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Abstract

We consider semiparametric models whose infinite dimensional parameter corresponds to a

probability distribution. The NPMLE based on the profile empirical likelihood for this kind of

semiparametric models has attracted considerable interest. We propose the use of a modified

profile empirical likelihood to improve the accuracy of this estimation. We consider applications

to the exponential-tilt model and show that the accuracy of the proposed estimator is better

than that of the conventional NPMLE by numerical study.
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1 Introduction

Suppose that we have a set of observations x1, x2, . . . , xn from a probability density that belongs
to a semiparametric model:

f(x; θ, g),

where θ is a finite-dimensional parameter and g is a probability density. Here, g is regarded as
an infinite-dimensional parameter. We attempt to estimate either θ or a part of θ and we do this
without any assumption about the unknown probability density g.

Considerable attention has been directed to the nonparametric maximum likelihood estimator
(NPMLE), which is based on the profile empirical likelihood (Bickel et al., 1993).

On the other hand, estimation based on the conventional profile likelihood for parametric models
is not very accurate when the nuisance parameter is high-dimensional. The identical problem exists
in the case of estimation based on profile empirical likelihood for semiparametric models with an
infinite-dimensional nuisance parameter. The objective of our study is to improve the accuracy of
estimation of θ by constructing a modified profile empirical likelihood for semiparametric models,
which is analogous to the conventional modified profile likelihood for parametric models introduced
by Barndorff-Nielsen (1983).

In this paper, we consider an application of this method to the exponential-tilt model:

f(x; α, β, g) = exp(α + βx)g(x), (1)

where α and β are scalar parameters and g is a probability distribution. This model is closely
related to the logistic regression model (Qin and Zhang 2005). Typically, β is the parameter of
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interest and α is regarded as the normalizing constant. Our method is also applicable to various
other semiparametric models.

Suppose that we have two sets of observations x1, x2, . . . , xn and y1, y2, . . . , ym from the distri-
butions g and f , respectively. We consider estimating the parameter of interest β.

This paper is organized as follows. In Section 2, we obtain the profile empirical likelihood for
model (1). We construct a modified profile empirical likelihood for the exponential-tilt model in
Section 3, and some results from a numerical study are given in Section 4.

2 Estimation by profile empirical likelihood

We obtain the profile empirical likelihood for the exponential-tilt model (1). We define z1, z2, . . . , zn+m

by

zi =
{

xi (i = 1, 2, . . . , n)
yi−n (i = n + 1, n + 2, . . . , n + m).

(2)

The empirical likelihood is based on the multinomial model

g̃(x; p) =
n+m∑
i=1

piδ(x − zi),

where δ(x) is 1 when x = 0, and 0 otherwise (Owen, 2001).
The model g̃(x; p) approximates the probability density g. The density f is approximated by

f̃(y; α, β,p) =
n+m∑
i=1

exp(α + βy)piδ(y − zi). (3)

Here, the multinomial parameter p = (p1, p2, . . . , pn+m) satisfies the constraints
n+m∑
i=1

pi =1, (4)

n+m∑
i=1

exp(α + βzi)pi =1, (5)

and

pi ≥ 0. (6)

Constraint (5) corresponds to the normalizing condition for the multinomial distribution f̃(y;α, β,p).
Using equation (5), we can eliminate α from (3) and obtain

f̃(y; β,p) =
1

n+m∑
i=1

eβzipi

n+m∑
i=1

eβypiδ(y − zi), (7)

where pn+m is a dependent parameter determined from p1, p2, . . . , pn+m−1 by condition (4).
Based on the observed data (2), the empirical log-likelihood function is given by

ln+m(β, p) = log


n∏

i=1

pi

n+m∏
j=n+1

(
eβzjpj∑

k = 1n+meβzkpk

)
=β

m∑
i=1

yi +
n+m∑
i=1

log pi − m log

(
n+m∑
i=1

eβzipi

)
. (8)
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We eliminate the nuisance parameter p by profiling the empirical log-likelihood. Maximizing
ln+m(β, p) with respect to p with fixed β under constraints (4) and (6), we obtain

lP (β) = lP (β, p̂β) = β

m∑
i=1

yi −
n+m∑
i=1

log(mνeβzi + n) + m log ν,

where

p̂i,β =
1

n + mνeβzi
, (9)

and ν = ν(β) satisfying

n+m∑
i=1

1
n + mνeβzi

= 1, (10)

and

1
n + mνeβzi

≥ 0 (i = 1, 2, . . . , n + m). (11)

We can maximize lP (β) to obtain the NPMLE of β. Details of the derivation of the profile log-
likelihood is given in Appendix A.

The following lemma shows that there exists a unique ν satisfying (10) and (11).

Lemma 1. For every β ∈ R, there exists a unique ν that satisfies (10) and (11). Further, the
uniquely determined ν satisfies the inequality ν > 0.

Proof.
Condition (11) is equivalent to

n + mνeβzi > 0 (i = 1, 2, . . . , n + m). (12)

Let
ξ := max

1≤i≤n+m
− n

m
e−βzi < 0.

Then, (12) is equivalent to the inequality ν > ξ. Let

h(ν) :=
n+m∑
i=1

1
n + mνeβzi

− 1.

Then, h(ν) is monotonically decreasing on (ξ,∞), and h(∞) = −1. Since

h(0) =
n+m∑
i=1

1
n
− 1 =

n + m

n
− 1 =

m

n
> 0,

there exists a unique ν that satisfies (10) and (11) in the interval (0,∞). Thus, the uniquely
determined ν satisfies the inequality ν > 0. ¤
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3 Modified profile empirical likelihood

We consider the exponential-tilt model and derive a modification to the empirical profile log-
likelihood corresponding to the conventional modification to the profile likelihood for parametric
models (Barndorff-Nielsen, 1983).

Let λ be a parameter of interest, and ψ be a nuisance parameter. Then, the conventional
modified profile likelihood is defined by

lMP (λ) = lP (λ) + M(λ)

and

M(λ) = −1
2

log
∣∣∣ĵλ

∣∣∣ + log

∣∣∣∣∣ ∂ψ̂

∂ψ̂λ

∣∣∣∣∣ , (13)

where lP (λ) is the profile likelihood, and ĵλ = jψψ(λ, ψ̂λ) is the observed information matrix.

3.1 The canonical form of the empirical likelihood

First, we represent the empirical log-likelihood

ln+m(x, y; β,p) = β

m∑
i=1

yi +
n+m∑
i=1

Li(x, y) log pi − m log

(
n+m∑
i=1

eβzipi

)
,

where

Li(x, y) =
n∑

j=1

δ(xj − zi) +
m∑

j=1

δ(yj − zi),

in the canonical form of the exponential family to obtain the modified profile empirical likelihood
lMP . We can calculate lMP for other probability distributions that belong to an exponential family
in the following manner:

Using
n+m∑
i=1

Li = n + m, we have

ln+m =β

m∑
i=1

yi +
n+m∑
i=1

Li log pi − m log

(
n+m∑
i=1

eβzipi

)

=β

m∑
i=1

yi +
n+m−1∑

i=1

Li log pi + Ln+m log pn+m − m log

(
eβzn+mpn+m +

n+m−1∑
i=1

eβzipi

)

=β

m∑
i=1

yi +
n+m−1∑

i=1

Li log pi +

(
n + m −

n+m−1∑
i=1

Li

)
log pn+m

− mβzn+m − m log pn+m − m log

{
1 +

n+m−1∑
i=1

eβ(zi−zn+m) pi

pn+m

}

=β

m∑
i=1

(yi − zn+m) +
n+m−1∑

i=1

Li log
pi

pn+m
+ n log pn+m

− m log

{
1 +

n+m−1∑
i=1

eβ(zi−zn+m) pi

pn+m

}
. (14)
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Define

θi = log
pi

pn+m
= log pi − log

(
1 −

n+m−1∑
k=1

pk

)
(i = 1, 2, . . . , n + m − 1).

Then, since

n+m−1∑
i=1

eθi =
n+m−1∑

i=1

pi

pn+m
=

1 − pn+m

pn+m
=

1
pn+m

− 1,

we have

pn+m =

(
1 +

n+m−1∑
i=1

eθi

)−1

. (15)

From (14) and (15), we have

ln+m(x, y; β, θ) = β

m∑
i=1

(yi − zn+m) +
n+m−1∑

i=1

Liθi + Φ(β, θ), (16)

where

Φ(β, θ) = −n log

(
1 +

n+m−1∑
i=1

eθi

)
− m log

{
1 +

n+m−1∑
i=1

eθi+β(zi−zn+m)

}
.

Equation (16) corresponds to the canonical form of the log-likelihood of an exponential family, and
(β, θ) is the natural parameter.

3.2 The modifying factor for an exponential family

Lemma 2 below shows that we can calculate the modifying factor M(β) as follows for the model
belonging to an exponential family.

Lemma 2. Suppose that l is the log-likelihood of an exponential family:

l(x; λ, ψ) =
p∑

i=1

λiζi(x) +
q∑

i=1

ψiηi(x) + Φ(λ, ψ)

and λ is a parameter of interest. Then, the modifying factor M(λ) is given by

M(λ) =
1
2

log
∣∣∣Φψψ(λ, ψ̂λ)

∣∣∣ . (17)

¤

Proof. The observed information is given by

ĵλ := jψψ(λ, ψ̂λ) = Φψψ(λ, ψ̂λ). (18)

From

lλi
(x; λ̂, ψ̂) = ζi(x) + Φλi

(λ̂, ψ̂) = 0

5



and

lψi
(x; λ̂, ψ̂) = ηi(x) + Φψi

(λ̂, ψ̂) = 0,

the equation

l(λ̂, ψ̂; λ, ψ) = −
p∑

i=1

λiΦλi
(λ̂, ψ̂) −

q∑
i=1

ψiΦψi
(λ̂, ψ̂) + Φ(λ, ψ)

holds. Therefore, we have

lψi
(λ̂, ψ̂; λ, ψ̂λ) = −Φψi

(λ̂, ψ̂) + Φψi
(λ, ψ̂λ) = 0 (19)

for a fixed λ. Differentiating (19) with respect to ψ̂j , it follows that

−Φψiψj
(λ̂, ψ̂) +

q∑
k=1

Φψiψk
(λ, ψ̂λ)

∂ψ̂k,λ

∂ψ̂j

= 0.

Thus,

∂ψ̂λ

∂ψ̂
= (Φψψ(λ, ψ̂λ))−1Φψψ(λ̂, ψ̂).

This gives

log

∣∣∣∣∣ ∂ψ̂

∂ψ̂λ

∣∣∣∣∣ = − log

∣∣∣∣∣∂ψ̂λ

∂ψ̂

∣∣∣∣∣ = log
∣∣∣Φψψ(λ, ψ̂λ)

∣∣∣ − log
∣∣∣Φψψ(λ̂, ψ̂)

∣∣∣ . (20)

Considering − log
∣∣∣Φψψ(λ̂, ψ̂)

∣∣∣ to be a constant, we obtain (17) from (13), (18), and (20).
By substituting p = 1, q = n + m − 1, λ = β, ψ = θ, ζ(y) =

∑m
i=1(yi − zn+m), and ηi(x, y) =

Li(x, y), we obtain the modifying factor M(β) for the empirical profile likelihood of the exponential-
tilt model as

M(β) =
1
2

log
∣∣∣Φθθ(β, θ̂β)

∣∣∣ ,

Φθiθj
(β, θ) =

neθieθj(
1 +

n+m−1∑
k=1

eθk

)2 − meθi+β(zi−zn+m)eθi+β(zj−zn+m){
1 +

n+m−1∑
k=1

eθk+β(zk−zn+m)

}2 ,

and

θ̂i,β =θi(β, p̂β) = − log
(

n + mνeβzi

n + mνeβzn+m

)
.

4 Numerical study

We present simulation results for the exponential-tilt model. We compare two estimators of β: one
is the NPMLE based on the profile empirical likelihood, while the other is an estimator based on
the modified profile empirical likelihood.

We assume that the underlying density g(x) is a finite Gaussian mixture. We can adopt this
assumption without loss of generality because any smooth probability density g(x) can be approx-
imated sufficiently well by a finite Gaussian mixture model. This is a convenient assumption for
numerical studies because the tilted density f(x) also becomes a finite Gaussian mixture.
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Table 1: Means and standard deviations of the NPMLE and the modified NPMLE of β from 1000

simulations with n = 3, 6, 9, . . . , 30. The true value of β is 1.

n NPMLE modified NPMLE

3 20.42 (33.84) 2.710 (3.264)

6 6.690 (20.91) 1.799 (2.262)

9 1.552 (3.931) 1.288 (0.9582)

12 1.245 (0.8801) 1.175 (0.7374)

15 1.156 (0.5450) 1.111 (0.5172)

18 1.125 (0.5033) 1.089 (0.4815)

21 1.114 (0.4250) 1.084 (0.4095)

24 1.113 (0.4176) 1.064 (0.4034)

27 1.095 (0.3618) 1.072 (0.3520)

30 1.066 (0.3498) 1.046 (0.3416)

Here we report a simple and typical example. We consider a mixture distribution of normal
distributions

g(x) = 0.3N(x;−1, 1) + 0.7N(x; 0, 1),

where N(·; µ, σ2) denotes the normal density with mean µ and variance σ2. The tilted density is
f(y) = eα+βg(y). Here we set β = 1. Then, α is given by

α = − log
(

0.3
1√
e

+ 0.7
√

e

)
.

We generated 1000 data sets x1, x2, . . . , xn and y1, y2, . . . , yn from g and f , respectively, for each
n = 3, 6, 9, . . . , 30.

Table 1 and Figure 1 show the means and standard deviations of profile empirical likelihood
estimates and modified profile empirical likelihood estimates based on the 1000 simulations.

We can see that the means of modified profile empirical likelihood estimates become closer to
the true value than those based on the profile empirical likelihood for all n = 3, 6, 9, . . . 30. In
particular, the improvement in accuracy is large for a small sample size. We carried out numerical
studies using various densities, and the results are similar to the result given above.

5 Discussion

In the numerical study in the previous section, the proposed procedure outperforms the method
based on the conventional empirical profile likelihood. This result from the modification of the
profile empirical likelihood for the exponential-tilt model seems natural because various results
concerning ordinary likelihoods also hold for empirical likelihoods. In principle, the proposed
procedure is also applicable to empirical profile likelihoods for various semiparametric models.
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Figure 1: Means and standard deviations of the NPMLE (left) and the modified NPMLE (right)

of β. Each dot shows the mean, and the error bar shows the mean ± standard deviation.

It is widely known that the improvement as a result of the modification for ordinary likelihoods
is remarkable especially when the dimension of the nuisance parameters is large. In a semipara-
metric model, the nuisance parameter is infinite-dimensional. Model (8) that was used in the
empirical likelihood theory has a nuisance parameter whose dimension is as large as the number of
observations. This fact also seems to support the proposed modification.

For a complete understanding of the presented results, we require higher order asymptotic
theory concerning empirical likelihood; however, this has not yet developed sufficiently and it can
be an important topic for further research.

For logistic regression, various modifications to MLE have been suggested, e.g., Firth (1993).
However, these modifications proposed are not equivalent to the present one, as far as the authors
know. The relationship or correspondence between our procedure and such modifications is also an
interesting topic.

References

Bickel, P. J., Klaassen, C. A. J., Ritov, Y., and Wellner, J. A. (1993). Efficient and Adaptive
Estimation for Semiparametric Models. Johns Hopkins University Press, London.

Barndorff-Nielsen, O. (1983). On a formula for the distribution of the maximum likelihood estima-
tor. Biometrika 70, 343–365.

Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika 80, 343–365.
Owen, A. B. (2001). Empirical Likelihood. Chapman ＆ Hall/CRC, New York.
Qin, J. and Zhang, B. (2005). Marginal likelihood, conditional likelihood and empirical likelihood:

connections and applications. Biometrika, 92, 251–270.

8



Appendix

A Derivation of the profile empirical likelihood

Let

l̃n+m =ln+m − γ

(
n+m∑
i=1

pi − 1

)

=β

m∑
i=1

yi +
n+m∑
i=1

log pi − m log

(
n+m∑
i=1

eβzipi

)
− γ

(
n+m∑
i=1

pi − 1

)
,

where γ is a Lagrange multiplier. Then, ln+m is maximized under condition (4). The parameters
pi (i = 1, 2, . . . , n + m) satisfy the equations

∂l̃n+m

∂pi
=

1
pi

− m · eβzi(
n+m∑
i=1

eβzipi

) − γ = 0 (i = 1, 2, . . . , n + m). (21)

From (21), we have

0 =
n+m∑
i=1

pi
∂l̃n+m

∂pi

=
n+m∑
i=1

1 − m
1(

n+m∑
i=1

eβzipi

) ·

(
n+m∑
i=1

eβzipi

)
− γ

n+m∑
i=1

pi

=n + m − m − γ = n − γ. (22)

Let

ν =

(
n+m∑
i=1

eβzipi

)−1

. (23)

The set of conditions (4), (22), and (23) are equivalent to the set of conditions (9) and (10).
Inequality (6) is equivalent to (11). We obtain (9) from (21) and (22). Furthermore, (10) and (11)
follow from (4), (6), and (9). ¤
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