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Abstract

In this paper, two new approximate formulae for fractional derivatives are developed by
means of Sinc methods. The difference of the two formulae is the variable transformations
incorporated; the single exponential transformation and the double exponential transfor-
mation. We give error analysis of the formulae, and show that these formulae archive
exponential convergence. Numerical examples that confirm the analysis are also given.

1 Introduction

In the last few decades, mathematical models with fractional derivatives have been used in the
fields of physics [6], engineering [16], chemistry [14], biology [9], control theory [3], and many
others [1,2,7]. We consider two types of derivatives of order p: Riemann–Liouville type (Dp

a f)
and Caputo’s type (Dp

a f), which are defined by

Dp
a[f ](t) =

(
d
dt

)bpc+1 [
Ibpc−p+1
a f

]
(t), t > a, (1.1)

Dp
a[f ](t) = Ibpc−p+1

a

[(
d
dt

)bpc+1

f

]
(t), t > a, (1.2)

respectively, where Iq
a f is the Riemann–Liouville fractional integral of order q,

Iq
a[f ](t) =

1
Γ(q)

∫ t

a

f(s) ds

(t − s)1−q
, t > a. (1.3)

In what follows, we assume p, q ∈ (0, 1). In this case, approximating fractional derivatives with
high accuracy is not an easy task, because there is a weakly singular kernel called the Abel kernel
in (1.3). Typical numerical methods for fractional derivatives in the literature are reviewed in
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some books cited above and some papers [4, 5]. The convergence rates of those methods are
all of polynomial: O(n−γ), where n denotes the number of evaluation of f , and γ is a positive
constant.

Recently, an “exponentially” converging approximate formula based on Chebyshev polyno-
mials has been proposed by Sugiura–Hasegawa [19]. In their beautiful work, they have extended
the so-called Clenshaw–Curtis rule for the definite integral

∫ 1
−1 f(s) ds to the fractional deriva-

tive of Caputo’s type (1.2), and also pointed out that the formula is also applicable to the
Riemann–Liouville type (1.1) through the relation Dp

a[f ](t) = Dp
a[f ](t)+f(a)(t−a)−p/Γ(1−p).

They have shown that the formula converges uniformly on the given interval [a, b] with the
exponential rate, O(e−γn), under the assumption that f is analytic on an elliptic domain that
contains the interval [a, b]. In general, however, f does not satisfy this assumption. In fact, the
solution of fractional differential equations may have a singularity at the endpoint, t = a, due
to the Abel kernel [8]. In such cases, their formula loses the fast convergence.

On the other hand, for such singular functions, it is known in the wide range of numerical
analysis that Sinc methods are quite effective (see, for example, Stenger [17]). In fact, Riley [15]
employed techniques in Sinc methods to approximate integrals of the form (1.3), and obtained
exponential convergence, O(e−γ

√
n), despite singularities in the kernel and the function f . This

result has then been extended by Mori et al. [10] and the present authors [13], and it turned
out that the convergence rate of the method can be improved to O(e−γn/ log n). The key in this
improvement is the replacement of the variable transformation; the standard Single Exponential
(SE ) transformation employed in Riley’s method was replaced with a stronger transformation,
the so-called Double Exponential (DE ) transformation [11, 18]. The latter methods, i.e. the
Sinc methods incorporated with the DE transformation, are called DE-Sinc methods, while the
former ones are referred to SE-Sinc methods, accordingly.

As a natural extension of these results, in the present paper we propose two new approximate
formulae for Caputo’s fractional derivative (1.2); either based on the SE-Sinc and DE-Sinc meth-
ods. It is then shown theoretically and numerically that the convergence rate is O(e−γ

√
n) in the

first formula, and O(e−γn/ log n) in the second formula. These formulae are also applicable to the
Riemann–Liouville fractional derivative (1.1) in the same manner as in Sugiura–Hasegawa [19].

This paper is organized as follows. The main results are stated in Section 2. In Section 3,
we show numerical examples of the new formulae, and compare them with the one by Sugiura–
Hasegawa. The proofs of the main theorems are given in Section 4.

2 Approximate formulae and their error analysis

The main tool to derive approximate formulae is the Sinc approximation:

F (τ) ≈
N∑

j=−N

F (jh)S(j, h)(τ), τ ∈ R, (2.1)

where S(j, h)(τ) is the Sinc function defined by S(j, h)(τ) = sin{π(τ/h − j)}/{π(τ/h − j)}.
The so-called Sinc quadrature rule is derived by integrating the both sides of (2.1):∫ ∞

−∞
F (τ) dτ ≈

N∑
j=−N

F (jh)
∫ ∞

−∞
S(j, h)(τ) dτ = h

N∑
j=−N

F (jh). (2.2)
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Note that the variable τ in these formulae moves on the whole real line. If the function to be
approximated is defined on a finite domain, variable transformation should be employed in (2.1)
or (2.2). There are two transformations, the SE transformation and the DE transformation,
which are defined by

t = ψSE
a,b(τ) =

b − a

2
tanh

(τ

2

)
+

b + a

2
,

t = ψDE
a,b(τ) =

b − a

2
tanh

(π

2
sinh(τ)

)
+

b + a

2
.

Both transformations map τ ∈ R onto t ∈ (a, b). Their inverse functions are:

τ = {ψSE
a,b}−1(t) = log

(
t − a

b − t

)
,

τ = {ψDE
a,b}−1(t) = log

 1
π

log
(

t − a

b − t

)
+

√
1 +

{
1
π

log
(

t − a

b − t

)}2
 .

2.1 Derivation of a formula by means of the SE-Sinc methods

Recall that Caputo’s fractional derivative is defined by Dp
a[f ](t) = I1−p

a [f ′](t). Our basic idea is
to approximate the integral part (I1−p

a ) based on the idea in Riley [15], and the derivative part
( d
dt) based on the idea in Stenger [17], respectively. Finally we combine them to approximate

the target: Dp
a f .

First we consider the approximation of I1−p
a g for a given function g. Changing the original

integral interval (a, t) to R by the variable transformation s = ψSE
a,t(σ), we have

I1−p
a [g](t) =

∫ ∞

−∞

g(ψSE
a,t(σ)){ψSE

a,t}′(σ) dσ

Γ(1 − p)(t − ψSE
a,t(σ))p

=
(t − a)1−p

Γ(1 − p)

∫ ∞

−∞

g(ψSE
a,t(σ)) dσ

(1 + e−σ)(1 + eσ)1−p
.

Note that the weakly singular integrand (the Abel kernel) is translated to a smooth function.
Applying the quadrature rule (2.2) to the translated integral, we obtain the approximate formula
for the integral part:

I1−p
a [g](t) ≈ ISE

N [g](t) =
(t − a)1−p

Γ(1 − p)
h

N∑
k=−N

g(ψSE
a,t(kh))

(1 + e−kh)(1 + ekh)1−p
. (2.3)

Here h is a mesh size suitably chosen depending on N , which will be described later.
Next we consider the approximation of f ′. Let us define a function Qa,b as Qa,b(t) =

(t − a)(b − t). Putting F (τ) = f(ψSE
a,b(τ))/Qa,b(ψSE

a,b(τ)) in (2.1), we have

f(ψSE
a,b(τ))

Qa,b(ψSE
a,b(τ))

≈
N∑

j=−N

f(ψSE
a,b(jh))

Qa,b(ψSE
a,b(jh))

S(j, h)(τ), τ ∈ R,

which is equivalent to:

f(t) ≈ CSE
N [f ](t) =

N∑
j=−N

f(ψSE
a,b(jh))

Qa,b(ψSE
a,b(jh))

Qa,b(t)S(j, h)({ψSE
a,b}−1(t)), t ∈ (a, b). (2.4)

Differentiating the both sides gives an approximate formula for f ′, i.e. f ′ ≈ {CSE
N f}′.

Using this and (2.3) with g = f ′, we finally obtain the desired formula as follows:

Dp
a[f ](t) = I1−p

a [f ′](t) ≈ ISE
N [f ′](t) ≈ ISE

N [{CSE
N f}′](t). (2.5)
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2.2 Derivation of a formula by means of the DE-Sinc methods

We consider the use of the DE transformation instead of the SE transformation here. For the
integral part I1−p

a g, we apply s = ψDE
a,t (σ), then I1−p

a g is translated into

I1−p
a [g](t) =

(t − a)1−p

Γ(1 − p)

∫ ∞

−∞

π cosh(σ)g(ψDE
a,t (σ)) dσ

(1 + e−π sinh(σ))(1 + eπ sinh(σ))1−p
.

Applying the quadrature rule (2.2) to this integral, we obtain the approximate formula:

I1−p
a [g](t) ≈ IDE

N [g](t) =
(t − a)1−p

Γ(1 − p)
h

N∑
k=−N

π cosh(kh)g(ψDE
a,t (kh))

(1 + e−π sinh(kh))(1 + eπ sinh(kh))1−p
.

The derivative part can be handled in the same manner. Similar to (2.4), using

f(t) ≈ CDE
N [f ](t) =

N∑
j=−N

f(ψDE
a,b(jh))

Qa,b(ψDE
a,b(jh))

Qa,b(t)S(j, h)({ψDE
a,b}−1(t)), t ∈ (a, b),

and differentiating both sides, we have f ′ ≈ {CDE
N f}′. Then we obtain the formula:

Dp
a[f ](t) = I1−p

a [f ′](t) ≈ IDE
N [f ′](t) ≈ IDE

N [{CDE
N f}′](t). (2.6)

2.3 Results of error analysis

We here state the error analysis results of the presented approximate formulae, while their
proofs are left to Section 4. Let us introduce the following function space.

Definition 2.1. Let D be a simply-connected domain which satisfies (a, b) ⊂ D , and let α be
a positive constant. Then Lα(D) denotes the family of all functions f that are analytic on D ,
and satisfy |f(z)| ≤ C|Qα

a,b(z)| for a positive constant C and all z ∈ D .

In the statement of theorems below, D is either ψSE
a,b(Dd) or ψDE

a,b(Dd), where

ψSE
a,b(Dd) =

{
z ∈ C :

∣∣∣∣arg
(

z − a

b − z

)∣∣∣∣ < d

}
,

ψDE
a,b(Dd) =

z ∈ C :

∣∣∣∣∣∣arg

 1
π

log
(

z − a

b − z

)
+

√
1 +

{
1
π

log
(

z − a

b − z

)}2
∣∣∣∣∣∣ < d

 .

These are domains that are mapped by the SE or DE transformation from a strip domain

Dd = {ζ ∈ C : | Im ζ| < d}, (2.7)

for a positive constant d. With these notations, the approximate errors of the formula (2.5)
and (2.6) are analyzed as follows.

Theorem 2.2. Let (f/Qa,b) ∈ Lα(ψSE
a,b(Dd)) for d with 0 < d < π. Let µ = min{1 − p, α}, N

be a positive integer, and h be selected by h =
√

πd/(µN). Then there exists a constant C
independent of N such that

max
t∈[a, b]

∣∣Dp
a[f ](t) − ISE

N [{CSE
N f}′](t)

∣∣ ≤ CNe−
√

πdµN . (2.8)
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Theorem 2.3. Let (f/Qa,b) ∈ Lα(ψDE
a,b(Dd)) for d with 0 < d < π/2. Let µ = min{1 − p, α},

N be a positive integer with N > µ/(2d), and h be selected by h = log(2dN/µ)/N . Then there
exists a constant C independent of N such that

max
t∈[a, b]

∣∣Dp
a[f ](t) − IDE

N [{CDE
N f}′](t)

∣∣ ≤ C
N

log(2dN/µ)
e−πdN/ log(2dN/µ).

The number of evaluation of f in these approximation formulae is n = 2N +1, which means
the convergence rate is O(e−γ

√
n) in the SE-Sinc case, and O(e−γn/ log n) in the DE-Sinc case for

some γ > 0; in both cases the errors decay exponentially.

Remark 1. The assumption (f/Qa,b) ∈ Lα(D) may seem to be not practical since the function
f must be zero at the endpoints by the condition |f(z)/Qa,b(z)| ≤ C|Qα

a,b(z)|. But actually,
functions in a certain wider, and reasonable space can be translated to those satisfying the
assumption (see Stenger [17, § 4]).

3 Numerical examples

In this section we consider two test functions, f1(t) = t4/3(1−t)2/Γ(7/3) and f2(t) = t2(1−t)2et,
and their 1/2-order derivatives in Caputo’s sense on the interval (0, 1):

D1/2
0 [f1](t) =

t5/6

Γ(11/6)
280t2 − 476t + 187

187
,

D1/2
0 [f2](t) =

1
16

[
t1/2

Γ(3/2)
(8t3 − 4t2 − 22t + 31) + et erf(

√
t)

{
8t(2t3 − 7t + 8) − 31

}]
.

Let πm denote an arbitrary positive number less than π. Then the function f1 satisfies (f1/Q0,1) ∈
L1/3(ψSE

0,1(Dπm)) and (f1/Q0,1) ∈ L1/3(ψDE
0,1(Dπm/2)), and the function f2 satisfies (f2/Q0,1) ∈

L1(ψSE
0,1(Dπm)) and (f2/Q0,1) ∈ L1(ψDE

0,1(Dπm/2)). In actual computations, we set πm = 3.14,
and then h can be selected according to Theorem 2.2 or Theorem 2.3.

The numerical result of D1/2
0 f1 is shown in Figure 1, and the one of D1/2

0 f2 is shown in
Figure 2. Both of the computation programs are written in C with double-precision floating-
point arithmetic. The errors are checked on t = 0.01, 0.02, . . . , 0.99, and the maximum error
of them is plotted on the graphs. There are three plot lines in both graphs; the formula by
Sugiura–Hasegawa [19] (dashed line with × points), by the SE-Sinc methods (solid line with 4
points), and by the DE-Sinc methods (solid line with ◦ points). The convergence profiles of the
Chebyshev formula are different between Figure 1 and Figure 2. This should be caused by the
singularity of the function f1 at the endpoint, t = 0. In contrast, we can see that the results of
the SE-Sinc formula and the DE-Sinc formula are consistent with Theorem 2.2 or Theorem 2.3
in both graphs.

4 Proofs of the theorems in Section 2

4.1 Proof of Theorem 2.2 (the SE-Sinc case)

The following two theorems are critical to prove Theorem 2.2.
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Figure 1. Approximation errors of D1/2
0 f1.
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Figure 2. Approximation errors of D1/2
0 f2.

Theorem 4.1. Let the assumptions of Theorem 2.2 are fulfilled. Then there exists a constant
C independent of N such that

max
t∈[a, b]

∣∣I1−p
a [f ′](t) − ISE

N [f ′](t)
∣∣ ≤ Ce−

√
πdµN .

Theorem 4.2 (Stenger [17, Corollary of Theorem 4.4.2]). Let the assumptions of Theorem 2.2
are fulfilled. Then there exists a constant C independent of N such that

sup
t∈(a, b)

∣∣∣∣ d
dt

{f(t) − CSE
N [f ](t)}

∣∣∣∣ ≤ CNe−
√

πdµN .

Using these theorems and the trivial fact supN ‖ISE
N ‖C([a, b]) < ∞, we get (2.8). In what

follows, we prove Theorem 4.1. The next theorem is the base of the error analysis.

Theorem 4.3 (Stenger [17, Theorem 4.2.6]). Let (FQa,b) ∈ Lβ(ψSE
a,b(Dd)) for d with 0 < d < π,

let N be a positive integer, and h be selected by h =
√

2πd/(βN). Then there exists a constant
C independent of N such that∣∣∣∣∣

∫ b

a
F (s) ds − h

N∑
k=−N

F (ψSE
a,b(kh)){ψSE

a,b}′(kh)

∣∣∣∣∣ ≤ Ce−
√

2πdβN .

Let us apply this theorem to the approximation (2.3). If we put F (s) = g(s)/(t− s)p in this
theorem, and if g is analytic and bounded uniformly on ψSE

a,t(Dd) for all t ∈ [a, b], then (FQa,t) ∈
L1−p(ψSE

a,t(Dd)). Furthermore if we set µ = min{1 − p, α}, then (FQa,t) ∈ Lµ(ψSE
a,t(Dd)) since

clearly Lν(ψSE
a,t(Dd)) ⊆ Lρ(ψSE

a,t(Dd)) if ν ≥ ρ. Therefore we obtain the next result.

Lemma 4.4. Assume that there exists a constant d with 0 < d < π such that g is analytic
and bounded uniformly on ψSE

a,t(Dd) for all t ∈ [a, b]. Let µ = min{1 − p, α}, N be a positive
integer, and h be selected by h =

√
2πd/(µN). Then there exists a constant C independent of

N such that
max
t∈[a, b]

∣∣I1−p
a [g](t) − ISE

N [g](t)
∣∣ ≤ Ce−

√
2πdµN . (4.1)
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We can relax the condition on g using the following lemma.

Lemma 4.5. Let g be analytic and bounded on ψSE
a,b(Dd) for d with 0 < d < π. Then g is

analytic and bounded uniformly on ψSE
a,t(Dd) for all t ∈ [a, b].

Proof. We shall establish this lemma if we prove for all t ∈ [a, b] that ψSE
a,t(Dd) ⊆ ψSE

a,b(Dd),
which is equivalent to “| Im{ψSE

a,t}−1(z)| < d ⇒ | Im{ψSE
a,b}−1(z)| < d” (recall that Dd is defined

by (2.7)). Set ζ(t) = {ψSE
a,t}−1(z) for simplicity. It is sufficient to show that | Im ζ(t)| is a

monotonically decreasing function, since from this we have | Im ζ(b)| ≤ | Im ζ(t)| < d. Let
x, y ∈ R and set z = x + i y. Then Im ζ(t) is expressed as

Im ζ(t) = arg
(

z − a

t − z

)
= arg

(
ax + tx − at − x2 − y2

(t − x)2 + y2
+ i

(t − a)y
(t − x)2 + y2

)
.

Considering cos(Im ζ(t)) and its derivative, we have

cos(Im ζ(t)) =
ax + tx − at − x2 − y2√

(ax + tx − at − x2 − y2)2 + (t − a)2y2
,

d
dt

cos(Im ζ(t)) =
(t − a)((a − x)2 + y2)y2

{((a − x)2 + y2)((t − x)2 + y2)}3/2
≥ 0.

Thus cos(Im ζ(t)) is a monotonically increasing function. Since −π < Im ζ(t) ≤ π by definition
and cos(− Im ζ(t)) = cos(Im ζ(t)), we can see that | Im ζ(t)| is monotonically decreasing. ¥

Therefore Lemma 4.4 can be rewritten as follows.

Lemma 4.6. Let g be analytic and bounded on ψSE
a,b(Dd) for d with 0 < d < π. Let µ =

min{1 − p, α}, N be a positive integer, and h be selected by h =
√

2πd/(µN). Then there
exists a constant C independent of N such that (4.1) holds.

If (f/Qa,b) ∈ Lα(ψSE
a,b(Dd)) (assumption in Theorem 2.2) holds, then f ′ is analytic and

bounded on ψSE
a,b(Dd−ε) for any ε with 0 < ε < d. Choosing ε = d/2 and using Lemma 4.6, we

obtain Theorem 4.1.

4.2 Proof of Theorem 2.3 (the DE-Sinc case)

Since supN ‖IDE
N ‖C([a, b]) < ∞, Theorem 2.3 can be proved in a similar way to the SE-Sinc case,

by showing the following two theorems.

Theorem 4.7. Let the assumptions of Theorem 2.3 are fulfilled. Then there exists a constant
C independent of N such that

max
t∈[a, b]

∣∣I1−p
a [f ′](t) − IDE

N [f ′](t)
∣∣ ≤ Ce−πdN/ log(2dN/µ).

Theorem 4.8. Let the assumptions of Theorem 2.3 are fulfilled. Then there exists a constant
C independent of N such that

sup
t∈(a, b)

∣∣∣∣ d
dt

{f(t) − CDE
N [f ](t)}

∣∣∣∣ ≤ C
N

log(2dN/µ)
e−πdN/ log(2dN/µ).

We first give the proof of Theorem 4.8, which is relatively short.
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4.2.1 Proof of Theorem 4.8 (approximation error of derivatives)

We easily obtain that

∣∣∣∣ d
dt

{f(t) − CDE
N [f ](t)}

∣∣∣∣ ≤
∣∣∣∣∣∣ d
dt

f(t) −
∞∑

j=−∞

f(ψDE
a,b(jh))

Qa,b(ψDE
a,b(jh))

Qa,b(t)S(j, h)({ψDE
a,b}−1(t))


∣∣∣∣∣∣

+
∑
|j|>N

∣∣∣∣∣ f(ψDE
a,b(jh))

Qa,b(ψDE
a,b(jh))

∣∣∣∣∣
∣∣∣∣ d
dt

{
Qa,b(t)S(j, h)({ψDE

a,b}−1(t))
}∣∣∣∣ . (4.2)

Let us examine the first term. We need the following definition for it.

Definition 4.9. Let Dd(ε) be defined for 0 < ε < 1 by Dd(ε) = {ζ ∈ C : |Re ζ| < 1/ε, | Im ζ| <
d(1− ε)}. Then H1(Dd) denotes the family of all functions F that are analytic on Dd, and such
that N1(F, d) = limε→0

∮
∂Dd(ε) |F (ζ)||dζ| < ∞.

Then the next assertion holds for any conformal map ψ that satisfies ψ(R) = (a, b).

Theorem 4.10 (Stenger [17, part of Theorem 4.4.2]). Assume the next two conditions:

(A1) f(ψ(·))/Qa,b(ψ(·)) ∈ H1(Dd),

(A2) sup
t∈(a, b),−π/h≤s≤π/h

∣∣∣∣ d
dt

{
Qa,b(t)eisψ−1(t)

}∣∣∣∣ ≤ C/h with C depending only on ψ and Qa,b.

Then there exists a constant C̃, depending only on ψ, Q, d and f , such that

sup
t∈(a, b)

∣∣∣∣∣∣ d
dt

f(t) −
∞∑

j=−∞

f(ψ(jh))
Qa,b(ψ(jh))

Qa,b(t)S(j, h)(ψ−1(t))


∣∣∣∣∣∣ ≤ C̃

e−πd/h

h
.

We show that (A1) and (A2) are fulfilled with ψ(t) = ψDE
a,b(t) under the assumption that

(f/Qa,b) ∈ Lα(ψDE
a,b(Dd)). For (A1), it is sufficient to prove N1(Qα

a,b(ψ
DE
a,b(·)), d) is finite, since

|f(z)/Qa,b(z)| ≤ C|Qα
a,b(z)| holds by the assumption (recall Definition 2.1). The next lemma

shows the desired claim.

Lemma 4.11 (Okayama et al. [12, Lemma 4.6]). Let α and d be positive constants. Then
N1(Qα

a,b(ψ
DE
a,b(·)), d) is finite for any d ∈ (0, π/2).

Using the Leibniz rule and the following inequality:

Qa,b(t)
{ψDE

a,b}′({ψDE
a,b}−1(t))

=
(t − a)(b − t)

π(t − a)(b − t)
b − a

√
1 +

{
1
π

log
(

t − a

b − t

)}2
≤ b − a

π
,

we can easily show the condition (A2).

Lemma 4.12. The condition (A2) in Theorem 4.10 holds with ψ(t) = ψDE
a,b(t).

Therefore, by using Theorem 4.10 the first term in (4.2) is evaluated as follows.
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Lemma 4.13. Let (f/Qa,b) ∈ Lα(ψDE
a,b(Dd)) for d with 0 < d < π/2. Then there exists a

constant C independent of h such that

sup
t∈(a, b)

∣∣∣∣∣∣ d
dt

f(t) −
∞∑

j=−∞

f(ψDE
a,b(jh))

Qa,b(ψDE
a,b(jh))

Qa,b(t)S(j, h)({ψDE
a,b}−1(t))


∣∣∣∣∣∣ ≤ C

e−πd/h

h
.

There remains to evaluate the second term in (4.2); this is done by the next lemma.

Lemma 4.14. Let (f/Qa,b) ∈ Lα(ψDE
a,b(Dd)) for d with 0 < d < π/2. Then there exists a

constant C independent of h and N such that

sup
t∈(a, b)

∑
|j|>N

∣∣∣∣∣ f(ψDE
a,b(jh))

Qa,b(ψDE
a,b(jh))

∣∣∣∣∣
∣∣∣∣ d
dt

{
Qa,b(t)S(j, h)({ψDE

a,b}−1(t))
}∣∣∣∣ ≤ C

1
h2eNh

e−
π
2
α exp(Nh). (4.3)

Proof. First, by the identity

Qa,b(t)S(j, h)({ψDE
a,b}−1(t)) =

hQa,b(t)
2π

∫ π/h

−π/h
eis[{ψDE

a,b }
−1(t)−jh] ds

and Lemma 4.12, it follows that for a constant C1

sup
t∈(a, b)

∣∣∣∣ d
dt

{
Qa,b(t)S(j, h)({ψDE

a,b}−1(t))
}∣∣∣∣ ≤ C1/h. (4.4)

Second, by the assumption (f/Qa,b) ∈ Lα(ψDE
a,b(Dd)), there exists a constant C̃ such that∣∣∣∣∣ f(ψDE

a,b(jh))
Qa,b(ψDE

a,b(jh))

∣∣∣∣∣ ≤ C̃|Qα
a,b(ψ

DE
a,b(jh))| =

C̃{(b − a)/2}2α

cosh2α(π sinh(jh)/2)
≤ C̃(b − a)2αe−πα sinh(|jh|).

Furthermore using sinh(|jh|) ≥ (e|jh| − 1)/2, and putting C2 = C̃(b − a)2αe
π
2
α, we have

∑
|j|>N

∣∣∣∣∣ f(ψDE
a,b(jh))

Qa,b(ψDE
a,b(jh))

∣∣∣∣∣ ≤ C2

∑
|j|>N

e−
π
2
α exp(|jh|)

= 2C2

∑
j>N

e−
π
2
α exp(jh)

≤ 2C2

∫ ∞

N
e−

π
2
α exp(sh) ds

≤ 2C2

{
2

παheNh

} ∫ ∞

N

{
παhesh

2

}
e−

π
2
α exp(sh) ds

=
4C2

παheNh
e−

π
2
α exp(Nh). (4.5)

Combining (4.4) with (4.5), we get (4.3). ¥

Theorem 4.8 is then established by taking h as h = log(2dN/µ)/N in Lemma 4.13 and
Lemma 4.14.
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4.2.2 Proof of Theorem 4.7 (approximation error of integrals)

Theorem 4.7 can be shown in almost the same manner as the SE-Sinc case (Theorem 4.1). Let
us start with the next theorem.

Theorem 4.15 (Tanaka et al. [20, Theorem 3.1]). Let (f/Qa,b) ∈ Lβ(ψDE
a,b(Dd)) for d with

0 < d < π/2. Let N be a positive integer with N > β/(4d), and let h be selected by h =
log(4dN/β)/N . Then there exists a constant C independent of N such that∣∣∣∣∣

∫ b

a
F (s) ds − h

N∑
k=−N

F (ψDE
a,b(kh)){ψDE

a,b}′(kh)

∣∣∣∣∣ ≤ Ce−2πdN/ log(4dN/β).

Applying this theorem to the approximation I1−p
a g ≈ IDE

N g, we have the next lemma.

Lemma 4.16. Assume that there exists a constant d with 0 < d < π/2 such that g is analytic
and bounded uniformly on ψDE

a,t (Dd) for all t ∈ [a, b]. Let µ = min{1 − p, α}, N be a positive
integer with N > µ/(4d), and h be selected by h = log(4dN/µ)/N . Then there exists a constant
C independent of N such that

max
t∈[a, b]

∣∣I1−p
a [g](t) − ISE

N [g](t)
∣∣ ≤ Ce−2πdN/ log(4dN/µ). (4.6)

We can relax the condition on g using the following lemma.

Lemma 4.17. Let g be analytic and bounded on ψDE
a,b(Dd) for d with 0 < d < π/2. Then g is

analytic and bounded uniformly on ψDE
a,t (Dd) for all t ∈ [a, b].

Since its proof is far more complicated than the SE-Sinc case (Lemma 4.5), we leave it to
the end of this section. If we accept this lemma, Lemma 4.16 can be rewritten as follows.

Lemma 4.18. Let g be analytic and bounded on ψDE
a,b(Dd) for d with 0 < d < π/2. Let

µ = min{1 − p, α}, N be a positive integer with N > µ/(4d), and h be selected by h =
log(4dN/µ)/N . Then there exists a constant C independent of N such that (4.6) holds.

If (f/Qa,b) ∈ Lα(ψDE
a,b(Dd)) holds, then f ′ is analytic and bounded on ψDE

a,b(Dd−ε) for any ε
with 0 < ε < d. Choosing ε = d/2 and using Lemma 4.18, we obtain Theorem 4.7.

It remains to prove Lemma 4.17. To this end, it is essential to examine the imaginary part
of G1 and G2, which are defined by

G1(η) = η +
√

1 + η2, G2(η) =

√
1 + η2

1 + e−πη
.

The following lemma is useful to determine whether Im G1 is positive or negative.

Lemma 4.19. Let x ∈ R and y ∈ R with |y| ≤ 1. Then Im[G1(x+i y)] is represented as follows:

Im [G1(x + i y)] = yG+
1 (x, y),

where G+
1 (x, y) is a positive function.
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Proof. Let X and Y be defined by

X =
1√
2

√√
(1 + x2 − y2)2 + (2xy)2 + (1 + x2 − y2), Y =

xy

X
. (4.7)

Considering the principal branch of square root, we have
√

1 + (x + i y)2 = X + iY. Thus it
follows that

Im[G1(x + i y)] = y + Y = y
{

1 +
x

X

}
.

We show x/X > −1 below, from which this lemma follows. In the case where x ≥ 0, clearly
x/X ≥ 0 > −1. Furthermore, in the case where x < 0 and y = 0, we have

X =
1√
2

√√
(1 + x2 − 02)2 + (2x · 0)2 + (1 + x2 − 02) =

√
1 + x2 >

√
x2 = −x,

from which x/X > −1 follows. Similarly, in the case where x < 0 and y 6= 0, we have

X >
1√
2

√√
(1 + x2 − y2)2 + (2 · 0 · 0)2 + (1 + x2 − y2) =

√
1 + x2 − y2 ≥

√
1 + x2 − 12 = −x,

which completes the proof. ¥

For the function G2, we have the next lemma.

Lemma 4.20. Let x ∈ R and y ∈ R with |y| ≤ 1. Then Im[G2(x+i y)] is represented as follows:

Im [G2(x + i y)] = yG+
2 (x, y), (4.8)

where G+
2 (x, y) is a positive function.

Proof. Using X and Y defined by (4.7), we can write the function G2(x + i y) as

G2(x + i y) =
X + i Y

{1 + e−πx cos(πy)} − i {e−πx sin(πy)}

=
X{1 + e−πx cos(πy)} − Y e−πx sin(πy)
{1 + e−πx cos(πy)}2 + {e−πx sin(πy)}2

+ i
Xe−πx sin(πy) + Y {1 + e−πx cos(πy)}
{1 + e−πx cos(πy)}2 + {e−πx sin(πy)}2

.

Hence we have (4.8), where the function G+
2 is defined by

G+
2 (x, y) =

{X sin(πy)/y} + (x/X){eπx + cos(πy)}
e−πx[{eπx + cos(πy)}2 + {sin(πy)}2]

.

We show G+
2 (x, y) > 0 below, from which this lemma follows. In the case where x > 0, clearly

G2(x, y) > 0. Thus let x ≤ 0 below. First, X is evaluated as

X ≥ 1√
2

√√
(1 + 02 − y2)2 + (2 · 0 · y)2 + (1 + 02 − y2) =

√
1 − y2 ≥ 1 − y2.

The last inequality holds since |y| ≤ 1. Second, −1 < x/X ≤ 0 holds from x ≤ 0 and the proof
of Lemma 4.19. Then the numerator of G+

2 is evaluated as

{X sin(πy)/y} + (x/X){eπx + cos(πy)} ≥ {(1 − y2) sin(πy)/y} − {1 + cos(πy)}. (4.9)
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For the denominator of G+
2 , we have

e−πx[{eπx + cos(πy)}2 + {sin(πy)}2] ≤ e−πx[{1 + cos(πy)}2 + {sin(πy)}2]. (4.10)

We here set a function f as

f(y) =
{(1 − y2) sin(πy)/y} − {1 + cos(πy)}

{1 + cos(πy)}2 + {sin(πy)}2
,

and in what follows we prove f(y) > 0 for all y ∈ [−1, 1]. If it is shown, then by using (4.9)
and (4.10) we obtain the desired conclusion:

0 <
f(y)
e−πx

=
{(1 − y2) sin(πy)/y} − {1 + cos(πy)}
e−πx[{1 + cos(πy)}2 + {sin(πy)}2]

≤ G+
2 (x, y).

Since f is an even function, it is sufficient to show f(y) > 0 for y ∈ [0, 1]. The derivative of f
is written as

f ′(y) = −(1 + y2) sin(πy) − πy(1 − y2)
4y2 cos2(πy/2)

,

and we can show (1 + y2) sin(πy) − πy(1 − y2) ≥ 0 for y ∈ [0, 1]. Therefore the function f is
monotonically decreasing on the interval [0, 1]. Thus it follows that

f(y) ≥ f(1) =
4 − π

2π
> 0,

which establishes the lemma. ¥

Using the two lemmas above, we prove Lemma 4.17.

Proof. In the same argument as in Lemma 4.5, we consider the function cos(Im ζ(t)), where
ζ(t) = {ψDE

a,t}−1(z), and show it is a monotonically increasing function. Since

d
dt

cos(Im(ζ(t))) = − sin(Im ζ(t))
d
dt

{Im ζ(t)},

we examine sin(Im ζ(t)) and {Im ζ}′ below. Let us define a function η(t) as η(t) = 1
π log

(
z−a
t−z

)
.

Then ζ(t) = log{η(t) +
√

1 + η2(t)} = log{G1(η(t))}, and

sin(Im ζ(t)) = sin(arg{G1(η(t))}) =
Im [G1(η(t))]
|G1(η(t))|

,

because sin(arg(ξ)) = Im ξ/|ξ| for all ξ ∈ C. We set xt = Re η(t) and yt = Im η(t) here. Note
|yt| ≤ 1 by the definition of η. According to Lemma 4.19, using a positive function G+

1 , we have

sin(Im ζ(t)) =
Im [G1(η(t))]
|G1(η(t))|

=
ytG

+
1 (xt, yt)

|G1(η(t))|
. (4.11)

Next we examine {Im ζ}′. The function Im ζ(t) can be written as

Im ζ(t) =
1
2i

[
log

{
η(t) +

√
1 + η2(t)

}
− log

{
η∗(t) +

√
1 + {η∗(t)}2

}]
,
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where η∗ denotes a conjugate complex number of η. By differentiating and rewriting this
equation, we obtain

d
dt

Im ζ(t) =
Im

[
(t − z)

√
1 + η2(t)

]
∣∣∣(t − z)

√
1 + η2(t)

∣∣∣2 .

From the definition of η(t), we have (t − z) = (t − a)/(1 + eπη(t)), and then

d
dt

Im ζ(t) =

∣∣∣∣∣ 1 + eπη(t)

(t − a)
√

1 + η2(t)

∣∣∣∣∣
2

Im

[
(t − a)

√
1 + η2(t)

1 + eπη(t)

]
=

Im [G2(−η(t))]
(t − a)|G2(−η(t))|2

.

Thus by using the representation (4.8) in Lemma 4.20, it follows that

d
dt

Im ζ(t) =
(−yt)G+

2 (−xt,−yt)
(t − a)|G2(−η(t))|2

. (4.12)

Finally, combining the expression (4.11) with (4.12), we obtain

d
dt

cos(Im(ζ(t))) =
y2

t G
+
1 (xt, yt)G+

2 (−xt,−yt)
|G1(η(t))|(t − a)|G2(−η(t))|2

≥ 0,

which is the desired conclusion. ¥
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