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Abstract

We extend the least angle regression algorithm using the informa-
tion geometry of dually flat spaces. The least angle regression algo-
rithm is based on a bisector in Euclidean space, and it is used for
estimating parameters and selecting explaining variables for linear re-
gression. The extended least angle regression algorithm is used for
estimating parameters in generalized linear regression, and it has a
function of selecting explaining variables. We use curves correspond-
ing to bisectors in Euclidean space for this purpose.

1 Introduction

We consider parametric regressions, i.e., linear regression and generalized
linear regression. We extend the least angle regression (LARS) algorithm
[4] using the information geometry of dually flat spaces. LARS is used for
estimating parameters and selecting explaining variables for linear regression
[4]. The extended LARS algorithm can be used for estimating parameters
and selecting explaining variables for generalized linear regression.

In the iterative LARS algorithm, we use the geometry of the Euclidean
space spanned by explaining variable vectors. The algorithm selects one
explaining variable in each iteration for constructing the estimators. In this
procedure, a bisector or its extension to higher dimensional spaces were
used. The estimator moves along the bisector or its extension. In the LARS
algorithm, the bisectors and distance in Euclidean space play an important
role in estimating parameters.

One of the main advantages of the LARS algorithm is its efficiency.
In fact, the number of iterations is the same as the number of explaining
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variables. Furtheremore, LARS is associated with the lasso proposed by
Tibshirani [10]. Lasso minimizes the L2-norm of the residual of the estimated
response and observed response subject to a constraint on the L1-norm of
the estimator. Lasso has been studied extensively, and [8] can be referred to.
A slightly modified LARS algorithm yields the lasso estimator. This implies
that we can obtain the lasso estimator with lesser computational effort.

In this study, we extend the LARS algorithm using the information ge-
ometry of dually flat spaces. A dually flat space is a generalization of the
Euclidean space [1, 2]. The model manifold of an exponential family of
distributions is a dually flat space. The exponential family of distributions
appears in generalized linear regression. We estimate the parameters of
the exponential family in generalized linear regression using the information
geometry of a dually flat space. In a dually flat space, geodesics and di-
vergence correspond to straight lines and distance in the Euclidean space,
respectively. In order to obtain the estimator, we consider a curve corre-
sponding to a bisector in a Euclidean space.

In section 2, we propose the extended LARS algorithm. We describe the
information geometry of dually flat spaces. Then, we describe the extended
LARS algorithm, and show the geometrical aspect of this algorithm. In
section 3, we show the results of the extended LARS algorithm for two
types of databases. In section 4, we present the conclusions.

2 Extended least angle regression algorithm

2.1 Settings

We consider a generalized linear regression model. For observed data

{ya, x
a = (xa

1, x
a
2, . . . , x

a
d)}a =1,2,...,n,

the design matrix X is defined by

X = (xa
i )1≤ a≤n, 1≤ i≤ d = (x1, x2, . . . , xd),

where xi = (x1
i , x

2
i , . . . , x

n
i )> (i = 1, 2, . . . , d) and X is a (n× d) matrix. Let

1 be the vector with n 1s, i.e., (1, 1, . . . , 1)>. The matrix X̃ can be defined
as

X̃ = (1|X) .

The model that we consider is an exponential family

p(y|ξ) = exp

(
n∑

a=1

yaξ
a +

r∑

b=1

ub(y)ξb+n − ψ(ξ)

)
, (1)

ξ′ = X̃θ′,
ξ′′ = θ′′,
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where ξ := (ξ1, ξ2, . . . , ξn+r)>, ξ′ := (ξ1, ξ2, . . . , ξn)>, ξ′′ := (ξn+1, ξn+2, . . . ,
ξr+n)>, θ := (θ0, θ1, . . . , θd+r)>, θ′ := (θ0, θ1, . . . , θd)>, and θ′′ := (θd+1, θd+2,
. . . , θr+d)>. Here, u(y) := {y1, . . . , yn, u1(y), u2(y), . . . , ur(y)} is a sufficient
statistic of ξ, and ψ(·) is a convex function corresponding to the normal-
izing constant. The parameter ξ is the natural parameter and ψ(·) is
the potential function of ξ. The expectation µ = (µ1, . . . , µn+r)>, where
µa = E[ya] (a = 1, . . . , n) and µb+n = E[ub(y)] (b = 1, . . . , r), is called the
expectation parameter.

We define the simplest model as
{

θ| θ1 = θ2 = · · · = θd = 0
}

. (2)

In the case of the simplest model, ξ1 = ξ2 = · · · = ξn.

Example 1 (Normal regression). In normal regression, an exponential fam-
ily of normal distributions is given as

p(y|m,σ2) =
n∏

a=1

1√
2πσ

exp
{
−(ya −ma)2

2σ2

}
,

where m = (m1,m2, . . . , mn)> is the mean vector and σ2 is the unknown
variance. The natural parameter is

ξa =
ma

σ2
(a = 1, 2, . . . , n),

ξn+1 = − 1
2σ2

,

and r = 1 in model (1). The distribution is given by

p(y|ξ) = exp

(
n∑

a=1

yaξ
a +

(
n∑

a=1

y2
a

)
ξn+1 − ψ(ξ)

)
,

where

ψ(ξ) = −
∑n

a=1(ξ
a)2

4ξn+1
− n

2
log(−ξn+1) +

n

2
log π

is the potential function of ξ. The expectation parameter µ is given by

µa = ma = − ξa

2ξn+1
(a = 1, 2, . . . , n),

µn+1 =
n∑

a=1

(m2
a + σ2) =

n∑

a=1

(
ξa

2ξn+1

)2

− n

2ξn+1
.
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The model we consider is

ξ′ = X̃θ′,

ξn+1 = θd+1.

In the simplest model that we assume, ξ1 = ξ2 = · · · = ξn. This implies
that µ1 = µ2 = · · · = µn.

Example 2 (Logistic regression). In logistic regression, we consider the
following exponential family.

p(y|ξ) =
n∏

a=1

exp (yaξ
a)

1 + exp ξa

= exp

(
n∑

a=1

yaξ
a − ψ(ξ)

)
,

ξ = X̃θ,

where ξ = (ξ1, ξ2, . . . , ξn)> is the natural parameter, θ = (θ0, θ1, . . . , θd)>,
y ∈ {0, 1}n, r = 0, and

ψ(ξ) =
n∑

a=1

log (1 + exp ξa)

is the potential function of ξ. The expectation parameter µ is given by

µa = E[ya] =
exp ξa

1 + exp ξa
(a = 1, 2, . . . , n).

In the simplest model that we assume, ξ1 = ξ2 = · · · = ξn. This implies that
µ1 = µ2 = · · · = µn, i.e., Prob(y1 = 1) = Prob(y2 = 1) = · · · = Prob(yn =
1).

2.2 Information geometry for the algorithm

Before we describe the extended LARS algorithm, we summarize some no-
tions of the information geometry of dually flat spaces that are used in this
study. For details, refer to [1], [2], and [6]. Based on the information geom-
etry, the model manifold of the exponential family is known to be a dually
flat space. In a dually flat space, there exists a pair of a coordinate system
ξ, called the e-affine coordinate, and a convex function ψ, i.e., the potential
function of ξ. Similarly, it also contains a pair of a coordinate system µ,
called the m-affine coordinate, and a convex function φ, i.e., the potential
function of µ. In the model manifold of the exponential family, the natural
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parameter ξ is an e-affine coordinate system, and the expectation parame-
ter µ is an m-affine coordinate system. The ξ and µ coordinate systems are
called mutually dual because of the following relations:

µa =
∂

∂ξa
ψ(ξ), (3)

ξa =
∂

∂µa
φ(µ), (4)

φ(µ) + ψ(ξ)− µ · ξ = 0. (5)

Then, the relations

gab =
∂2

∂ξa∂ξb
ψ(ξ), (6)

gab =
∂2

∂µa∂µb
φ(µ) (7)

also hold, where (gab) denotes the Fisher information matrix and (gab), the
inverse of (gab). In the dually flat space of the exponential family, the
potential function φ(µ) is given as

φ(µ) = ξ · µ− ψ(ξ) = −
∫

p(y|µ) log p(y|µ)dy = −H(p(y|µ)),

where p(y|µ) is the density function of y given the parameter µ and H(·) is
the entropy in information theory.

Let ξ(P ) and µ(P ) denote the e-affine coordinate and m-affine coordinate
of point P , respectively. For a dually flat space, two different geodesics, an
e-geodesic and an m-geodesic, are defined. The e-geodesic ξ(t) connecting
two points, P and Q, is represented by

ξ(t) = (1− t)ξ(P ) + tξ(Q), t ∈ [0, 1]

in the e-affine coordinate system ξ. The m-geodesic µ(t) connecting two
points, P and Q, is represented by

µ(t) = (1− t)µ(P ) + tµ(Q), t ∈ [0, 1]

in the m-affine coordinate system µ. The geodesics correspond to a straight
line in Euclidean space.

We define the orthogonality of an e-geodesic and an m-geodesic (Figure
1). Let P, Q, and R denote different points in a dually flat space. We
represent the m-geodesic connecting P and Q as lm, and the e-geodesic
connecting R and Q as le. The two geodesics lm and le intersect at point Q.
The e-geodesic le and m-geodesic lm are orthogonal if the equation

(µ(P )− µ(Q)) · (ξ(R)− ξ(Q)) :=
∑

a

(µa(P )− µa(Q))(ξa(R)− ξa(Q))

= 0
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Figure 1: The orthogonality, divergence, extended Pythagorean theorem,
and m-projection. µ(w): m-affine coordinate of the point w (w ∈ {P,Q}).
ξ(w): e-affine coordinate of the point w (w ∈ {Q,R}). lm: m-geodesic
connecting P and Q. le: e-geodesic connecting R and Q. le and lm are
orthogonal, and therefore, the equation (µ(P ) − µ(Q)) · (ξ(R) − ξ(Q)) = 0
is satisfied. Because of the extended Pythagorean theorem, the equality
D(P, R) = D(P, Q)+D(Q,R) holds. The e-geodesic le is e-flat in the dually
flat space. The m-projection of R on le is Q.

is satisfied.
The divergence D(P, Q) from P to Q is defined by

D(P, Q) = φ(µ(P )) + ψ(ξ(Q))− µ(P ) · ξ(Q).

The divergence is given by the square of the distance in Euclidean space. If
lm and le are orthogonal, the equation

D(P, R) = D(P, Q) + D(Q,R) (8)

holds. Relation (8) is called the extended Pythagorean theorem.
Finally, we define the m-projection in a dually flat space F . Let S be

an e-flat subspace in the dually flat space F . We call S an e-flat subspace
in the dually flat space F if, for arbitrary points P, Q ∈ S, the e-geodesic
connecting P and Q in F lies in the subspace S. The m-projection P̄ ∈ S
of point P on the subspace S in F satisfies

(µ(P )− µ(P̄ )) · (ξ − ξ(P̄ )) = 0 (∀ξ ∈ S),

where µ(P ) is the m-affine coordinate of P , ξ is the e-affine coordinate of the
point in S, and ξ(P̄ ) and µ(P̄ ) are the e-affine and m-affine coordinates of
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P̄ , respectively. That is, the m-geodesic connecting P and P̄ is orthogonal
with an arbitraty e-geodesic in S which intersects the m-geodesic.

Example 1 (Normal regression, continued). In Example 1, the expectation
parameter µ and the potential function ψ of ξ are

µa = − ξa

2ξn+1
(a = 1, 2, . . . , n),

µn+1 =
n∑

a=1

(
ξa

2ξn+1

)2

− n

2ξn+1
,

ψ(ξ) = −
∑n

a=1(ξ
a)2

4ξn+1
− n

2
log(−ξn+1) +

n

2
log π,

respectively. The natural parameter is represented by the expectation pa-
rameter as

ξa =
ma

σ2
=

nµa

µn+1 −
∑n

a=1 µ2
a

(a = 1, 2, . . . , n),

ξn+1 = − 1
2σ2

= − n

2(µn+1 −
∑n

a=1 µ2
a)

.

The potential function φ of µ is given by

φ(µ) = ξ · µ− ψ(ξ)

=
n∑

a=1

nµ2
a

µn+1 −
∑n

b=1 µ2
b

− nµn+1

2(µn+1 −
∑n

a=1 µ2
a)

−
(

n∑

a=1

nµ2
a

2(µn+1 −
∑n

b=1 µ2
b)

+
n

2
log

(
2(µn+1 −

∑n
a=1 µ2

a)
n

))

= −n

2
log

(
2(µn+1 −

∑n
a=1 µ2

a)
n

)
− n

2
(1 + log π).

The natural parameter ξ and the expectation parameter µ are mutually dual
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coordinate systems. Relations

∂ψ(ξ)
∂ξa

= − ξa

2ξn+1

= µa (a = 1, 2, . . . , n),

∂ψ(ξ)
∂ξn+1

=
n∑

a=1

(
ξa

2ξn+1

)2

− n

2ξn+1

= µn+1,

∂φ(µ)
∂µa

=
nµa

µn+1 −
∑n

a=1 µ2
a

= ξa (a = 1, 2, . . . , n),
∂φ(µ)
∂µn+1

= − n

2(µn+1 −
∑n

a=1 µ2
a)

= ξn+1

hold. The divergence from a point P to another point Q is given by

D(P, Q) = φ(µ(P )) + ψ(ξ(Q))− µ(P ) · ξ(Q)

= −n

2
log

(
2(µn+1(P )−∑n

a=1 µ2
a(P ))

n

)
− n

2

−
∑n

a=1(ξ
a(Q))2

4ξn+1(Q)
+

n

2
log π − µ(P ) · ξ(Q)

Example 2 (Logistic regression, continued). In Example 2, the expectation
parameter µ and the potential function ψ of ξ are

µa =
exp ξa

1 + exp ξa
(a = 1, 2, . . . , n),

ψ(ξ) =
n∑

a=1

log (1 + exp ξa),

respectively. The potential function φ of µ is given by

φ(µ) = ξ · µ− ψ(ξ)

= ξ · µ−
n∑

a=1

log (1 + exp ξa)

=
n∑

a=1

{µa log µa + (1− µa) log (1− µa)} .

8



The natural parameter ξ and the expectation parameter µ are mutually dual
coordinate systems. Two relations

∂ψ(ξ)
∂ξa

=
exp ξa

1 + exp ξa

= µa (a = 1, 2, . . . , n),
∂φ(µ)
∂µa

= log
µa

1− µa

= ξa (a = 1, 2, . . . , n)

hold. The divergence from a point P to another point Q is given by

D(P, Q) = φ(µ(P )) + ψ(ξ(Q))− µ(P ) · ξ(Q)

=
n∑

a=1

{µa(P ) log µa(P ) + (1− µa(P )) log (1− µa(P ))}

+
n∑

a=1

log (1 + exp ξa(Q))− µ(P ) · ξ(Q).

In the generalized linear regression analysis, we need to choose one dis-
tribution from the exponential family of distributions. We propose an algo-
rithm that is applicable in the dually flat space of the exponential family.

We introduce a new dually flat space S (Figure 2). The model manifold
F of the exponential family forms a dually flat space. The natural parameter
ξ is the e-affine coordinate system, and the expectation parameter µ is the
m-affine coordinate system in F . Let ψ∗ denote the potential function of ξ
and φ∗ denote the potential function of µ. We consider the subspace S of
model (1) in F . The subspace S is an e-flat subspace in F . Since the space
F is a dually flat space and the transform between ξ and θ, i.e., ξ′ = X̃θ′

and ξ′′ = θ′′, is an affine transform, S is also a dually flat space. We define
the function ψ(θ) as ψ(θ) = ψ∗(ξ′, ξ′′) = ψ∗(X̃θ′, θ′′). Since the potential
function ψ∗(ξ) is convex, ψ(θ) is convex. We introduce a new coordinate
system η = (η0, η1, . . . , ηd+r)> defined by

ηi =
∂

∂θi
ψ(θ) (i = 0, 1, . . . , d + r),

and define the function φ(η) as

φ(η) = η · θ − ψ(θ).

For i = 1, 2, . . . , d and j = d + 1, . . . , d + r, we have

ηi =
∂

∂θi
ψ(θ) =

n∑

a=1

∂

∂ξa
ψ∗(ξ) · xa

i =
n∑

a=1

µax
a
i ,

ηj =
∂

∂θj
ψ(θ) =

∂

∂ξj
ψ∗(ξ) = µj ,

9



Figure 2: Model subspaces. F : dually flat space of the exponential family.
S: e-flat subspace of model (1). N : e-flat subspace of the simplest model
(2). ξdat: point corresponding to data. ξMLE: MLE for model (1). ξ∗MLE:
MLE for the simplest model (2). ξMLE is the m-projection of ξdat on S.
ξ∗MLE is the m-projection of ξdat on N .

implying that

η′ = X̃>µ′,
η′′ = µ′′,

where µ′ = (µ1, µ2, . . . , µn)>, µ′′ = (µn+1, µn+2, . . . , µr+n)>, η′ = (η0, η1, . . . ,
ηd)>, and η′′ = (ηd+1, ηd+2, . . . , ηr+d)>. For i = 0, 1, . . . , d + r, the relation

∂

∂ηi
φ(η) =

∂

∂ηi
(η · θ − ψ(θ))

= θi +
(

η · ∂θ

∂ηi

)
−

d∑

j=1

∂θj

∂ηi

∂ψ(θ)
∂θj

= θi +
(

η · ∂θ

∂ηi

)
−

d∑

j=1

∂θj

∂ηi
ηj

= θi

holds. Therefore, θ is an e-affine coordinate system in S and η is an m-
affine coordinate system in S. Coordinate systems θ and η are mutually
dual. Convex functions ψ and φ are the potential functions of θ and η,
respectively.

We describe the relationship between two MLEs for the two different
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Figure 3: The subspace M that the algorithm works with. M : m-flat
subspace in S that is orthogonal to N at θ∗MLE. N := {θ|θ1 = θ2 = · · · =
θd = 0}: e-flat subspace. θ∗MLE: MLE for the simplest model (2). θMLE:
MLE for the model (1). M contains both θMLE and θ∗MLE.

models (1) and (2). Let

θMLE = (θ0
MLE, θ1

MLE, . . . , θd+r
MLE)>

be the MLE for model (1), and let

θ∗MLE = (θ∗0MLE, 0, . . . , 0, θ∗d+1
MLE , . . . , θ∗d+r

MLE)>

be the MLE for the simplest model (2). The point θ∗MLE lies in the e-flat
subspace N := {θ|θ1 = θ2 = · · · = θd = 0}. We define the m-flat subspace
M as a subspace M containing θ∗MLE and it is orthogonal to N at θ∗MLE

(Figure 3). Thus, the point θMLE lies in M . The m-flat subspace M is
represented by

M = {η| η0 = (η∗MLE)0, ηd+1 = (η∗MLE)d+1, . . . , ηd+r = (η∗MLE)d+r}.

Since M is an m-flat subspace, M is also a dually flat space and (η1, . . . , ηd)
is an m-affine coordinate in M . The e-affine coordinate that is dual with
(η1, . . . , ηd) is (θ1, . . . , θd). A point lying in M is specified by the mixture
coordinate ((η∗MLE)0, θ1, . . . , θd, (η∗MLE)d+1, . . . , (η∗MLE)d+r) in S. The algo-
rithm we propose works with the m-flat subspace M . We omit the condition
η0 = (η∗MLE)0, ηd+1 = (η∗MLE)d+1, . . . , ηd+r = (η∗MLE)d+r. We use the coordi-
nates (θ1, . . . , θd) in M .
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Example 1 (Normal regression, continued). We consider the e-affine co-
ordinate θ and the m-affine coordinate η in the subspace S. The m-affine
coordinate η, which is dual with θ, is given by η = (η′, η′′), where η′ = X̃>µ′

and η′′ = µ′′. The m-affine coordinate system η is given by

η0 = −
n∑

a=1

θ0 +
∑d

j=1 xa
j θ

j

2θd+1

ηi = −
n∑

a=1

(
θ0 +

∑d
j=1 xa

j θ
j

2θd+1
· xa

i

)
(i = 1, 2, . . . , d),

ηd+1 =
n∑

a=1

(
θ0 +

∑d
j=1 xa

j θ
j

2θd+1

)2

− n

2θd+1
.

The potential function of θ is

ψ(θ) = ψ∗(X̃θ′, θ′′)

= −
∑n

a=1

(
θ0 +

∑d
j=1 xa

j θ
j
)2

4θd+1
− n

2
log(−θd+1) +

n

2
log π.

Example 2 (Logistic regression, continued). We consider the e-affine co-
ordinate θ and the m-affine coordinate η in the subspace S. The m-affine
coordinate η that is dual with θ is given by η = X̃>µ. The m-affine coordi-
nate system η is given by

η0 =
n∑

a=1

exp(θ0 +
∑d

j=1 xa
j θ

j)

1 + exp(θ0 +
∑d

j=1 xa
j θ

j)
,

ηi =
n∑

a=1

(
exp(θ0 +

∑d
j=1 xa

j θ
j)

1 + exp(θ0 +
∑d

j=1 xa
j θ

j)
· xa

i

)
(i = 1, 2, . . . , d).

The potential function of θ is

ψ(θ) = ψ∗(X̃θ)

=
n∑

a=1

log


1 + exp


θ0 +

d∑

j=1

xa
j θ

j





 .

We consider subspaces M(I) := {θ| θj = 0 (j 6∈ I)} in M for I ⊂
{1, 2, . . . , d} (Figure 4). We define θ[I] := (θi)i∈I and η[I] := (ηi)i∈I , where
θi is an e-affine coordinate system and ηi is an m-affine coordinate system of
S. Let ψ[I](θ[I]) = ψ(θ) (θj = 0, j 6∈ I) and φ[I](η[I]) = η[I] · θ[I] − ψ[I](θ[I]),
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Figure 4: The m-projection and e-affine coordinate system of the subspace
M . M : dually flat space. θ: e-affine coordinate system of M . M(I) =
{θ| θj = 0, j 6∈ I}: an e-flat subspace in M and a dually flat space. P̄ :
m-projection of P on M(I). P (t) (0 ≤ t ≤ 1): point on the m-geodesic
connecting P and P̄ . Q: arbitrary point on M(I). Since the m-geodesic
and M(I) are orthogonal, (η(P ) − η(P̄ )) · (θ(Q) − θ(P̄ )) = 0 holds. For
i ∈ I, the i-th component ηi(P (t)) is a constant. If θ[I] = (θi)i∈I , then θ[I]

is an e-affine coordinate system of M(I).

where ψ is the potential function of θ and φ is the potential function of η in
S. We have the following lemma. The proof of this lemma is given in the
appendix.

Lemma 1. For an arbitrary set I ⊂ {1, 2, . . . , d}, the space M(I) is dually
flat. The coordinate system θ[I] is an e-affine coordinate system in M(I).
The coordinate system η[I] is the m-affine coordinate system that is dual with
θ[I] in M(I). The functions ψ[I] and φ[I] are the potential functions of θ[I]

and η[I] in M(I), respectively. The divergence from P to Q in M(I) is given
by D[I](η[I](P ), θ[I](Q)) = φ[I](η[I](P )) + ψ[I](θ[I](Q))− η[I](P ) · θ[I](Q).

For I ⊂ {1, 2, . . . , p} and i ∈ I, we consider the m-projection P̄ of P on
M(i, α, I) := {θ| θi = α, θj = 0 (j 6∈ I)} in M(I). The subspace M(i, α, I)
is an e-flat subspace in M(I). Let l(i, I) be the m-geodesic connecting
P and P̄ . Then, the m-coordinate of every point on l(i, I) is given by
uη[I](P ) + (1 − u)η[I](P̄ ) (u ∈ [0, 1]), where η[I](P ) and η[I](P̄ ) are the
η[I]-coordinates of P and P̄ , respectively. Since l(i, I) and M(i, α, I) are

13



orthogonal, we obtain

(η[I](P )− η[I](P̄ )) · (θ[I](Q)− θ[I](P̄ )) = 0 (∀Q ∈ M(i, α, I)), (9)

where θ[I](P̄ ) and θ[I](Q) represent θ[I]-coordinates of P̄ and Q, respectively.
The i-th coordinates θi(Q) and θi(P̄ ) are constantly equal to α while θq(Q)
and θq(P̄ ) (q ∈ I\{i}) are not constants. Therefore, we obtain

ηq(P̄ ) = ηq(P ) (q ∈ I\{i})

as the condition to satisfy condition (9). On the m-geodesic l(i, I), all the
components of the coordinates except for the i-th one are constants in the
η[I]-coordinate system in M(I).

2.3 Extended LARS algorithm

In this subsection, we describe the extended LARS algorithm. Let θ̂(k) be the
estimator attained in the k-th iteration and let I ⊆ {1, 2, . . . , d} be the set
such that θj = 0 (j 6∈ I) and θi 6= 0 (i ∈ I). First, we define I = {1, 2, . . . , d}
and k = 0. We define the first estimator θ̂(0) = θMLE, the MLE for model
(1).

In this algorithm, we consider the estimator in the dually flat space M(I)
(Figure 5). Let θ̄(i, I) denote the m-projection of θ̂(k) on M(i, 0, I) = M(I \
{i}) and let l(i, I) denote the m-geodesic from θ̂(k) to M(i, 0, I). Let the
point θ(t, i, I) ∈ l(i, I) be a point such that the divergence from θ̂(k) is equal
to t > 0. Using θ(t, i, I), we define θ∗(t, I) as (θ∗(t, I))i = (θ(t, i, I))i (i ∈
I), (θ∗(t, I))j = 0 (j 6∈ I). The point θ∗(t, I) is the intersection point of (|I|−
1)-dimensional e-flat spaces M(i, (θ(t, i, I))i, I) = {θ| θi = (θ(t, i, I))i, θj =
0 (j 6∈ I)} (i ∈ I). The space M(i, (θ(t, i, I))i, I) is orthogonal to the m-
geodesic l(i, I) at ponit θ(t, i, I). By the extended Pythagorean theorem, we
obtain

D[I](θ(t, i1, I), θ∗(t, I)) = D[I](θ(t, i2, I), θ∗(t, I)) (∀i1, i2 ∈ I, ∀t > 0).

This implies that {θ∗(t, I)| t > 0} is the curve corresponding to a bisector in
Euclidean space.

We use the curve {θ∗(t, I)| t > 0} in estimating the parameters. As t > 0
increases, the curve {θ∗(t, I)| t > 0} intersects some spaces M(i, 0, I) (i ∈ I)
one-by-one. Let M(i∗, 0, I) denote the first space and let t∗ = D(θ̂(k), θ̄(i∗, I)).
We define the next estimator θ̂(k+1) as θ̂(k+1) = θ∗(t∗, I). Therefore, the es-
timator θ̂(k+1) is in the space M(i∗, 0, I) = M(I\{i∗}).

If k < d − 1, then let I := I\{i∗}, k := k + 1 and repeat the above
mentioned process. If k = d − 1, then let θ̂(d) = 0 and terminate the
algorithm.

The extended LARS algorithm is described below.
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Figure 5: The extended LARS algorithm. M(I) = {θ| θj = 0 (j 6∈ I)}: du-
ally flat space corresponding to the index set I ⊂ {1, 2, . . . , d}. M(i, 0, I) =
{θ| θi = 0, θj = 0 (j 6∈ I)} = M(I \ {i}). M(i, αi, I) = {θ| θi = αi, θ

j =
0 (j 6∈ I)}. θ̂(k) ∈ M(I): the k-th estimator. The dotted curve corresponds
to a bisector in Euclidean space. The estimator moves along the curve in
M(I) from θ̂(k) until it intersects the first hyperplane M(i1, 0, I) (i1 ∈ I).
Then we define the crossing point as the new estimator θ̂(k+1). We have
M(i1, 0, I) = M(I\{i1}), and therefore, we iterate the above process in
M(I\{i1}).

1. Let I = {1, 2, . . . , d}, θ̂(0) := θ̂MLE, and k = 0.

2. Let M(i, 0, I) = {θ| θi = 0, θj = 0 (j 6∈ I)} = M(I \ {i}) (i ∈ I) and
calculate the m-projection θ̄(i, I) of θ̂(k) on M(i, 0, I).

3. Let t∗ = mini∈I D[I](θ̂(k), θ̄(i, I)) and i∗ = arg mini∈I D[I](θ̂(k), θ̄(i, I)).

4. For αi ∈ R, i ∈ I, let M(i, αi, I) = {θ| θi = αi, θj = 0 (j 6∈ I)}. For
every i ∈ I, compute αi such that the m-projection θ̄′(i, αi, I) of θ̂(k)

on M(i, αi, I) satisfies t∗ = D[I](θ̂(k), θ̄
′(i, αi, I)).

5. Let θ̂i
(k) = αi (i ∈ I) and θ̂j

(k) = 0 (j 6∈ I).

6. If k = d − 1, then go to step 7. If k < d − 1, then go to step 2 with
k := k + 1, I := I\{i∗}.

7. Let θ̂(d) = 0 and quit the algorithm.
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3 Examples

In this section, we apply the extended LARS algorithm to two types of
databases. We used normalized design matrices, i.e., each column vector of
design matrices has mean 0 and variance 1. We used the free software R for
this purpose [7].

3.1 Normal regression

3.1.1 Data of diabetes

We applied the extended LARS algorithm to the data of diabetes in Efron
et al. [4]. The data consists of ten explaining variables x1, x2, . . . , x10 and
one response variable y of n = 443 people.

The explaining variables are x1: age, x2: sex, x3: BMI, x4: blood pres-
sure, x5, . . . , x10: serum measurements.

The first estimator, the MLE for model (1), is represented at the right-
hand side of Figure 6. The algorithm starts from the right-hand side and
proceeds to the left-hand side in this figure. The algorithm ends when the
estimator reaches the origin.

According to the extended LARS algorithm, all the components of the
estimator θ̂ become 0 in the sequence of θ1, θ7, θ10, θ8, θ6, θ2, θ4, θ5, θ3, θ9 (Fig-
ure 6).

3.2 Logistic regression

3.2.1 Data of heart disease

We applied the extended LARS algorithm to South African Heart Disease
(SAHD) data [5] that was originally reported in [9]. We used the data
included in the ElemStatLearn package in R. This data consists of nine
explaining variables x1, x2, . . . , x9 and one response variable y of n = 462
people.

Response y is chd. Explaining variables are x1: sbp, x2: tobacco, x3:
ldl, x4: adiposity, x5: famhist, x6: typea, x7: obesity, x8: alcohol, and x9:
age.

The result of the extended LARS algorithm for this data shows that all
the components of the estimator θ̂ become 0 in the sequence of θ8, θ4, θ1, θ7, θ3,
θ2, θ6, θ5, θ9 (Figure 7). The earlier the coefficient of an explaining variable
becomes 0, the weaker is its influence.

4 Conclusion

In this study, we extended the least angle regression (LARS) algorithm.
LARS is described in terms of Euclidean geometry. However, we extended
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Figure 6: Result of the extended LARS algorithm for the normal regression
of the diabetes data. The horizontal axis indicates the normalized diver-
gence from the estimator to the origin. The vertical axis indicates θi (i =
1, 2, . . . , p), i.e., the coefficients of explaining variables xi (i = 1, 2, . . . , p).
The right-hand side of the graph corresponds to the first estimator, that is,
the MLE for model (1). Components of the estimator θ̂ become 0 in the
sequence of θ1, θ7, θ10, θ8, θ6, θ2, θ4, θ5, θ3, θ9.

LARS using the information geometry of dually flat spaces. The extended
LARS algorithm is used for estimating parameters and selecting variables in
generalized linear regression. Since dually flat spaces and their information
geometry are more general notions than Euclidean spaces and their geome-
try, the extended LARS algorithm also works in Euclidean spaces. However,
the extended and original LARS algorithms differ significantly. The former
reduces one explaining variable in each iteration, while the latter increases
one explaining variable in each iteration. Thus, the extended LARS algo-
rithm works in dually flat spaces.

It should be noted that the extended and original LARS algorithms
are similar in several aspects. First, the extended LARS algorithm can
select explaining variables because it reduces one explaining variable in each
iteration. Second, the extended LARS algorithm is efficient because the
number of iterations is equal to the number of explaining variables. These
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Figure 7: Result of the extended LARS algorithm for the logistic regression
of the SAHD data. Components of the estimator become 0 in the sequence
of θ8, θ4, θ1, θ7, θ3, θ2, θ6, θ5, θ9.

two properties are advantages of the original LARS algorithm. Therefore,
it is evident that the extended LARS algorithm has the advantages of the
original LARS algorithm.

Moreover, we applied the extended LARS algorithm to two types of
databases. The behavior of this algorithm can be observed from the figures.

Finally, we list several interesting problems we are interested in. First,
the original and extended LARS algorithms give more than one pair of ex-
plaining variables and estimate of the parameter. Therefore, we need to set
a criterion to select one estimate. Second, the extended LARS algorithm is
based on the assumption that columns of the design matrix are linear inde-
pendent. However, this assumption is not necessarily valid. For example,
a necessary condition for this assumption is that n ≥ p in the n× p design
matrix. However, we know cases in which n < p; for example, the analysis
of gene expressions. Therefore, the problem of how parameters can be es-
timated without the assumption of linear independence remains unresolved
[3].
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A The proof of lemma 1

Without loss of generality, we consider the case that I = {1, 2, . . . , d − 1}.
It is sufficient to prove that relations (3) and (4) hold when ξ and µ are
substituted by θ and η, respectively. Since θd = 0, for i = 1, 2, . . . , d−1, the
relations

∂

∂(θ[I])i
ψ[I](θ[I]) =

∂

∂θi
ψ(θ)

= ηi

= η
[I]
i ,

∂

∂η
[I]
i

φ[I](η[I]) =
∂

∂η
[I]
i

{
η[I] · θ[I] − ψ[I](θ[I])

}

=
∂

∂ηi
(η · θ)− ∂

∂ηi
ψ(θ)

=
(

∂η

∂ηi
· θ

)
+

(
η · ∂θ

∂ηi

)
− ∂

∂ηi
ψ(θ)

= θi +
(

η · ∂θ

∂ηi

)
−

d−1∑

k=1

∂θk

∂ηi

∂ψ(θ)
∂θk

= θi +
(

η · ∂θ

∂ηi

)
−

d−1∑

k=1

∂θk

∂ηi
ηk

= θi +
(

η · ∂θ

∂ηi

)
−

(
η · ∂θ

∂ηi

)

= θi

= (θ[I])i

hold. Therefore, the subspace M(I) = {θ| θd = 0}, i.e., M(I) = {θ| θd =
0, η0 = (η∗MLE)0, ηd+1 = (η∗MLE)d+1, . . . , ηd+r = (η∗MLE)d+r}, is a dually flat
space. Coordinate systems θ[I] and η[I] are an e-affine coordinate system and
an m-affine coordinate system, respectively. The two coordinate systems
θ[I] and η[I] are mutually dual in M(I). The functions ψ[I] and φ[I] are the
potential functions of θ[I] and η[I], respectively.
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