systems described by equation (2). It is expected to be an effective analysis
method especially for controlled quantum systems. The effectiveness of the
proposed method is verified by examples.

1We show an example of equations defined on Mn(R) in Section 4.
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Notation: In this report, we use the following notation. i: imaginary
unit. X>: transpose of a matrix X. X∗: Hermitian conjugate of a matrix
X. [X,Y ] = XY − Y X: commutator of two matrices X and Y . Tr [X]:
trace of a matrix X. En

kl: n × n matrix whose (k, l) component is 1 and all
the other components are 0.

2 Mathematical Preliminaries

This section is devoted to mathematical preliminaries to define Lie product
of matrix functions and to provide an efficient rule for the calculation.

2.1 Matrix Functions and Vector Fields

In this subsection, we clarify the relationship between matrix functions and
vector fields. This is the basis of the later discussions.

First, we see some properties of Xn (= Hn,Mn(R)). Xn is an N(:=
n2) dimensional real Hilbert space. Here for this space we introduce the
Frobenius inner product

(X,Y )F := Tr [X∗Y ] (3)

and the Frobenius norm

‖X‖F :=
√

(X,X)F (4)

for X,Y ∈ Xn. The set of N Hermitian matrices {En
kk}1≤k≤n ∪ {1/

√
2(En

kl+
En

lk), i/
√

2(−En
kl + En

lk)}1≤k<l≤n, i.e.,
1 0

0
. . .

0 0

 ,


0 0

1
0

. . .
0 0

 , · · · ,


0 0

. . .

0
0 1

 ,

1√
2


0 1 0
1 0

. . .
0 0

 ,
1√
2


0 −i 0
i 0

. . .
0 0

 , · · · ,

1√
2


0 0

. . .
0 1

0 1 0

 ,
1√
2


0 0

. . .
0 −i

0 i 0

 (5)

is an orthonormal basis of Hn, while the set of N real matrices {En
kl}1≤k,l≤n

is an orthonormal basis of Mn(R).
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According to these choices of orthonormal basises, we can parameterize
X ∈ Hn as

X =

 x1 1√
2
xn+1 − i 1√

2
xn+2 · · ·

1√
2
xn+1 + i 1√

2
xn+2 x2 · · ·

...
...

. . .

 , (6)

and X ∈ Mn(R) as

X =


x1 x2 · · · xn

xn+1 xn+2 · · · x2n

...
...

xN−n xN−n+1 · · · xN

 , (7)

where xj ∈ R, j = 1, ..., N . This is the most fundamental characterization
of Xn.

We next characterize Xn from the differential geometric viewpoint and
associate matrix functions with vector fields. Refer the Chapter 2 of [8]
for the definitions of basic terms such as manifold, tangent vector, tangent
space, and vector field.

Since Xn is a linear space, Xn can be regarded as an N dimensional
differentiable manifold in a natural way [3]. Here we define ϕ : Xn → RN as

ϕ(X) = (ϕ1(X), ..., ϕN (X)) := (x1, ..., xN ) (8)

based on (6) in the case Xn = Hn and based on (7) in the case of Xn =
Mn(R). Note that ϕ is a one-to-one linear mapping (linear isomorphism),
and each ϕj : Xn → R, j = 1, ..., N is also linear. The pair (Xn, ϕ) is
a coordinate neighborhood which covers the whole space Xn. We fix the
coordinate neighborhood in the following discussions.

Let TXXn be the tangent space of Xn at a point X ∈ Xn. We denote
the natural basis of TXXn with respect to (Xn, ϕ) by

∂

∂x1

∣∣∣∣
X

, ...,
∂

∂xN

∣∣∣∣
X

. (9)

TXXn can be identified with Xn because Xn is a linear space [3]. A tangent
vector

v =
N∑

j=1

vj ∂

∂xj

∣∣∣∣
X

∈ TXXn, (10)

where vj ∈ R, j = 1, ..., N , corresponds to the Hermitian matrix

V =

 v1 1√
2
vn+1 − i 1√

2
vn+2 · · ·

1√
2
vn+1 + i 1√

2
vn+2 v2 · · ·

...
...

. . .



4



and real matrix

V =


v1 v2 · · · vn

vn+1 vn+2 · · · v2n

...
...

vN−n vN−n+1 · · · vN

 (11)

in the cases of Xn = Hn and Xn = Mn(R), respectively.
This correspondence v 7→ V is obviously one-to-one and linear. We

denote this one-to-one linear mapping (linear isomorphism) by

ψX : TXXn → Xn. (12)

Let V ∞(Xn) denote the set of all C∞ vector fields defined on Xn and
C∞(Xn,Xn) represents the set of all C∞ functions from Xn to Xn (C∞

matrix functions). V ∞(Xn) and C∞(Xn,Xn) have natural linear space
structures. Based on the identification of TXXn with Xn by ψX , a C∞

vector field f that assigns the tangent vector

f(X) =
N∑

j=1

f j(X)
∂

∂xj

∣∣∣∣
X

∈ TXXn (13)

to each point X ∈ Xn can be identified with the C∞ matrix function F that
satisfies F(X) = ψX(f(X)) for all X ∈ Xn. Here f j , j = 1, ..., N are C∞

functions from Xn to R. The matrix function satisfying the above condition
has the forms

F(X) =

 f1(X) 1√
2
fn+1(X) − i 1√

2
fn+2(X) · · ·

1√
2
fn+1(X) + i 1√

2
fn+2(X) f2(X) · · ·

...
. . .


(14)

and

F(X) =


f1(X) f2(X) · · · fn(X)

fn+1(X) fn+2(X) · · · f2n(X)
...

...
fN−n(X) fN−n+1(X) · · · fN (X)

 (15)

in the cases of Xn = Hn and Xn = Mn(R), respectively.
It is obvious that the correspondence f 7→ F defined as above is one-to-

one and linear. We denote this one-to-one linear mapping by

ψ : V ∞(Xn) → C∞(Xn,Xn). (16)

5



2.2 Gâteaux Differential

The Gâteaux differential is a directional derivative defined for a function
whose range is a normed linear space [7]. Definition 2.1 below provides the
definition of the Gâteaux differential of a function from Xn to Xn.

Definition 2.1 (Gâteaux differential of a matrix function) Let F be a func-
tion from Xn to Xn and let X and Y be elements of Xn. If the limit

∂F
∂X

(Y ) := lim
ε∈R
ε→0

F(X + εY ) −F(X)
ε

(17)

exists, it is called the Gâteaux differential of F at X with the increment Y .

In the later discussions, the Gâteaux differential makes it possible to ana-
lyze the reachability or controllability for the systems described by equation
(2) with simple calculations.

Here we show several examples of matrix functions.

Example 2.1 For any n×n Hermitian matrix A and n×n complex matrix
C, the following functions Fj(j = 1, 2, 3, 4) are C∞ functions from Hn to
Hn:

F1[A](X) := −i[A,X], (18)
F2[C](X) := CXC∗, (19)
F3[C](X) := CX + XC∗, (20)
F4[C](X) := Tr [(C + C∗)X] X. (21)

Note especially that F4[C] is a nonlinear function. Using these symbols, com-
ponents of the Lindblad master equation (1) can be written as F1[H],F2[Lr],
F3[L∗

rLr]. F4 is a function which appears in a class of quantum control prob-
lems [9].

Example 2.2 For any n × n real matrix K,

F5[K](X) := KX (22)

is a C∞ function from Mn(R) to Mn(R). Functions of this type appear in
attitude control problem of a rigid body (see Section 4).

We have the following results.
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Proposition 2.1 The following relation holds for the C∞ matrix functions
Fj(j = 1 ∼ 5) defined by (21) and (22):

∂F1[A]
∂X

(Y ) = −i[A, Y ], (23)

∂F2[C]
∂X

(Y ) = CY C∗, (24)

∂F3[C]
∂X

(Y ) = CY + Y C∗, (25)

∂F4[C]
∂X

(Y ) = Tr [(C + C∗)Y ] X + Tr [(C + C∗)X] Y, (26)

∂F5[K]
∂X

(Y ) = KY, (27)

where X,Y are the elements of respective domain of each function.

Proof Taking limit according to (17), we have

∂F5[K]
∂X

(Y ) = lim
ε∈R
ε→0

K(X + εY ) − KX

ε
= KY. (28)

The other equations (23) ∼ (26) can be obtained in the same way.

3 Lie Product of Matrix Functions with an Effi-
cient Calculation Rule

In this section, we define Lie product of matrix functions and explain how it
works for reachability and controllability analysis for the systems described
by equation (2). We then show that the Lie product of matrix functions
can be calculated by Gâteaux differential. This provides us an efficient
calculation rule for Lie product of matrix functions.

The Lie product (Lie bracket) of vector fields plays an important role in
geometric approach to nonlinear control. The definition of the Lie product
(Lie bracket) [f, g]L of C∞ vector fields f, g on Xn is given as follows 2.

Definition 3.1 Let f, g be C∞ vector fields on Xn. The Lie product (Lie
bracket) [f, g]L of f and g is the C∞ vector field that assigns the tangent
vector

[f, g]L(X) =
N∑

k=1

 N∑
j=1

(
∂gk

∂xj
(X)f j(X) − ∂fk

∂xj
(X)gj(X)

) ∂

∂xk

∣∣∣∣
X

∈ TXXn

(29)

2See [8] for the coordinate free definition of the Lie product of vector fields. Although
the definition given here is in different form, it is equivalent to the original one in the
problem setting in this report.
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to each point X ∈ Xn. Here (∂gk/∂xj)(X) is an abbreviated notation for

∂(gk ◦ ϕ−1)
∂xj

(ϕ1(X), ..., ϕN (X)), (30)

that is, the partial derivative of gk ◦ ϕ−1 : RN → R with respect to its j-th
component at the point (ϕ1(X), ..., ϕN (X)). The same holds for (∂fk/∂xj)(X).

For F ,Gi, i = 1, ...,m in (2), define f, gi, i = 1, ...,m as f := ψ−1(F), gi :=
ψ−1(Gi), i = 1, ...,m. The dimension of the linear subspace of TXXn spanned
by f(X), gi(X), i = 1, ...,m and

[f, g1]L(X), ..., [f, gm]L(X), [f, [f, g1]L]L(X), ... (31)

expresses the degree of freedom of local change of the system at state X ∈ Xn

[8]. The basis for reachability and controllability analysis is the calculation of
(31). However, the elementwise calculation of the Lie product of vector fields
according to (29) is troublesome, especially in high or general dimensional
case. It prevents efficient analysis with clear perspective. We here develop a
method to overcome this difficulty, which is more direct one compared with
the vector representation method used in [1, 11, 10].

We see in Subsection 2.1 that V ∞(Xn) can be identified with C∞(Xn,Xn).
Based on this identification, we define the Lie product of matrix functions
as follows.

Definition 3.2 (Lie product of matrix functions) Let F ,G be C∞ func-
tions from Xn to Xn. The Lie product [F ,G]L of F and G is the C∞ function
from Xn to Xn defined as

[F ,G]L := ψ
(
[ψ−1(F), ψ−1(G)]L

)
. (32)

Note that the Lie product of matrix functions is defined so that the
following diagram becomes commutative:

V ∞(Xn) × V ∞(Xn)
ψ×ψ−−−−→ C∞(Xn,Xn) × C∞(Xn,Xn)

[·,·]L
y y[·,·]L

V ∞(Xn)
ψ−−−−→ C∞(Xn,Xn).

(33)

In other words, we “transplant” the operation [·, ·]L to the world of the
matrix functions using ψ.

By Definition 3.2 and the identification of TXXn with Xn, (31) can be
identified with

[F ,G1]L(X), ..., [F ,Gm]L(X), [F , [F ,G1]L]L(X), ..., (34)
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and thus the linear subspace of TXXn spanned by f(X), gi(X), i = 1, ...,m
and (31) can be identified with

C (X) := span{F(X),G1(X), ...,Gm(X),
[F ,G1]L(X), ..., [F , [F ,G1]L]L(X), ...}. (35)

Consequently, the calculation of Lie product of vector fields for reachability
and controllability analysis can be converted to the calculation of Lie product
of matrix functions. The mapping C which assigns a linear subspace of Xn to
each X defined as above can be identified with the reachability (accessibility)
distribution [8].

The main result of this report is as follows.

Theorem 3.1 Let F and G be C∞ functions form Xn to Xn. The following
relation holds for the Lie product of F and G:

[F ,G]L(X) =
∂G
∂X

(F(X)) − ∂F
∂X

(G(X)), (36)

where (∂G/∂X)(F(X)) and (∂F/∂X)(G(X)) are Gâteaux differentials of
matrix functions given in Definition 2.1.

Proof Let f := ψ−1(F) and g := ψ−1(G). Regarding the right hand side
of (29), the following relation holds:

N∑
j=1

∂gk

∂xj
(X)f j(X) = lim

ε∈R
ε→0

gk(X + εF(X)) − gk(X)
ε

. (37)

See Appendix A for the derivation. We can rewrite the term
∑N

j=1
∂fk

∂xj (X)gj(X)
in the same way, and we have

[F ,G]L(X)
= ψX

(
[ψ−1(F), ψ−1(G)](X)

)
= ψX

(
N∑

k=1

(
lim
ε∈R
ε→0

gk(X + εF(X)) − gk(X)
ε

− lim
ε∈R
ε→0

fk(X + εG(X)) − fk(X)
ε

)
∂

∂xk

∣∣∣∣
X

)

= lim
ε∈R
ε→0

ψX

(
N∑

k=1

(
gk(X + εF(X)) − gk(X)

ε

)
∂

∂xk

∣∣∣∣
X

)

− lim
ε∈R
ε→0

ψX

(
N∑

k=1

(
fk(X + εG(X)) − fk(X)

ε

)
∂

∂xk

∣∣∣∣
X

)

= lim
ε∈R
ε→0

G(X + εF(X)) − G(X)
ε

− lim
ε∈R
ε→0

F(X + εG(X)) −F(X)
ε

=
∂G
∂X

(F(X)) − ∂F
∂X

(G(X)). (38)
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This concludes the proof. ¤

Theorem 3.1 shows that the Lie product of matrix functions can be cal-
culated by taking limit for given matrix functions without any vectorization
as done in [1, 11, 10]. This means that reachability and controllability can be
discussed directly in the world of matrix functions. Furthermore, the limit
operation is easier to handle than the elementwise calculation. Thus the use
of the Lie product of matrix functions with the calculation rule provided by
Theorem 3.1 simplifies the reachability and controllability analysis for the
systems described by (2).

4 Applications to Reachability Analysis

Here we apply the proposed method to analyze a controlled quantum system
and controlled rigid body system to verify its effectiveness.

Analysis of a Controlled Quantum System

Consider a controlled quantum system described by the following Lindblad
master equation:

dX

dt
= LXL∗ − 1

2
L∗LX − 1

2
L∗LX − iu[H,X]

=: F [L](X) + G[H](X)u. (39)

Here we investigate properties of this system using our proposed method.
Using Theorem 3.1 and Proposition 2.1, [F [L],G[H]]L(X) is calculated as

[F [L],G[H]]L(X) = −i[H,L]XL∗ − iLX[H,L∗] +
i
2
[H,L∗]LX

+
i
2
L∗[H,L]X +

i
2
X[H,L∗]L +

i
2
XL∗[H,L]. (40)

Assume the following relation holds for a real number β:

−i[H,L] = βL. (41)

Substituting this equation into (40), we have

[F [L],G[H]]L(X) = 2βF [L](X), (42)

and thus C (X) = span{F [L](X),G[H](X)}. This shows that under the
condition (41), local change of quantum system is quite limited.

Note that we do not use any variable transformation in the above analysis
unlike the previous works [1, 11, 10].
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Analysis of a Controlled Rigid Body System

Attitude of a rigid body is expressed by a 3 × 3 orthogonal matrix R. Let
SO(3) be the set of all orthogonal matrices. Time evolution of the attitude
of a rigid body is described by the following equation:

dR

dt
=

3∑
i=1

BiRωi, (43)

where Bi, i = 1, 2, 3 is defined as

B1 := E3
23 − E3

32, (44)

B2 := E3
31 − E3

13, (45)

B3 := E3
12 − E3

21, (46)

and ω(t) = [ω1(t), ω2(t), ω3(t)]> ∈ R3 denotes the angular velocity of the
rigid body (with respect to the axes fixed to the rigid body). This equation
can be seen as the following differential equation defined on M3(R) with
initial condition X(0) ∈ SO(3):

dX

dt
=

3∑
i=1

Si(X)ωi :=
3∑

i=1

BiXωi. (47)

Assume that ω1 ≡ 1, ω3 ≡ 0 and we can change ω2 (denoted by u hereafter)
directly. In this case (47) becomes

dX

dt
= S1(X) + S2(X)u. (48)

We investigate the controllability of the rigid body system described by (48)
with our proposed method.

Using Theorem 3.1 and Proposition 2.1, [S1,S2]L(X) is calculated as

[S1,S2]L(X) =
∂S2

∂X
(S1(X)) − ∂S1

∂X
(S2(X))

= B2B1X − B1B2X

= B3X

= S3(X). (49)

With similar calculations, we get [S2,S3]L(X) = S1(X) and [S3,S1]L(X) =
S2(X). Thus, C (X) = span{S1(X),S2(X),S3(X)} holds for any X ∈
M3(R). We can confirm the linear independence of S1(X),S2(X) and S3(X)
for X ∈ SO(3), thus dimC (X) = 3 = dimSO(3) on SO(3). By Proposition
1 of [6] we can conclude that the system is controllable, i.e., we can realize
any target attitude starting from any initial attitude. This result coincides
with the result obtained by different approach [4].
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5 Conclusion

In this report we defined the Lie product of matrix functions as a new tool for
differential geometric approach to a class of systems described by a matrix-
valued differential equation, and provided an efficient calculation rule for
the computation. Application of the Lie product of matrix functions with
the calculation rule can simplify reachability and controllability analysis for
the systems. Specifically, it is expected to be a effective tool to analyze
quantum control problems. The effectiveness of the proposed method was
verified through examples.

Acknowledgments: This work has been supported in part by Grant-
in-Aid for Scientific Research, Japan Society for the Promotion of Science,
under Grant No. 17656137 and 19560436.
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A Derivation of (37)∑N
j=1(∂gk/∂xj)(X)f j(X) is the abbreviated notation for

N∑
j=1

∂(gk ◦ ϕ−1)
∂xj

(ϕ1(X), ..., ϕN (X))f j(X). (50)

This is equivalent to the directional derivative of gk ◦ ϕ−1 : RN → R with
increment (f1(X), ..., fN (X)) at the point (ϕ1(X), ..., ϕN (X)), that is,

lim
ε∈R
ε→0

1
ε

(
gk ◦ ϕ−1(ϕ1(X) + εf1(X), ..., ϕN (X) + εfN (X))

− gk ◦ ϕ−1(ϕ1(X), ..., ϕN (X))
)
. (51)

The following relation is obvious:

gk ◦ ϕ−1(ϕ1(X), ..., ϕN (X)) = gk(X). (52)

In addition, we have

ϕj(X) + εf j(X) = ϕj(X) + εϕj(F(X))

= ϕj(X + εF(X)), j = 1, ..., N (53)

due to the definition of f and the linearity of ϕj . Thus, the following relation
holds:

gk ◦ ϕ−1(ϕ1(X) + εf1(X), ..., ϕN (X) + εfN (X))
= gk ◦ ϕ−1(ϕ1(X + εF(X)), ..., ϕN (X + εF(X)))
= gk(X + εF(X)). (54)

Substituting (54) and (52) to (51), we have (37).
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B Transformation Rule from Ito Type SDE to Stratonovich
Type SDE

It is beneficial to transform an Ito type stochastic differential equation (SDE)
to the equivalent Stratonovich type SDE for analyzing the local reachability
by calculating the Lie products of matrix functions, because the Stratonovich
type SDE has the property of the ordinary chain rule formulas while the Ito
type SDE does not [2]. In this appendix, we provide a transformation rule
of Ito type SDE to the equivalent Stratonovich type SDE.

Consider the following matrix-valued stochastic differential equation:

dX = F(X)dt +
m∑

i=1

Gi(X)uidt +
p∑

k=1

Hk(X)dwk,

X(0) = X0 ∈ Xn. (55)

Here F ,Gi,Hk, i = 1, ...,m, k = 1, ..., p are C∞ matrix functions from Xn to
Xn,dwk(t), k = 1, ..., p are standard Wiener increments satisfying E[dwk] =
0 and E[dwk(t)dwl(t)] = δkldt(δkl is the Kronecker’s delta), and ui(t) ∈
R, i = 1, ...,m are control inputs.

The following result provides the direct transformation rule of Ito type
SDE to the equivalent Stratonovich type SDE.

Lemma B.1 Ito type SDE (55) is equivalent to the following Stratonovich
type SDE:

dX =

(
F(X) − 1

2

p∑
k=1

∂Hk

∂X
(Hk(X))

)
dt +

m∑
i=1

Gi(X)uidt

+
p∑

k=1

Hk(X) ◦ dwk,

X(0) = X0 ∈ Xn. (56)

Proof Equation (55) stands for the following set of N real scalar valued
Ito type SDEs:

dxj = f j(X)dt +
m∑

i=1

gj
i (X)uidt +

p∑
k=1

hj
k(X)dwk,

= f j(X)dt +
m∑

i=1

gj
i (X)uidt +

p∑
k=1

hj
k(X)dwk,

xj(0) = xj
0, j = 1, ..., N. (57)

We can check it by parameterizing the equation (55) according to (6) or (7),
respectively. They are equivalent to the following set of N real scalar valued
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Stratonovich type SDEs [2]:

dxj =
(

f j(X) − 1
2

p∑
k=1

N∑
l=1

∂hj
k

∂xl
(X)hl

k(X)
)

dt +
m∑

i=1

gj
i (X)uidt

+
p∑

k=1

hj
k(X) ◦ dwk

xj(0) = xj
0, j = 1, ..., N. (58)

The remainder of the proof is same as that of Lemma 3.1. The key point
is rewriting the right hand side of the equation (58) with limit operation. ¤
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