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Abstract

We consider the following problem: Given a set of m × n real (or
complex) matrices A1, . . . , AN , find an m×m orthogonal (or unitary)
matrix P and an n × n orthogonal (or unitary) matrix Q such that
P ∗A1Q, . . . , P ∗ANQ are in a common block-diagonal form with possi-
bly rectangular diagonal blocks. We call this the simultaneous singular
value decomposition (simultaneous SVD). The name is motivated by
the fact that the special case with N = 1, where a single matrix is given,
reduces to the ordinary SVD. With the aid of the theory of ∗-algebra
and bimodule it is shown that a finest simultaneous SVD is uniquely
determined. An algorithm is proposed for finding the finest simultane-
ous SVD on the basis of recent algorithms of Murota–Kanno–Kojima–
Kojima and Maehara–Murota for simultaneous block-diagonalization
of square matrices under orthogonal (or unitary) similarity.
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1 Introduction

Singular value decomposition (SVD) is one of the most fundamental tools in
dealing with noisy data. It is useful, for instance, in least squares method,
principal component analysis, and matrix approximations. Mathematically,
the singular value decomposition of an m× n real matrix A is to transform
A to a diagonal matrix, with nonnegative diagonal elements, through a
transformation of the form P⊤AQ with an m×m orthogonal matrix P and
an n × n orthogonal matrix Q. Singular value decomposition can also be
defined for a complex matrix A, where a unitary transformation P ∗AQ with
unitary matrices P and Q is employed.

In this paper we consider such decompositions for a family of matrices,
which we call the simultaneous singular value decomposition. We distinguish
two cases, decompositions over R and over C:

Problem [R]: Given a set of m×n real matrices A1, . . . , AN , find
an m×m orthogonal matrix P and an n×n orthogonal matrix Q
such that P⊤A1Q, . . . , P⊤ANQ are in a common block-diagonal
form.

Problem [C]: Given a set of m×n complex matrices A1, . . . , AN ,
find an m×m unitary matrix P and an n× n unitary matrix Q
such that P ∗A1Q, . . . , P ∗ANQ are in a common block-diagonal
form.

Obviously, the special case with N = 1, where a single matrix is given,
reduces to the ordinary singular value decomposition. In this special case we
obtain a (genuine) diagonal matrix, which means that a family of orthogonal
one-dimensional subspaces are identified as special directions of importance,
and the singular vectors are the bases for these subspaces. For multiple ma-
trices, we cannot hope for simultaneous diagonalization but we look for a
common block-diagonal form, where the diagonal blocks are possibly rect-
angular matrices. This means that we are to identify a family of mutually
orthogonal subspaces characteristic to the given family of matrices. It may
be said that the diagonal blocks in our decomposition are higher dimensional
extensions of singular values, which are scalars (or 1 × 1 matrices).

This paper shows, with the theory of ∗-algebra and bimodule, that a
finest simultaneous singular value decomposition exists and is uniquely de-
termined. Moreover, structure theorems will be established in both cases
(see Theorems 2 and 7). As an immediate corollary of the structure the-
orems we obtain a necessary and sufficient condition for the simultaneous
diagonalization under the transformation P⊤AiQ or P ∗AiQ (see Corollaries
3 and 8).

Our construction of simultaneous SVD is a natural extension of the well-
known fact that the SVD of a single (real) matrix A can be constructed from
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the eigenvalue decompositions of AA⊤ and A⊤A. In place of the eigenvalue
decompositions of AA⊤ and A⊤A, we use the Wedderburn-type canonical
decompositions of the ∗-algebra generated by AiA

⊤
j (i, j = 1, . . . , N) and the

∗-algebra generated by A⊤
i Aj (i, j = 1, . . . , N). Then using the theoretical

framework of bimodule we can derive the desired simultaneous SVD. In the
structure theorems for simultaneous SVD there is a substantial difference
between R and C, which stems from the difference in the structure theorems
of matrix ∗-algebra over R and C.

An algorithm is proposed for finding the simultaneous SVD. This is
built upon recent algorithms of Murota–Kanno–Kojima–Kojima [8] and
Maehara–Murota [7] for simultaneous block-diagonalization of square ma-
trices, i.e., for finding, given a set of square matrices B1, . . . , BN , an orthog-
onal (or unitary) matrix P such that P ∗B1P, . . . , P ∗BNP are in a common
block-diagonal form.

In the literature of semidefinite programming group representation the-
ory and matrix ∗-algebra have been attracting research interest as effec-
tive tools for exploiting algebraic structures due to symmetry, sparsity, etc.
[1, 2, 4, 5, 6, 8, 9]. Typically, we are given a family of symmetric (or Hermi-
tian) matrices B1, . . . , BN such that each B = Bi is endowed with invariance
to a finite group G in the sense of T (g)∗BT (g) = B (g ∈ G) with respect to
an orthogonal (or unitary) representation T . Then the problem is to find an
orthogonal (or unitary) matrix P such that P ∗B1P, . . . , P ∗BNP are in the
same block-diagonal form. In contrast, the simultaneous SVD of the present
paper corresponds to equivariance in the sense of S(g)∗AT (g) = A (g ∈ G)
with respect to orthogonal (or unitary) representations S and T . A standard
result in group representation theory affords a canonical decomposition for
such matrices. Our contribution is to generalize this by means of bimodule,
and also to give an algorithm for the decomposition.

The structure theorems of ∗-algebras form the foundation of the decom-
position method for semidefinite programs. It is hoped that the structure
theorems established in this paper trigger a new direction in some area of
optimization or data science.

2 Structure theorem for simultaneous SVD
over C

Problem [C] is considered in this section. As a preliminary the structure
theorem of matrix ∗-algebras is described in §2.1 and the simultaneous SVD
is constructed in §2.2.
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2.1 Matrix ∗-algebra over C

We denote by Mm,n = Mm,n(C) the set of m×n complex matrices, and put
Mn = Mn,n. A subset T of Mn is said to be a ∗-subalgebra (or a matrix ∗-
algebra) over C if In ∈ T and [A,B ∈ T ; α, β ∈ C =⇒ αA + βB,AB,A∗ ∈
T ]. We say that a matrix ∗-algebra T is simple if T has no ideal other than
{O} and T itself, where an ideal of T means a submodule I of T such that
[A ∈ T , B ∈ I =⇒ AB,BA ∈ I]. A linear subspace W of Cn is said to be
invariant with respect to T , or T -invariant, if AW ⊆ W for every A ∈ T .
We say that T is irreducible if no T -invariant subspace other than {0} and
Cn exists.

The following is a standard result in ∗-algebra (e.g., [10, Chapter X]).
Note that for a matrix ∗-algebra T and a unitary matrix P , the set P ∗T P =
{P ∗AP : A ∈ T } is another matrix ∗-algebra isomorphic to T .

Theorem 1. Let T be a ∗-subalgebra of Mn(C).
(A) There exist a unitary matrix Q and simple ∗-subalgebras Tj of

Mn̂j
(C) for some n̂j (j = 1, 2, . . . , ℓ) such that Q∗T Q = {diag (S1, S2, . . . , Sℓ) :

Sj ∈ Tj (j = 1, 2, . . . , ℓ)}.
(B) If T is simple, there exist a unitary matrix P and an irreducible ∗-

subalgebra T ′ of Mn̄(C) for some n̄ such that P ∗T P = {diag (B,B, . . . , B) :
B ∈ T ′}.

(C) If T is irreducible, T = Mn(C).

2.2 Construction of simultaneous SVD over C

For ∗-algebras TL (⊆ Mm(C)) and TR (⊆ Mn(C)) we call a submodule
A of Mm,n(C) a matrix (TL, TR)-bimodule over C if [A ∈ A, L ∈ TL, R ∈
TR =⇒ LAR ∈ A]. Given a family of m× n complex matrices A1, . . . , AN

we consider three algebraic structures:

(i) Matrix ∗-algebra TL generated by AiA
∗
j (i, j = 1, . . . , N).

(ii) Matrix ∗-algebra TR generated by A∗
i Aj (i, j = 1, . . . , N).

(iii) Matrix (TL, TR)-bimodule A generated by A1, . . . , AN .

Note that TL and TR are determined by A; that is, TL and TR are ∗-
algebras generated, respectively, by AA∗ and A∗A. It is mentioned that if
Ai = O (i = 1, . . . , N), we have A = {O}, and then both TL and TR are
∗-algebras generated by zero matrices, which means that TL = CIm and
TR = CIn, since a ∗-algebra (in our present definition) always contains the
identity matrix. Such a degenerate case needs to be included as it may
possibly occur as a result of our decomposition.

The fundamental fact underlying our approach is that decomposing the
given matrices A1, . . . , AN by means of a transformation of the form P ∗AiQ
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is equivalent to decomposing every element A of A by P ∗AQ. Accordingly
we assume that we are given a matrix (TL, TR)-bimodule A (⊆ Mm,n(C))
such that TL and TR are ∗-algebras generated, respectively, by AA∗ and
A∗A. Note that no reference is made to the generators A1, . . . , AN in this
setting.

The following theorem shows that the simultaneous SVD, i.e., the finest
decomposition under P ∗A1Q, . . . , P ∗ANQ can be constructed from the de-
compositions of ∗-algebras AA∗ and A∗A in the sense of Theorem 1. Note
that this construction generalizes the construction of the SVD of a single
matrix A through the eigenvalue decompositions of AA∗ and A∗A.

Theorem 2. Let A ⊆ Mm,n(C), A ̸= {O}, be a matrix (TL, TR)-bimodule
over C such that TL and TR are ∗-algebras generated, respectively, by AA∗

and A∗A.
(A) There exist unitary matrices P and Q and a natural number ℓ such

that

P ∗TLP = TL1⊕· · ·⊕TLℓ, P ∗AQ = A1⊕· · ·⊕Aℓ, Q∗TRQ = TR1⊕· · ·⊕TRℓ.

Here each Aj is a matrix (TLj , TRj)-bimodule, and TLj and TRj are simple
matrix ∗-algebras generated by AjA∗

j and A∗
jAj , respectively.

(B) If TL and TR are simple, there exist unitary matrices P and Q and
a natural number µ such that

P ∗TLP = Iµ ⊗ T ′
L, P ∗AQ = Iµ ⊗A′, Q∗TRQ = Iµ ⊗ T ′

R.

Here A′ is a matrix (T ′
L, T ′

R)-bimodule, and T ′
L and T ′

R are irreducible matrix
∗-algebras generated by A′A′∗ and A′∗A′, respectively.

(C) If TL and TR are irreducible, there exist unitary matrices P and Q
such that

P ∗TLP = Mm(C), P ∗AQ = Mm,n(C), Q∗TRQ = Mn(C).

As an immediate corollary we obtain a necessary and sufficient condition
for complex matrices A1, . . . , AN to have the same set of singular vectors in
the conventional sense.

Corollary 3. For complex matrices A1, . . . , AN , there exist unitary matrices
P and Q such that P ∗AiQ (i = 1, . . . , N) are diagonal if and only if AiA

∗
j

(i, j = 1, . . . , N) are all normal and commute with each other, and A∗
i Aj

(i, j = 1, . . . , N) are all normal and commute with each other.

Example 4. For two 4 × 8 complex matrices

5



A1 =


−0.911 2.886 3.216 0.605 0.451 3.066 3.501 1.611
−0.312 −0.447 3.673 −0.384 5.036 −3.539 0.082 0.876
−0.216 1.852 3.006 0.314 0.675 1.841 3.570 0.727
−0.426 1.005 −1.986 −0.222 −2.619 3.533 1.339 −0.246



+ ı


−0.996 2.329 2.650 −0.319 1.869 1.383 4.423 0.508

0.275 1.580 4.492 −3.558 3.038 −1.790 −0.327 −0.271
−1.755 3.714 1.724 0.421 0.955 0.678 4.692 −0.333
−0.888 1.692 −1.371 0.958 −1.540 0.285 1.185 −0.440

 ,

A2 =


−1.256 0.400 0.921 0.451 1.980 1.332 4.859 1.503

2.415 −0.090 4.228 −1.484 2.073 1.328 0.005 −0.171
0.388 0.789 2.320 0.661 2.843 2.068 2.573 1.357

−0.242 1.220 −2.288 2.998 −0.249 0.194 1.445 2.126



+ ı


−1.659 3.148 0.960 −0.740 0.248 2.196 5.254 1.201
−1.002 0.706 4.215 −1.143 3.649 −0.668 0.453 0.466
−0.560 1.419 4.783 −0.072 2.268 0.050 3.540 −0.334
−0.820 1.492 −1.731 1.241 −2.950 2.742 2.540 2.272


we have

P ∗A1Q =


0.243 −0.037 −0.845 −0.929 0 0 0 0
0.105 −0.555 0.801 −2.216 0 0 0 0
0 0 0 0 −2.127 0.016 −3.388 −0.245
0 0 0 0 −0.470 0.793 0.545 −0.857



+ ı


12.720 −0.608 −0.572 0.413 0 0 0 0
0.706 0.456 −0.554 −0.575 0 0 0 0
0 0 0 0 9.610 −0.003 −1.702 0.103
0 0 0 0 −2.709 0.415 1.246 0.166

 ,

P ∗A2Q =


1.726 0.092 1.256 1.284 0 0 0 0

−1.339 −0.205 −2.439 1.214 0 0 0 0
0 0 0 0 1.072 −0.471 4.684 0.053
0 0 0 0 1.419 1.463 0.749 0.082



+ ı


12.150 0.636 0.416 −0.461 0 0 0 0
0.743 0.397 −0.864 −0.881 0 0 0 0
0 0 0 0 8.616 0.296 1.072 −0.073
0 0 0 0 2.307 −1.488 0.142 −0.321


with suitable unitary matrices P and Q. We have ℓ = 2, µ = 1 in Theorem
2, and accordingly both P ∗A1Q and P ∗A2Q belong to M2,4(C)⊕M2,4(C).
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Example 5. Consider two 4 × 6 matrices

A1 =


−1.433 0.234 −0.517 −0.347 0.008 2.097

0.508 0.337 −0.142 −2.177 −1.271 −0.466
−0.024 1.412 1.337 0.126 0.160 −0.100
−1.573 −0.154 0.262 0.446 0.199 −1.556

 ,

A2 =


−0.215 0.525 0.342 1.538 1.063 2.151

1.486 1.040 0.247 −1.456 −0.712 1.589
2.630 −1.493 −0.841 1.129 0.449 −0.025
1.112 1.748 2.080 0.744 0.444 −0.837

 .

Then AiA
∗
j (i, j = 1, 2) are all normal and commute each other and A∗

i Aj

(i, j = 1, 2) are all normal and commute each other. Therefore, by Corollary
3, there exist unitary matrices P and Q such that P ∗AiQ (i = 1, 2) are
diagonal matrices, which read as follows:

P ∗A1Q =


−1.666 0 0 0 0 0

0 −0.896 0 0 0 0
0 0 −1.433 0 0 0
0 0 0 −2.493 0 0



+ ı


0.959 0 0 0 0 0
0 −1.701 0 0 0 0
0 0 2.388 0 0 0
0 0 0 1.241 0 0

 ,

P ∗A2Q =


2.972 0 0 0 0 0
0 3.377 0 0 0 0
0 0 0.230 0 0 0
0 0 0 −2.753 0 0



+ ı


1.616 0 0 0 0 0
0 0.219 0 0 0 0
0 0 2.779 0 0 0
0 0 0 −0.447 0 0

 .

3 Structure theorem for simultaneous SVD
over R

Problem [R] is considered in this section. The structure theorem of ∗-
algebras is modified for R in §3.1 and the simultaneous SVD over R is
constructed in §3.2.

3.1 Matrix ∗-algebra over R

Matrix ∗-algebra over R and the associated concepts such as irreducibility
are defined similarly as in §2.1, where “unitary” is replaced by “orthogonal.”
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The structure theorem, however, needs a revision stated in Theorem 6 below
(see, e.g., [6], [8]).

Let H denote the quaternion field, i.e., H = {a+ıb+ȷc+kd : a, b, c, d ∈ R}
with the multiplication defined as: ı = ȷk = −kȷ, ȷ = kı = −ık, k = ıȷ =
−ȷı, ı2 = ȷ2 = k2 = −1. We regard C as a subset of H by identifying ı with
the imaginary unit in C.

We define three types of matrices: the set of m×n real matrices Mm,n =
Mm,n(R), the real representation of complex matrices Cm,n ⊂ M2m,2n(R)
defined by

Cm,n =


 C(z11) · · · C(z1n)

...
. . .

...
C(zm1) · · · C(zmn)

 : z11, z12, . . . , zmn ∈ C


with

C(a + ıb) =
[

a −b
b a

]
,

and the real representation of quaternion matrices Hm,n ⊂ M4m,4n(R) de-
fined by

Hn,m =


 H(h11) · · · H(h1n)

...
. . .

...
H(hm1) · · · H(hmn)

 : h11, h12, . . . , hmn ∈ H


with

H(a + ıb + ȷc + kd) =


a −b −c −d
b a −d c
c d a −b
d −c b a

 .

We put Mn = Mn,n, Cn = Cn,n, Hn = Hn,n for notational simplicity.

Theorem 6. Let T be a ∗-subalgebra of Mn = Mn(R).
(A) There exist an orthogonal matrix Q and simple ∗-subalgebras Tj of

Mn̂j
(R) for some n̂j (j = 1, 2, . . . , ℓ) such that Q⊤T Q = {diag (S1, S2, . . . , Sℓ) :

Sj ∈ Tj (j = 1, 2, . . . , ℓ)}.
(B) If T is simple, there exist an orthogonal matrix P and an irreducible

∗-subalgebra T ′ of Mn̄(R) for some n̄ such that P⊤T P = {diag (B,B, . . . , B) :
B ∈ T ′}.

(C) If T is irreducible, there exists an orthogonal matrix P such that
P⊤T P = Mn, Cn/2 or Hn/4.

3.2 Construction of simultaneous SVD over R

The simultaneous SVD over R can be constructed in parallel with the case
over C. The result, however, has a significant difference due to the difference
between the statements in (C) of Theorems 1 and 6.

8



For ∗-algebras TL (⊆ Mm(R)) and TR (⊆ Mn(R)) we call a submodule
A of Mm,n(R) a matrix (TL, TR)-bimodule over R if [A ∈ A, L ∈ TL, R ∈
TR =⇒ LAR ∈ A]. Given a family of m × n real matrices A1, . . . , AN we
consider three algebraic structures:

(i) Matrix ∗-algebra TL generated by AiA
⊤
j (i, j = 1, . . . , N).

(ii) Matrix ∗-algebra TR generated by A⊤
i Aj (i, j = 1, . . . , N).

(iii) Matrix (TL, TR)-bimodule A generated by A1, . . . , AN .

Note that TL and TR are determined by A; that is, TL and TR are ∗-
algebras generated, respectively, by AA⊤ and A⊤A. It is mentioned that
if Ai = O (i = 1, . . . , N), we have A = {O}, and then TL = RIm and
TR = RIn. Such a degenerate case needs to be included as it may possibly
occur as a result of our decomposition.

The fundamental fact underlying our approach is, again, that decom-
posing the given matrices A1, . . . , AN by means of a transformation of the
form P⊤AiQ is equivalent to decomposing every element A of A by P⊤AQ.
Accordingly we assume that we are given a matrix (TL, TR)-bimodule A
(⊆ Mm,n(R)) such that TL and TR are ∗-algebras generated, respectively, by
AA⊤ and A⊤A. Note that no reference is made to the generators A1, . . . , AN

in this setting.
The following theorem shows that the simultaneous SVD, i.e., the finest

decomposition under P⊤A1Q, . . . , P⊤ANQ can be constructed from the de-
compositions of ∗-algebras AA⊤ and A⊤A as given in Theorem 6. Note that
this construction generalizes the construction of the SVD of a single matrix
A through the eigenvalue decompositions of AA⊤ and A⊤A.

Theorem 7. Let A ⊆ Mm,n(R), A ̸= {O}, be a matrix (TL, TR)-bimodule
over R such that TL and TR are ∗-algebras generated, respectively, by AA⊤

and A⊤A.
(A) There exist orthogonal matrices P and Q and a natural number ℓ

such that

P⊤TLP = TL1⊕· · ·⊕TLℓ, P⊤AQ = A1⊕· · ·⊕Aℓ, Q⊤TRQ = TR1⊕· · ·⊕TRℓ.

Here each Aj is a matrix (TLj , TRj)-bimodule, and TLj and TRj are simple
matrix ∗-algebras generated by AjA⊤

j and A⊤
j Aj , respectively.

(B) If TL and TR are simple, there exist orthogonal matrices P and Q
and a natural number µ such that

P⊤TLP = Iµ ⊗ T ′
L, P⊤AQ = Iµ ⊗A′, Q⊤TRQ = Iµ ⊗ T ′

R.

Here A′ is a matrix (T ′
L, T ′

R)-bimodule, and T ′
L and T ′

R are irreducible matrix
∗-algebras generated by A′A′⊤ and A′⊤A′, respectively.
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(C) If TL and TR are irreducible, there exist orthogonal matrices P and
Q such that

P⊤TLP = Dm̂, P⊤AQ = Dm̂,n̂, Q⊤TRQ = Dn̂.

Here D = M, C, or H, and (m̂, n̂) = (m,n) if D = M; (m̂, n̂) = (m/2, n/2)
if D = M; and (m̂, n̂) = (m/4, n/4) if D = M.

As an immediate corollary we obtain a necessary and sufficient condition
for real matrices A1, . . . , AN to have the same set of singular vectors in the
conventional sense. Compare this with its C-version given in Corollary 3.

Corollary 8. For real matrices A1, . . . , AN , there exist orthogonal matrices
P and Q such that P⊤AiQ (i = 1, . . . , N) are diagonal if and only if AiA

⊤
j ,

A⊤
i Aj (i, j = 1, . . . , N) are symmetric matrices.

Example 9. For two 4 × 8 matrices

A1 =


0.365 1.991 −0.627 1.740 −2.133 1.908 3.684 0.850
3.045 −1.686 0.790 −2.203 −1.121 −0.445 0.616 3.251
3.071 −0.299 2.218 2.053 −1.671 −0.782 −0.666 −2.738

−1.221 0.293 2.099 −1.876 −2.125 3.559 −1.776 −0.396

 ,

A2 =


−0.393 2.325 0.081 1.615 0.029 0.759 2.596 2.123

2.289 −2.798 0.854 0.219 −0.243 −0.573 1.124 2.122
1.900 0.548 0.309 3.017 −1.967 0.301 −1.052 −1.350

−1.217 −0.035 1.802 −1.398 −3.230 1.353 −0.453 0.921


we have

P⊤A1Q =


5.475 0 −0.131 −0.051 0 0 0 0
0 5.475 0.051 −0.131 0 0 0 0
0 0 0 0 5.475 0 −0.131 −0.051
0 0 0 0 0 5.475 0.051 −0.131

 ,

P⊤A2Q =


3.702 1.442 2.053 0 0 0 0 0

−1.442 3.702 0 2.053 0 0 0 0
0 0 0 0 3.702 1.442 2.053 0
0 0 0 0 −1.442 3.702 0 2.053


with suitable orthogonal matrices P and Q. We have ℓ = 1, µ = 2, and
D = C in Theorem 7, and accordingly both P⊤A1Q and P⊤A2Q belong
to I2 ⊗ C1,2. For instance, P⊤A1Q consists of two copies of a 2 × 4 matrix
[C(5.475), C(−0.131 + ı0.051)] ∈ C1,2.

Example 10. The decomposition in the previous example is the finest over
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R, but it can be decomposed further over C. We have indeed

P ∗A1Q =


5.475 −0.131 0 0 0 0 0 0
0 0 5.475 −0.131 0 0 0 0
0 0 0 0 5.475 −0.131 0 0
0 0 0 0 0 0 5.475 −0.131



+ ı


0 −0.051 0 0 0 0 0 0
0 0 0 0.051 0 0 0 0
0 0 0 0 0 −0.051 0 0
0 0 0 0 0 0 0 0.051

 ,

P ∗A2Q =


3.702 2.053 0 0 0 0 0 0
0 0 3.702 2.053 0 0 0 0
0 0 0 0 3.702 2.053 0 0
0 0 0 0 0 0 3.702 2.053



+ ı


1.442 0 0 0 0 0 0 0
0 0 −1.442 0 0 0 0 0
0 0 0 0 1.442 0 0 0
0 0 0 0 0 0 −1.442 0


with suitable unitary matrices P and Q, which are different from the or-
thogonal matrices P and Q in Example 9. This decomposition can be easily
obtained from the decomposition in Example 9.

Example 11. Consider two 4 × 6 matrices

A1 =


−0.013 0.472 −0.000 0.230 0.106 −1.336
−0.687 −0.689 −0.677 0.898 1.187 0.727

1.082 −0.362 −0.315 −0.820 0.062 0.757
−0.728 0.310 0.879 0.169 −0.908 0.578

 ,

A2 =


0.462 1.459 1.052 1.034 0.193 −0.382

−0.283 −0.495 −0.683 1.349 1.815 1.069
1.720 0.359 0.194 −0.128 0.567 1.244
0.424 1.081 0.884 0.561 −0.094 −0.146

 .

Then AiA
⊤
j (i, j = 1, 2) and A⊤

i Aj (i, j = 1, 2) are symmetric matrices.
Therefore, by Corollary 8, there exist orthogonal matrices P and Q such
that P⊤AiQ (i = 1, 2) are diagonal matrices, which read as follows:

P⊤A1Q =


−1.742 0 0 0 0 0

0 1.920 0 0 0 0
0 0 −0.095 0 0 0
0 0 0 2.172 0 0

 ,

P⊤A2Q =


−0.146 0 0 0 0 0

0 1.910 0 0 0 0
0 0 −2.793 0 0 0
0 0 0 2.785 0 0

 .
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Example 12. Recall the matrices A1 and A2 in Example 5, which have been
brought to diagonal matrices though a unitary transformation. They satisfy
the conditions in Corollary 3 but not the conditions in Corollary 8. Indeed,
A1A

⊤
2 is not a symmetric matrix. Therefore they are not simultaneously

diagonalizable over R. The finest decomposition over R is

P ∗A1Q =


2.756 0.397 0 0 0 0

−0.397 2.756 0 0 0 0
0 0 −1.897 0.315 0 0
0 0 −0.315 −1.897 0 0

 ,

P ∗A2Q =


2.473 −1.288 0 0 0 0
1.288 2.473 0 0 0 0
0 0 2.211 2.556 0 0
0 0 −2.556 2.217 0 0

 .

4 Proof of the structure theorems

In this section, we will prove the structure theorems (Theorem 2 and 7). We
prove Theorem 7 only since the proof of Theorem 2 is similar and easier.

We first prove the following lemma, which shows the relation between
the block diagonalization of A and the block diagonalizations of TL and TR.
This is an extension of the fact that the ordinary SVD of a matrix A can be
constructed from the eigenvalue decompositions of AA⊤ and A⊤A.

Lemma 13. The following are equivalent:
(1) A does not have a nontrivial block diagonalization.
(2) Both TL and TR are irreducible.

Proof. If A has a nontrivial block diagonalization, at least one of TL or TR

has also a nontrivial block diagonalization since TL and TR are generated by
AiA

⊤
j (i, j = 1, . . . , N) and A⊤

i Aj (i, j = 1, . . . , N) respectively. This proves
that (1) implies (2).

To prove the converse, we may assume that TR is reducible; otherwise we
transpose all matrices. In this case, TR has a nontrivial invariant subspace
W ⊂ Rn. Let U = span(AW ) ⊆ Rm. We take an orthogonal basis for W ,
W⊥ and U , U⊥. Then we claim that for all A ∈ A, we have

P⊤AQ =

← W → ← W⊥ →
↑
U A1 O
↓
↑

U⊥ O A2

↓

where P is an orthogonal basis transformation for U and U⊥, and Q is an
orthogonal basis transformation for W and W⊥. (Note that if U = {0}
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or U⊥ = {0}, the corresponding part disappears but we still say that such
decomposition is nontrivial.) Because of the definition of U , the lower-
left part is clearly zero. To prove that the upper-right part is zero, it is
sufficient to check u⊤Av = 0 for all v ∈ W⊥ and u ∈ U . By the definition
of U , we have u =

∑
j Bjwj for some Bj ∈ A and wj ∈ W . Therefore

u⊤Av =
∑

j w⊤
j B⊤

j Av. Since A⊤Bj ∈ TR, we have A⊤Bjwj ∈ W . Therefore
u⊤Av = 0.

Structure theorem (A). There exist orthogonal matrices P and Q and a
natural number ℓ such that

P⊤TLP = TL1⊕· · ·⊕TLℓ, P⊤AQ = A1⊕· · ·⊕Aℓ, Q⊤TRQ = TR1⊕· · ·⊕TRℓ.

Here each Aj is a matrix (TLj , TRj)-bimodule, and TLj and TRj are simple
matrix ∗-algebras generated by AjA⊤

j and A⊤
j Aj , respectively.

Proof. Take any minimal block diagonalization of A, by which we mean
a decomposition with diagonal blocks that cannot be decomposed further.
Then TL and TR are decomposed accordingly into irreducible components.
Then by collecting equivalent irreducible components, we obtain the decom-
position in the above form.

Structure theorem (C) . If TL and TR are irreducible, there exist orthog-
onal matrices P and Q such that

P⊤TLP = Dm̂, P⊤AQ = Dm̂,n̂, Q⊤TRQ = Dn̂.

Here D = M, C, or H, and (m̂, n̂) = (m,n) if D = M; (m̂, n̂) = (m/2, n/2)
if D = C; and (m̂, n̂) = (m/4, n/4) if D = H.

Proof. By of the structure theorem for matrix ∗-algebras (Theorem 6), there
exist orthogonal matrices P and Q such that P⊤TLP = Dm̂ and Q⊤TRQ =
D′

n̂. Therefore we can assume, without loss of generality, TL = Dm̂ and
TR = D′

n̂.
Let d = 1, 2 or 4 for D = M, C or H respectively, and let d′ = 1, 2 or

4 for D′ = M, C, H respectively. Put m̂ = m/d and n̂ = n/d′. We divide
A ∈ A into m̂ × n̂ blocks of size d × d′, whose (i, j) block is denoted A[i,j].
Similarly, we divide L ∈ TL into m̂× m̂ blocks of size d× d and R ∈ TR into
n̂ × n̂ blocks of size d′ × d′.

Since TL = Dm̂, it contains the matrix, say ELi, of which the i-th diag-
onal block is Id and the other blocks are Od. Similarly, TR has the matrix,
say ERj , of which the j-th diagonal block is Id′ and the other blocks are Od′ .
Therefore, for all A ∈ A, A has the matrix ELiAERj of which the (i, j) block
is A[i,j] and the other blocks are Od,d′ . Noting that TL and TR contain block-
wise permutation matrices, we see that for all A,A′ ∈ A, A[i,j]A

′⊤
[k,l] ∈ D and

A⊤
[i,j]A

′
[k,l] ∈ D′.
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Pick a nonzero matrix A ∈ A, and let A[i,j] be one of the nonzero blocks
of A. Since A[i,j]A

⊤
[i,j] ∈ D and a symmetric matrix in D is necessarily a

scalar matrix, we have A[i,j]A
⊤
[i,j] = αId for some α > 0. Similarly, we also

have A⊤
[i,j]A[i,j] = α′Id′ for some α′ > 0. These imply that A[i,j] has full

row rank and full column rank. Therefore we have d = d′, and D = D′ in
particular. Note also α = α′.

Next, we construct an orthogonal transformation from the nonzero ma-
trix A ∈ A (chosen above). Let P ′ = diag(A[i,j], . . . , A[i,j])/

√
α, which is an

orthogonal matrix. We claim the following equalities:

P ′⊤TLP ′ = Dm̂, P ′⊤A = Dm̂,n̂.

The first equality is clear since TL = Dm̂ and P ′ ∈ TL. The second equal-
ity can be shown as follows: For all A′ ∈ A, the (k, l) block of P ′⊤A′ is
A⊤

[i,j]A
′
[k,l]/

√
α, which is an element of D. Therefore P ′⊤A′ ∈ Dm̂,n̂, and

hence P ′⊤A = Dm̂,n̂.

Structure theorem (B) If TL and TR are simple, there exist orthogonal
matrices P and Q and a natural number µ such that

P⊤TLP = T ′
L ⊗ Iµ, P⊤AQ = A′ ⊗ Iµ, Q⊤TRQ = T ′

R ⊗ Iµ.

Here A′ is a matrix (T ′
L, T ′

R)-bimodule, and T ′
L and T ′

R are irreducible matrix
∗-algebras generated by A′A′⊤ and A′⊤A′, respectively.

Proof. It turns out to be convenient to prove the above claim by showing

P⊤TLP = T ′
L ⊗ Iµ, P⊤AQ = A′ ⊗ Iµ, Q⊤TRQ = T ′

R ⊗ Iµ.

Note that T ′
L⊗Iµ and Iµ⊗T ′

L, for example, are connected by permutations of
row and columns. The proof goes in a similar way as the proof of structure
theorem (C).

By of the structure theorem for matrix ∗-algebras (Theorem 6), there
exist orthogonal matrices P and Q such that P⊤TLP = Dm̂ ⊗ Iµ and
Q⊤TRQ = Dn̂ ⊗ Iµ′ . Therefore we can assume, without loss of general-
ity, TL = Dm̂ ⊗ Iµ and TR = Dn̂ ⊗ Iµ′ . Note that D is common in these
equalities by structure theorem (C).

Let d = 1, 2 or 4 for D = M, C or H respectively. Put m̂ = m/dµ and
n̂ = n/dµ′. We divide A ∈ A into m̂× n̂ blocks of size dµ× dµ′, whose (i, j)
block is denoted A[i,j]. Similarly, we divide L ∈ TL into m̂× m̂ blocks of size
dµ × dµ and R ∈ TR into n̂ × n̂ blocks of size dµ′ × dµ′.

Since TL = Dm̂ ⊗ Iµ, it contains the matrix, say ELi, of which the i-th
diagonal block is Idµ and the other blocks are Odµ. Similarly, the TR has the
matrix, say ERj , of which j-th diagonal block is Idµ′ and the other blocks
are Odµ′ . Therefore, for all A ∈ A, A has the matrix ELiAERj , of which
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the (i, j) block is A[i,j] and the other blocks are Odµ,dµ′ . Noting that TL and
TR contain block-wise permutation matrices, we see that for all A,A′ ∈ A,
A[i,j]A

′⊤
[k,l] ∈ D ⊗ Iµ and A⊤

[i,j]A
′
[k,l] ∈ D ⊗ Iµ′ .

Pick a nonzero matrix A ∈ A, and let A[i,j] be one of the nonzero blocks
of A. Since A[i,j]A

⊤
[i,j] ∈ D ⊗ Iµ and a symmetric matrix in D is necessarily

a scalar matrix, we have A[i,j]A
⊤
[i,j] = αIdµ for some α > 0. Similarly, we

also have A⊤
[i,j]A[i,j] = α′Idµ′ for some α′ > 0. These imply that A[i,j] has

full row rank and full column rank. Therefore we have µ = µ′. Note also
α = α′.

Next, we construct an orthogonal transformation from the nonzero ma-
trix A ∈ A (chosen above). Let P ′ = diag(A[i,j], . . . , A[i,j])/

√
α, which is an

orthogonal matrix. We claim the following equalities:

P ′⊤TLP ′ = Dm̂ ⊗ Iµ, P ′⊤A = Dm̂,n̂ ⊗ Iµ.

The first equality is clear since TL = Dm̂ ⊗ Iµ and P ′ ∈ TL. The second
equality can be shown as follows: For all A′ ∈ A, the (k, l) block of P ′⊤A′ is
A⊤

[i,j]A
′
[k,l]/

√
α, which is an element of D⊗Iµ. Therefore P ′⊤A′ ∈ Dm̂,n̂⊗Iµ,

and hence P ′⊤A = Dm̂,n̂ ⊗ Iµ.

5 Algorithms

The proofs of the structure theorems (Theorems 2 and 7) for simultaneous
SVD are constructive, so that they can readily be turned into algorithms.

In this section, we describe an algorithm for Problem [R] only, whereas
an algorithm for Problem [C] is similar and simpler, and hence omitted. The
algorithm assumes subroutines for the decomposition of ∗-algebras into sim-
ple and irreducible components. Such algorithms for ∗-algebras are indeed
available; see Murota–Kanno–Kojima–Kojima [8] and Maehara–Murota [7]
as well as Eberly–Giesbrecht [3].

The decomposition in Part (A) of Theorem 7 can be carried out by the
following algorithm. Recall that TL is the ∗-algebra generated by AiA

⊤
j

(i, j = 1, . . . , N) and TR is generated by A⊤
i Aj (i, j = 1, . . . , N).

Algorithm 1.

Step 1: Find an orthogonal matrix P that decomposes the ∗-algebra TL

into simple components as in Theorem 6 (A). Also find an or-
thogonal matrix Q that decomposes the ∗-algebra TR into simple
components.

Step 2: Find permutations ΠL and ΠR such that ΠL(P⊤AiQ)ΠR for i =
1, . . . , N are in the same block-diagonal form, say Āi1 ⊕· · ·⊕ Āiℓ.
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For each k = 1, . . . , ℓ, Ak, TLk and TRk are generated by Āik (i =
1, . . . , N), ĀikĀ

⊤
jk (i, j = 1, . . . , N), and Ā⊤

ikĀjk (i, j = 1, . . . , N), respec-
tively. The validity of this algorithm is guaranteed by the fact that the or-
thogonal matrix denoted as “Q” in Theorem 6 (A) for ∗-algebras is unique
up to a permutation of simple components and transformations within sim-
ple components.

The decompositions in Parts (B) and (C) of Theorem 7 can be carried
out by the following algorithm, which should be applied to each Ak obtained
in Part (A). To simply notation we omit the subscript k and assume that
A satisfies the premise in (B) that TL and TR are simple ∗-algebras with
multiplicity µ of irreducible components. We define d = 1, 2, 4 according to
whether D = M, C, or H in (C).

Algorithm 2.

Step 1: Find an orthogonal matrix P that decomposes the ∗-algebra TL

into irreducible components as in Theorem 6 (B). Also find an
orthogonal matrix Q that decomposes the ∗-algebra TR into irre-
ducible components.

Step 2: Pick a nonzero matrix Ai from among the input matrices, and
regard it as a dµ× dµ block-matrix. Let B be one of the nonzero
blocks of Ai, where B is m/(dµ) × n/(dµ) if Ai is m × n.

Step 3: Set P ′ = diag(B,B, . . . , B)/c, where c is a constant such that
c2I = B⊤B.

Step 4: Find permutations ΠL and ΠR such that ΠL(P ′⊤Ai)ΠR for i =
1, . . . , N are in the same block-diagonal form.

The performance of this algorithm depends strongly on the performance
of the subroutines. Currently, all algorithms for the decomposition of ∗-
algebras into simple and irreducible components are sensitive to numerical
errors, and as a consequence the proposed algorithm is also sensitive to
numerical errors and accordingly it can only solve not too large instances,
e.g., with n,m and N less than a few hundreds. To solve larger instances,
an improvement of the subroutines is needed.
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